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ABSTRACT. A challenging methodology predicted in modern military strategies is the unprotected
Weapon-Target Assignment (WTA) problem, where weapons under consideration must be assigned
to targets in order to minimize the expected survivability attribute against the targets. In this case,
this study is interested in the static WTA (SWTA) scenario, where the assignments are made on a
one-time basis. Since the SWTA problem has been found to be of NP-complete nature, the more
accurate solution techniques can be considered infeasible due to the escalating complexity. In this pa-
per, it is proposed to extend the library of new methods by implementing the multi-start method and
the technique called Late Acceptance Hill Climbing (LAHC). Performance comparisons between the
Multi-Start Late Acceptance Hill Climbing (MLAHC) and LAHC algorithms, derived from different
examples and problem sizes, prove that the MLAHC algorithm yields better quality solutions and
higher reliability than the traditional LAHC algorithm for large problems. This strategy can be seen
as a revolution in the process of analyzing military resource allocation towards the optimal level.

1. INTRODUCTION

The Weapon-Target Assignment (WTA) problem is a complex optimization task that is aimed at allo-
cating weapons to targets with the intended objective of either realizing the maximum anticipated damage
of or minimizing the expected survival probability of targets. This problem exists in two main forms:
static and dynamic. In the static form, weapons are allocated to the targets once way, and both the
weapons and targets remain fixed for the duration of their assignment. On the other hand, the dynamic
version allows modification of the assignments over some period of time and may allow many assign-
ments [1]]. Nonetheless, the Static WTA (SWTA) frameworkfocuses on minimizing optimization where
the goal is to attain the most appropriate weapon to target allocation to deter the enemy’s projected im-
pact. This approach is based on the assessment of the organisational defensive environment and focuses
on the best ways and means of applying the defensive resources available.

The assessment of expected damage for defense assets is carried out after their involvement in a bat-
tlefield scenario. A problem for a defensive mission in SWTA problem can generally be formulated as
follows [2]]:
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There are m types of weapons (w; represented by i = 1, ...,m) available to counter n targets, represented
by j=1,...,n. Each weapon type i is associated with a probability p;; of eliminating target j, while each
target j has a destruction value denoted by V;. The decision variables x;; signify the quantity of weapons
of type i allocated to target ;.

According to [3]], SWTA problem is an NP-Complete. Like other assignment problems, e.g. the
quadratic assignment problem [4], it is inherently difficult. In the context of SWTA problem, there are
n™ potential permutations for allocating m weapons to n targets. The condition is that all weapons must be
allocated. As the number of weapons and targets increases, this process becomes increasingly complex. It
can be challenging to explore all possible solutions due to the exponential growth of the problem. Exact
solution methods are insufficient for solving the SWTA problem due to its computational complexity.
Therefore, metaheuristics, known for their efficiency and efficacy in discover the solution space to address
complex problems, are preferred for yielding practical and often nearly optimal solutions.

This study proposes an improved methodology for solving the SWTA problem. It suggests combining
a strategy that involves multiple starting points with late acceptance hill climbing. This approach has
been shown to be an alternative option for obtaining quality solutions within reasonable computational
timeframes. The multistart approach increases diversity in the search space, while the hill climbing
approach focuses on exploiting local optima. The study is significant because it addresses a crucial
obstacle in military mission planning: the optimal allocation of weapons to targets. This allocation
is essential for operational success. The research is a significant advancement in the field because it
highlights the importance of assigning weapons to targets to achieve operational success. The rest of
the paper is structured as follows: Section [2] presents the state-of-the-art methods for solving the WTA
problem. Section [3|describes the late acceptance hill-climbing algorithm and the proposed approach with
its components. Section ] reports the experimental results and the last section concludes the study and
suggests directions for future work.

2. RELATED WORK

In recent years, a large number of exact and approximate algorithms for solving the WTA problem
have been studied [5H7]]. Due to its complexity, the WTA problem may be too hard for exact algorithms
to solve. However, metaheuristics help us to overcome this problem by producing good solutions in
a reasonable time. Metaheuristics, which combine several algorithms, are algorithms designed to solve
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more complex optimization problems and can be applied to different optimization problems. Some meta-
heuristic algorithms, especially preferred for problems with a large number of solutions, can outperform
exact methods and provide an optimal or near optimal solution in a reasonable time [8].

Several approaches to WTA have been studied in the literature. These include genetic algorithms,
heuristic methods, and optimization techniques [9]. Exact algorithms based on mathematical program-
ming have computational requirements that grow exponentially with the size of the problem [2]. There-
fore, these algorithms are limited by some constraints. Recent research has been directed to dynamic
situations and heuristic algorithms [[10,|11]. In military operations, the efficient solution of the WTA
problem is crucial. However, the complexity of the problem makes real-time optimal solutions impos-
sible. Researchers are therefore working on heuristic algorithms such as genetic algorithms, simulated
annealing, ant colony optimization, particle swarm optimization [12]].

A branch-and-bound algorithm that combines lower bound methods with a search algorithm is pro-
posed to solve the WTA problem. A combination of exact and heuristic algorithms for solving the WTA
problem is presented, providing new methods and approaches for solving WTA in defense-related appli-
cations. Computational results are presented that demonstrate the ability to solve moderately large in-
stances optimally and to obtain near-optimal solutions for fairly large instances within a few seconds. The
ability to obtain optimal solutions for large instances in a short time is a significant achievement. [13]. A
new exact algorithm for solving the WTA problem is presented. The algorithm incorporates new methods
called weapon number limitation and weapon dominance to reduce the number of columns to be enumer-
ated. The use of stage-dependent probabilities in WTA problems is proposed to optimize the allocation
of weapons between different stages and targets. [ 14].

For the static version of the WTA problem, three approaches from the literature are presented to lin-
earize the problem and transform it into linear optimization problems with complex numbers. The first
approach can only be used as an approximation, the second approach fully linearizes the objective func-
tion of the WTA problem but is inferior to the solution time of the assignment problem, and the third
approach exactly linearizes the objective function of the WTA problem. A special exact algorithm is
proposed that avoids the difficulty of large dimensions. When a larger number of weapons are available
for each weapon type, the optimization problems become intractable [15]. The modified Crow Search
Algorithm (CSA) presents a new approach with a trial mechanism to improve the solution quality in
solving WTA. The results show that the modified CSA performs better than the basic CSA and other
state-of-the-art algorithms in most problem instances [16]. Another study has improved the previously
proposed multi-objective evolutionary optimization algorithm by introducing an innovative approach.
The proposed method consists of a Deep Q-Network (DQN) based mutation operator and a greedy-based
matching operator.Experimental results show that the DQN-based mutation operator is successful in ef-
fectively identifying promising candidate solutions [17]].

The WTA problem plays a central role in the improvement of military strategies and security mech-
anisms, and is characterized by its complicated nature stemming from the imperative requirement of
optimal and competent resource allocation. Recent scientific work has witnessed a growing fascination
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with metaheuristic methods as a means to address the challenges posed by the WTA problem, as dis-
cussed in Kline’s study [2]. Metaheuristics are preferred because they provide flexibility and efficiency
in solving large and complex problems.

3. THE PROPOSED METHOD

3.1. Late Acceptance Hill Climbing:

The Late Acceptance Hill Climbing (LAHC) Algorithm is a metaheuristic approach designed to ad-
dress combinatorial optimization problems [18]]. It evaluates recent solution history to decide whether to
accept a new solution, treating each new solution as an improved version of the current one. The LAHC
algorithm has proven effective in various domains, including the traveling salesman problem, scheduling,
and timetabling problems. The late acceptance strategy is straightforward. The control parameter for the
acceptance condition is derived from the search history. This heuristic resembles Hill Climbing but with
a key difference: in Hill Climbing, a candidate solution is compared to the current solution, whereas in
LAHC, a candidate solution is compared to a solution from several iterations in the past. LAHC follows
an acceptance rule by maintaining a fixed-length list, L;, which represents the history length and contains
previous values of the current cost function. To determine whether to accept a candidate solution, the
candidate cost is compared to the final element in the list. If the candidate cost is better, it is accepted.
Upon acceptance, the list is updated by inserting the new current cost at the beginning and removing
the last element from the end. This process ensures that the added current cost consistently reflects the
present cost. The pseudocode of LAHC is outlined in Algorithm 1.

LAHC has a wide range of applications in various domains. Its primary application has been in course
scheduling, where it optimizes the quality of schedules by significantly reducing the final solution value,
demonstrating an ability to effectively handle complex scheduling constraints [18]]. LAHC has been used
to solve the unrelated parallel machine scheduling problem [19], the general lot sizing and scheduling
problem with rich constraints [20], and the traveling salesman problem [21]]. Furthermore, LAHC has
been applied in the context of drone trajectory planning algorithms, where it demonstrates superior per-
formance compared to conventional approaches by incorporating local search operators to improve the
efficiency of path determination [22]. In addition, the use of LAHC has been integrated into the feature
selection process, thereby enhancing the ability to utilize metaheuristic algorithms to reduce dimensional-
ity in machine learning tasks [23]]. These examples highlight the adaptability and effectiveness of LAHC
in tackling complex optimization and trajectory planning problems.

3.2. Multi-Start Late Acceptance Hill Climbing:

The Multistart Late Acceptance Hill Climbing Algorithm (MLAHC) is one of the most advanced
optimization techniques which is an enhancement of the existing LAHC as it not only considers single
start points of the search space but also in using multiple starts points in the exploration domain. While,
in LAHC, new solutions are accepted after a specific time-interval based on their fitness value, and
thus, navigate away from local optima, MLAHC enhances this by beginning the search process with
different random initial solutions. This, in turn, enhances the prospects of visiting different regions of
the exploration space in pursuit of the near-optimum solutions through what has been referred to as the
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Algorithm 1 The pseudocode of LAHC.

Input: maxlterations, L (length of history list), initialSolution
Output: bestSolution

Initialisation:

currentSolution < initialSolution

bestSolution <— currentSolution

currentValue <— Evaluate(currentSolution)

historyList <— Array of size L initialized with currentValue
Loop for a fixed number of iterations:

Sl A

5. for i < maxlterations do

6: neighborSolution <— GenerateNeighbor(currentSolution)
7: neighborValue < Evaluate(neighborSolution)

8: if neighborValue < currentValue or neighborValue < historyList[i % L] then
9: currentSolution <— neighborSolution
10: currentValue <— neighborValue
11: end if
12: if currentValue < Evaluate(bestSolution) then
13: bestSolution <— currentSolution

14: end if
15: historyList[i % L] < currentValue
16: end for

17: return bestSolution

multi-start strategy. In other words, MLAHC is different from the basic LAHC in that it have multiple
initial solutions as opposed to LAHC’s single-start nature, meaning that the exploration of the search
space is going to be better and wider with multiple LAHC.

The MLAHC begins by initializing the number of iterations, acceptance period, and restarts, followed
by generating an initial solution and setting up the acceptance history. The algorithm then enters the
multistart loop, where at each restart it sets the initial solution as the current solution and resets the
acceptance history. Within each restart, the iteration loop generates neighboring solutions, calculates
their costs, and compares these costs to those in the acceptance history. If a neighboring solution’s cost is
less than or meets the acceptance criteria, it becomes the new current solution and the acceptance history
is updated accordingly. The algorithm tracks the best solution from each restart and updates the global
best solution when a superior solution is found. This process continues until all restarts and iterations are
complete, ultimately returning the global best solution as the optimal solution found by the algorithm. By
using multiple starting points, MLAHC enhances its ability to explore the search space more extensively
than traditional LAHC. The flowchart of the MLAHC is shown in Figure[I]
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FIGURE 1. The flowchart of MLAHC.

4. EXPERIMENTAL RESULTS

MLAHC is tested on 12 WTA problem instances [[7]. The results are given in different metrics: best,
mean, median, worst and standard deviation (SD). Sizes of problem instances are in the range 5 and 200
and shown in Table [I] Results were collected from 10 independent runs. The numerical experiments
were performed on a PC with 8.00 GB of RAM, MacOS 14.4.1 operating system. The MLAHC codes
were written in the C programming language using CLion IDE v2023.3.4.
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TABLE 1. WTA problem instances.

Instance | Number of Weapons | Number of Targets
WTA1 5 5
WTA2 10 10
WTA3 20 20
WTA4 30 30
WTAS 40 40
WTA6 50 50
WTA7 60 60
WTAS 70 70
WTA9 80 80
WTAI10 90 90
WTAI1 100 100
WTAI12 200 200

Table 2| presents the results on small-scale WTA instances. The results of the MLAHC show that for
WTAL, WTA2, and WTA3, the algorithm consistently achieves identical best, worst, mean, and median
objective values, with an SD of 0.0000 across all configurations, indicating highly stable performance.
In contrast, WTA4 shows more variability, especially with a history length of 1 and no restarts, resulting
in higher and more variable target values and an SD of 6.4358. This means that there is a direct relation
between the number of identified parameter configurations and the overall performance of the algorithm,
notably when it is faced with more complex instances. Although the algorithm shows consistent perfor-
mance on small instances (WTA1, WTA2, and WTA3) regardless of historical length and restart values, it
requires careful parameter tuning when faced with more complex instances such as WTA4. In particular,
adopting larger historical lengths and using restarts as enhancements could be seen as effective on the
grounds of stability and optimality to these particular cases.

Table presents the results on medium-scale WTA instances. For the WTAS instance , the best, worst,
mean, and median objective values show some variation across different history lengths and restart values,
indicating that the algorithm’s performance is somewhat sensitive to these parameters. The lowest mean
objective value is 306.8923 for a history length of 1000 and a restart value of 500. For the WTAG®6 instance,
the results also vary across configurations. The lowest mean objective value is 355.6795 for a history
length of 1000 and a restart value of 1000. For the WTA7 instance , there is variability in the results, with
the lowest mean objective value of 419.5174 achieved with a history length of 1000 and restart value of
1000. For the WTAS instance, the results show significant variability, especially with a history length
of 1 and no restart, leading to much higher objective values and standard deviation. The lowest mean
objective value is 502.9574 with a history length of 1000 and a restart value of 500. As a result, for
instances WTAS, WTA6, and WTA7, MLAHC consistently achieves better and more stable results with
larger history lengths and higher restart values, suggesting that these configurations help the algorithm
explore the solution space more effectively. For the WTAS instance, the variability in results is more
pronounced, especially with shorter history lengths and no restarts, resulting in higher objective values
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TABLE 2. Experimental results on small-scale problem instances.

Instance | History Length | Restart Best Worst Mean | Median SD
1000 1000 | 48.3640 | 48.3640 | 48.3640 | 48.3640 | 0.0000
500 500 48.3640 | 48.3640 | 48.3640 | 48.3640 | 0.0000
500 1000 | 48.3640 | 48.3640 | 48.3640 | 48.3640 | 0.0000
WTAL 1000 500 48.3640 | 48.3640 | 48.3640 | 48.3640 | 0.0000
500 - 48.3640 | 48.3640 | 48.3640 | 48.3640 | 0.0000
1000 - 48.3640 | 48.3640 | 48.3640 | 48.3640 | 0.0000
1 - 48.3640 | 48.3640 | 48.3640 | 48.3640 | 0.0000
1000 1000 | 96.3123 | 96.3123 | 96.3123 | 96.3123 | 0.0000
500 500 96.3123 | 96.3123 | 96.3123 | 96.3123 | 0.0000
500 1000 | 96.3123 | 96.3123 | 96.3123 | 96.3123 | 0.0000
WTA2 1000 500 96.3123 | 96.3123 | 96.3123 | 96.3123 | 0.0000
500 - 96.3123 | 96.3123 | 96.3123 | 96.3123 | 0.0000
1000 - 96.3123 | 96.3123 | 96.3123 | 96.3123 | 0.0000
1 - 96.3123 | 96.3123 | 96.3123 | 96.3123 | 0.0000
1000 1000 | 142.1070 | 142.1070 | 142.1070 | 142.1070 | 0.0000
500 500 | 142.1070 | 142.1070 | 142.1070 | 142.1070 | 0.0000
500 1000 | 142.1070 | 142.1070 | 142.1070 | 142.1070 | 0.0000
WTA3 1000 500 | 142.1070 | 142.1070 | 142.1070 | 142.1070 | 0.0000
500 - 142.1070 | 150.2510 | 144.7579 | 144.0702 | 2.3100
1000 - 142.1070 | 144.4690 | 143.3774 | 143.2416 | 0.7843
1 - 164.5723 | 178.6062 | 173.3124 | 174.3449 | 4.5964
1000 1000 | 248.0285 | 248.5817 | 248.3479 | 248.4051 | 0.1936
500 500 | 248.2730 | 249.3956 | 248.5891 | 248.4222 | 0.3427
500 1000 | 248.3312 | 249.0275 | 248.5460 | 248.4222 | 0.2646
WTA4 1000 500 | 248.0285 | 248.8386 | 248.3717 | 248.3476 | 0.2605
500 - 249.9979 | 256.5385 | 253.2718 | 253.4581 | 2.2874
1000 - 250.4865 | 257.0525 | 253.6127 | 253.7566 | 2.0373
1 - 327.0574 | 346.8141 | 339.7976 | 340.0045 | 6.4358

and standard deviations. This suggests that for more complex or larger instances, a longer history length
and the ability to restart the search process are critical to achieving optimal and consistent solutions.
Table ] presents the results on medium-scale WTA instances. For the WTA9 instance, the best, worst,
mean, and median objective values show some variation across different history lengths and restart val-
ues. The lowest mean objective value is 539.2292 with a history length of 1000 and a restart value of
1000. The SD values are relatively low for most configurations, indicating stable performance, except
for configurations with shorter history lengths and no restarts. For the WTA10 instance, the results also
vary, with the lowest mean objective value of 599.2728 achieved with a history length of 1000 and restart
value of 1000. For the WTA11 instance, the results indicate variability, with the lowest mean objective
value of 704.6850 with a history length of 1000 and restart value of 1000. For WTA10 and WTA11
instances, the SD values are also low for most configurations, indicating stable performance, but higher
for shorter history lengths and no restarts. For the WTA12 instance, the variability in results is more
pronounced, especially for a history length of 1 and no restart, leading to much higher objective values

30



TABLE 3. Experimental results on medium-scale problem instances.

Instance | History Length | Restart Best Worst Mean | Median SD

1000 1000 | 306.5564 | 308.1392 | 307.2418 | 307.2133 | 0.4812

500 500 | 306.2859 | 307.7959 | 306.9699 | 307.0481 | 0.4560

500 1000 | 306.1562 | 308.5417 | 307.1399 | 306.9142 | 0.6765

WTAS 1000 500 |306.0912 | 307.5720 | 306.8923 | 307.1220 | 0.5953
500 - 308.0490 | 319.2780 | 313.5596 | 314.6806 | 3.8503

1000 - 311.2144 | 320.5870 | 314.4265 | 313.8629 | 2.5515

1 - 461.5889 | 488.0803 | 476.8728 | 477.8627 | 7.9504

1000 1000 | 354.0916 | 356.8551 | 355.6795 | 355.6409 | 0.8638

500 500 | 355.3909 | 356.7601 | 356.2280 | 356.3174 | 0.0536

500 1000 | 355.1825 | 358.1991 | 356.6363 | 356.7981 | 0.8159

WTA6 1000 500 | 354.6224 | 356.2821 | 355.6847 | 355.7897 | 0.5000
500 - 360.1330 | 370.9876 | 364.8432 | 364.1965 | 3.6817

1000 - 357.4125 | 364.0606 | 360.0826 | 360.0549 | 1.9652
1 - 545.3753 | 596.1006 | 577.8765 | 579.7290 | 14.9065

1000 1000 | 418.5731 | 420.5899 | 419.5174 | 419.5085 | 0.5927

500 500 | 417.1001 | 422.0817 | 419.6406 | 419.7593 | 0.0613

500 1000 | 417.1754 | 421.1842 | 419.8538 | 420.4126 | 1.3062

WTA7 1000 500 | 417.4177 | 421.3109 | 419.7452 | 419.7255 | 1.1660
500 - 425.9927 | 432.3662 | 428.6032 | 428.5293 | 2.0944

1000 - 422.9075 | 435.2173 | 426.7079 | 426.1469 | 3.5601
1 - 700.1578 | 732.6472 | 715.8937 | 713.3675 | 10.0763

1000 1000 | 500.0615 | 504.5395 | 503.0515 | 503.4774 | 1.3633

500 500 | 499.9063 | 505.1909 | 503.3437 | 503.7197 | 1.5449

500 1000 | 501.4779 | 507.3864 | 504.4214 | 504.8288 | 2.0883

WTAS 1000 500 | 499.9062 | 504.4010 | 502.9574 | 503.6857 | 1.6086
500 - 508.2395 | 519.8273 | 514.9432 | 515.8243 | 3.7444

1000 - 504.3269 | 520.1396 | 511.7618 | 512.2577 | 5.7482
1 - 864.0853 | 898.3761 | 884.8409 | 884.3876 | 10.5878

and standard deviation. The lowest mean objective value is 1,306.1270 with a history length of 1000 and
a restart value of 1000. The SD is higher, especially for the history length of 1 and no restart, where the
SD is 20.4028, indicating less stable performance and greater variability in results.

The performance of MLAHC on large instances is strongly influenced by the history length and restart
parameters. For instances WTA9, WTA10, and WTA11, MLAHC consistently yields better and more
stable results with larger history lengths and higher restart values. This suggests that these configurations
help the algorithm explore the solution space more effectively. For the WTA12 instance, the variability
in results is more significant, especially with shorter history lengths and no restarts, resulting in higher
objective values and standard deviations. This suggests that for more complex or larger instances, using
a longer history length and allowing the search process to restart are critical to achieving optimal and
consistent solutions. Overall, adjusting these parameters is key to improving the performance of the
algorithm. Longer history lengths and restarts are generally recommended for large instances to improve
results.
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TABLE 4. Experimental results on large-scale problem instances.

Instance | History Length | Restart Best Worst Mean Median SD
1000 1000 | 537.7873 | 541.1868 | 539.2292 | 539.2745 | 1.0036
500 500 538.7035 15.2201 541.2645 | 541.5898 | 1.3981
500 1000 | 539.4272 | 542.8226 | 541.1484 | 541.3882 | 1.3585
WTA9 1000 500 536.7075 | 541.1680 | 539.5932 | 539.9091 | 1.4354
500 - 543.9957 | 554.6371 | 548.5667 | 548.8087 | 3.2537
1000 - 540.7142 | 553.3719 | 545.6256 | 544.8100 | 3.8780
1 - 935.5836 | 987.4912 | 969.9581 | 976.2804 | 16.8421
1000 1000 | 598.0171 | 602.8778 | 599.8728 | 599.5441 | 1.4008
500 500 597.1049 | 604.1977 | 601.0149 | 601.3492 | 0.0621
500 1000 | 599.9423 | 602.5693 | 601.2927 | 601.2210 | 0.9187
WTAI10 1000 500 597.2714 | 602.1404 | 599.4435 | 599.5426 | 1.4863
500 - 606.5543 | 614.2934 | 610.2164 | 610.1721 | 2.5238
1000 - 603.0792 | 615.5761 | 607.9658 | 607.2778 | 3.9888
1 - 1,089.2605 | 1,134.0014 | 1,118.0351 | 1,123.5720 | 14.6743
1000 1000 | 702.4334 | 706.9329 | 704.6850 | 704.7220 | 1.5023
500 500 705.8282 | 709.3710 | 707.8575 | 707.7180 | 0.0810
500 1000 | 704.9791 | 708.7655 | 707.3339 | 707.3468 | 1.1818
WTALl 1000 500 702.8853 | 707.9533 | 705.0482 | 704.8346 | 1.5613
500 - 7129811 | 721.9246 | 716.4566 | 715.2716 | 3.3886
1000 - 704.3536 | 720.3480 | 712.7618 | 713.0143 | 5.0992
1 - 1,297.7713 | 1,338.8655 | 1,325.7621 | 1,329.8928 | 13.7453
1000 1000 | 1,304.0334 | 1,308.1425 | 1,306.1527 | 1,306.2038 | 1.2910
500 500 | 1,306.3751 | 1,311.0284 | 1,308.4978 | 1,308.6416 | 0.1910
500 1000 | 1,305.1196 | 1,310.4764 | 1,308.7313 | 1,309.3100 | 1.7343
WTAI12 1000 500 | 1,300.8688 | 1,309.1603 | 1,304.7562 | 1,304.9484 | 2.4993
500 - 1,311.4409 | 1,324.3238 | 1,319.0374 | 1,321.3748 | 4.6725
1000 - 1,307.7223 | 1,318.4404 | 1,312.3279 | 1,312.8594 | 3.3418
1 - 2,664.1240 | 2,727.3161 | 2,696.9456 | 2,698.5258 | 20.4028

5. DISCUSSION

WTA problem experimentation under small, medium, and large problem instances indicate that the
effectiveness of MLAHC depends on the history length and restart parameters. In regard to small sce-
narios, the specific algorithm seems to be highly stable in terms of yielding near-optimal solutions and
is almost inert to these settings. However, these parameters when complex, require adjustments that are
more relevant, with the size of the problem advancing. In medium and large scenarios, the use of larger
history length and inclusion of restarts, generally enhance and stabilize the performance by attaining bet-
ter lower objective values with less variability. In the most difficult problem instances, a history length of
1000 combined with frequent restarts consistently produces the best results. Thus, for more complicated
and extensive tasks, it regimens stable and longer histories, as well as organize restarts when using the
MLAHC algorithm. It also helps give enhanced solution quality and reliability since the best possible
solution is chosen from numerous different solutions.
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A comprehensive evaluation over a range of problem sizes highlights the effectiveness and stability
of the algorithm. However, the study’s comparison is limited to traditional LAHC and lacks broader
comparisons with other state-of-the-art algorithms. It focuses specifically on SWTA, which may limit
generalizability, and does not investigate scalability or computational requirements for extremely large
or real-time applications. The performance of the MLAHC algorithm is highly dependent on the his-
tory length and restart parameters, which require careful tuning, especially for larger and more complex
problem instances. While the algorithm shows consistent performance on small instances, it requires
more precise parameter settings to achieve efficient solutions as the problem size increases. In addition,
the study focuses primarily on the static version of the WTA problem, and although it suggests potential
applications in dynamic WTA problems, these areas are not explored in this paper. Despite these limita-
tions, the practical relevance of the study to military resource allocation and the novel approach presented
are significant contributions.

6. CONCLUSION

This paper aims to develop a new heuristic approach for solving the Static Weapon-Target Assignment
(SWTA) problem incorporating the multistart strategy and Late Acceptance Hill Climbing. This new
technique called Multistart Late Acceptance Hill Climbing (MLAHC) enhances the search mechanism
coupled with optimization in the local optima, and they deliver the best quality solutions with high
performance. As one can observe from tests on various scenarios of WTA problems, it can been seen
that the MLAHC approach performs well. The simulation results indicate that this technique is also more
efficient than conventional versions of LAHC and this becomes more evident when applied to larger and
complicated problems.

This research also found that except for the history length and restart parameters, MLAHC has signif-
icantly high dependency on these two factors. For the small levels, MLAHC holds an ideal and constant
performance in all environment settings. However, as problem size increase, it becomes paramount to
tweak these parameters within the system. History length is longer and it has more restarts which prove
that it provides better and improved results and it underlines the point that there should be much proper
setting required to get the efficient solutions in the complex problems.

Thus, the MLAHC algorithm gives a strong and versatile method to the SWTA problem, which will
significantly adds its value to the scopes of computational combinatorial optimization in general and
the military operations study in particular. If this algorithm is applied in the dynamic WTA problem
and other optimization problems in defence and other fields, then future research can be on these areas.
Further enhancement of this algorithm can be done by combining several metaheuristic algorithms and
hybridization of the strategies.
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