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Abstract 

At knot theory there are many important invariants that are hard to calculate. They are classified as numeric, group 

and polynomial invariants. These invariants contribute to the problem of classification of knots. In this study, we 

have done a study on the polynomial invariants of the knots. First of all, for (2,n)-torus knots which is a special 

class of knots, we calculated their the Kauffman bracket polynomials. We have found a general formula for these 

calculations. Then the Tutte polynomials of graphs, which are marked with a {+} or {-} sign each on edge, of 

(2,n)-torus knots have been computed. Some results have been obtained at the end of these calculations. While 

these researches have been studied, figures and regular diagrams of knots have been applied so much. During the 

first calculation, we have used skein diagrams and relations of the Kauffman polynomial. In the second calculation, 

the Tutte polynomials of (2,n)-torus knots have been computed, at the end of the operation some general formulas 

have been introduced. For (2,n)-torus knots the marked graphs have been gotten by using regular diagrams of 

them. Thus the Tutte polynomials of the ones have been computed as a diagrammatic by recursive formulas that 

can be defined by deletion-contraction operations. Finally, it has been obtained that there is a correlate among the 

Tutte polynomials and the Kauffman bracket polynomials of (2,n)-torus knots. 
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1. Introduction 

Knot theory has gained more importance, especially since 

the beginning of the 20th century. Because knot theory has 

found many applications in fields such as biology, che-

mistry and physics. Topologists have developed various 

knot invariants and worked extensively to solve the basic 

similarity problem of knots. Their goals have been to find 

more sensitive knot invariants that reveal that the two knots 

are different. 

 
In 1987, Vaughan Jones found a new polynomial invariant. 

This invention has given new impetus to the theory. It was 

immediate described in algebraic discipline. Its combinato-

rics definition from graph theory to knot theory provided 

more utility than itself. Kauffman described his polynomial 

and bracket polynomial using Jones' works. 

 
In 1954 a new polynomial for graphs, which is a two-vari-

able polynomial and has got an important role in mathema-

tics, statiscal physics, biology and theoretical computer sci-

ence is devised by William Tutte. It can be defined for each 

undirected graph and gives information about how the 

graph can be connected. In 1988, Kauffman described mar-

ked graphs' Tutte polynomials. 

 
2. Materials and Methods 

2.1 Knot 

In space a knot is defined as a simple closed curve. More 

mathematically, a knot is the embedding of the circle 𝑺𝟏 in 

ℝ𝟑 (or 𝑺𝟑) [1]. A knot is closed curve in space which does 

intersect itself nowhere. 

 
A knot could be limned without an intersection point 

whereon the trivial torus. Then this knot is called torus knot. 

A way to get the trivial torus, it is to take a cylinder whose 

floor is the unit circle 𝐶1 and top is the unit circle 𝐶2 and 

then in ℝ3 𝐶1 and 𝐶2 stick together to form a trivial knot 𝐶 
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in the central axis of the cylinder (see Figure 1). This torus 

can also be called the standard solid torus. If a knot is 

formed so as to surround that standard solid torus 𝑞 times 

on meridian and 𝑝 times on longitude the knot is called to-

rus knot 𝐾𝑝,𝑞 of the type (𝑝, 𝑞). Here, 𝑞 and 𝑝 must be prime 

between them [1]. 

 
Figure 1 The trivial torus 

 

2.2 Graphs 

𝑉 is the vertex set and 𝐸 ⊆ 𝑉 × 𝑉 is the edge set, a graph is 

represented by (𝑉, 𝐸) binary. Only undirected graphs will 

be taken into account here. A loop is an edge formed on the 

same vertex and a bridge is an edge which is just a path 

(there is no another path) between two vertices. 

 

2.3 The Kauffman Bracket Polynomial 

A polynomial denoted by 〈𝐿〉 is assigned to each unoriented 

knot 𝐿, which this polynomial has three independent poly-

nomial variables 𝑎, 𝑏, 𝑐. So that the following conditions 

are satisfied: 

 

1) 

  
 or 

 
 

2) 〈𝐿 ∪       〉 = 𝑐〈𝐿〉 
3)  〈       〉 = 1 

 

Now the relation between the mutables 𝑎, 𝑏, 𝑐 is given. That 

polynomial is constant according to the Reidemeister move 

Ω2. If the Reidemeister move Ω2 is dealt with we have: 

 
 

If 𝑎𝑏 = 1 and 𝑎2 + 𝑏2 + 𝑎𝑏𝑐 = 0 the polynomial will be 

constant according to the Reidemeister move Ω2. Therefore 

we have: 

𝑏 = 𝑎−1 

𝑎2 + 𝑏2 + 𝑎𝑏𝑐 = 0 

⟹ 𝑐 = −𝑎2 − 𝑏2 

⟹ 𝑐 = −𝑎2 − 𝑎−2. 

 

2.4 The Tutte Polynomial 

To characterize the Tutte polynomial of a graph, edge dele-

tion and edge contraction operations must be known. Edge 

deletion is shown with 𝐺 − 𝑒. Edge contraction is shown 

with 𝐺/𝑒. To perform the edge contraction operation edge 

deleting is firstly applied. 

 

For a graph (𝐺, 𝑉) the Tutte polynomial is as follows [2]: 

𝑇(𝐺; 𝑥, 𝑦)

=

{
 
 

 
 

1,                                      𝐸(𝐺) = ∅
𝑥𝑇(𝐺 𝑒)⁄ ,          𝑒 ∈ 𝐸 and 𝑒 is a bridge

𝑦𝑇(𝐺 − 𝑒),            𝑒 ∈ 𝐸 and 𝑒 is a loop

𝑇(𝐺 − 𝑒; 𝑥, 𝑦) + 𝑇(𝐺 𝑒⁄ ; 𝑥, 𝑦), 𝑒 ∈ 𝐸 and

                      𝑒 is neither a loop nor a bridge 

 

 

2.5 For Signed Graph Tutte Polynomial 

There is a corresponding regular knot diagram for each 

signed planar graph. Conversely the regular diagrams of the 

knots correspond individually to the signed planar graphs 

[3]. 

 
Figure 2 (The rule of how to get signed graphs) 
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𝐺 is a signed graph. Mark(𝑒) indicates the sign of the edge 

𝑒 of 𝐺. It may be (+) or (-). This edge 𝑒 can be a loop or a 

bridge. We will indicate the number of positive bridges by 

𝑖+ = 𝑖+(𝐺), the number of negative bridges by 𝑖− = 𝑖−(𝐺), 
the number of positive loops by 𝑙+ = 𝑙+(𝐺) and the number 

of negative loops by 𝑙− = 𝑙−(𝐺) in 𝐺. For signed graphs it 

can be defined the polynomial of 𝑄[𝐺] = 𝑄[𝐺](𝑎, 𝑏, 𝑑), 
where 𝐺′ and 𝐺′′ are the reduced graphs obtained using de-

letion-contraction and 𝑋 = 𝑎 + 𝑏𝑑, 𝑌 = 𝑎𝑑 + 𝑏 [3]: 

 

(1) In 𝐺, providing that neither an edge 𝑒 is a loop nor it is 

a bridge in that case 

 

𝑄[𝐺] = 𝑎𝑄[𝐺′] + 𝑏𝑄[𝐺′′] if mark(𝑒) < 0, 

𝑄[𝐺] = 𝑏𝑄[𝐺′] + 𝑎𝑄[𝐺′′] if mark(𝑒) > 0. 

 

(2) Providing that each edge of 𝐺 is either a bridge or a loop 

and 𝐺 is connected in that case 

 

𝑄[𝐺] = 𝑋𝑖+ + 𝑙−𝑌𝑖− + 𝑙+. 

 

(3) Providing that 𝐺 is equal to cloven fusion of graphs 𝐺1 

and 𝐺2 in that case 𝑄[𝐺] = 𝑑𝑄[𝐺1]𝑄[𝐺2]. 
 

That polynomial contains the Tutte polynomials for cons-

tant sign of random graphs [3]. 

 

3. Results and Discussion 

3.1 (2,n)-Torus Knots' Kauffman Polynomials 

We showed torus knots 𝐾2,𝑛 of the type (2, 𝑛) in the follow-

ing way (see Figure 3). 

 
Figure 3 Regular diagrams of 𝐾2,𝑛 

 

Then the Kauffman bracket polynomials of 𝐾2,𝑛 and  𝐾2,𝑛
∗  

calculate as defined in Section 2.3. It is obtained the fol-

lowing results: 

 
Theorem 1: For the Kauffman bracket polynomials of 𝐾2,𝑛 

the following general formula is found [4]: 

𝑃𝐾2,𝑛(𝑎) = 𝑎𝑃𝐾2,𝑛−1(𝑎) + (−1)
𝑛−1𝑎−3𝑛+2         (3.1) 

where 𝑷𝑲𝟐,𝟏(𝒂) = −𝒂
𝟑. 

 

Theorem 2: For the Kauffman bracket polynomials of 𝐾2,𝑛
∗  

the following general formula is found [4]: 

 
𝑃𝐾2,𝑛∗ (𝑎) = 𝑎

−1𝑃𝐾2,𝑛−1∗ (𝑎) + (−1)𝑛−1𝑎3𝑛−2     (3.2) 

where 𝑃𝐾2,1∗ (𝑎) = −𝑎
−3. 

 
3.2 The Tutte Polynomials of (2,n)-Torus Knots' Signed 

Graphs 

Isomorphic graphs of (2,n)-torus knots 𝐾2,𝑛 have been got-

ten using regular diagrams. The signed graphs of (2,n)-torus 

knots are gotten with (+) or (-) signs as shown in Figure 2. 

Then the Tutte polynomials of this signed graphs calculate 

as defined in subsection 2.5. It is obtained the following re-

sults: 

 

Theorem 3: For signed graphs of (2,n)-torus knots 𝐾2,𝑛, 

which every edges have {-} sign, the following general for-

mula is found about the Tutte polynomials of them [5]: 

 

𝑄[𝐺] = 𝑎(∑ 𝑏𝑘−1𝑌𝑛−𝑘𝑛−1
𝑘=1 ) + 𝑏𝑛−1𝑋               (3.3) 

 

Theorem 4: For signed graphs of (2,n)-torus knots 𝐾2,𝑛
∗ , 

which every edges have {+} sign, the following general for-

mula is found about the Tutte polynomials of them [5]: 

 

𝑄[𝐺∗] = 𝑏(∑ 𝑎𝑘−1𝑋𝑛−𝑘𝑛−1
𝑘=1 ) + 𝑎𝑛−1𝑌             (3.4) 

 

4. Conclusion 

The relationship indicated in the title is determined and it is 

expressed in the following conclusions for torus knots of 

the type (2, 𝑛): 
 

Conclusion 1: If we put 𝑿 = −𝒂−𝟑, 𝒀 = 𝒂𝟑 and 𝒃 = −𝒂−𝟏 

in the relation (3.3) we have the same result as the 

Kauffman bracket polynomial of the corresponding knot in 

the relation (3.1). For example; for 𝑲𝟐,𝟑 : 

 

𝑄[𝐺] = 𝑎 (∑𝑏𝑘−1𝑌𝑛−𝑘
𝑛−1

𝑘=1

) + 𝑏𝑛−1𝑋 

𝑄[𝐺] = 𝑎𝑌2 + 𝑎𝑏𝑌 + 𝑏2𝑋 

𝑄[𝐺] = 𝑎(𝑎3)2 + 𝑎(−𝑎−1)𝑎3 + (−𝑎−1)2(−𝑎−3) 
𝑄[𝐺] = 𝑎7 − 𝑎3 − 𝑎−5 = 𝑃𝐾2,3(𝑎). 

 

Conclusion 2: If we put 𝑿 = −𝒂−𝟑, 𝒀 = −𝒂𝟑 and 𝒃 = 𝒂−𝟏 

in the relation (3.4) we have the same result as the 

Kauffman bracket polynomial of the corresponding knot 

the relation (3.2). For example; for 𝑲𝟐,𝟓
∗  : 
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𝑸[𝑮∗] = 𝒃(∑𝒂𝒌−𝟏𝑿𝒏−𝒌
𝒏−𝟏

𝒌=𝟏

) + 𝒂𝒏−𝟏𝒀 

𝑄[𝐺∗] = 𝑎4𝑌 + 𝑎3𝑏𝑋 + 𝑎2𝑏𝑋2 + 𝑎𝑏𝑋3 + 𝑏𝑋4 

𝑄[𝐺∗] = 𝑎4(−𝑎3) + 𝑎3𝑎−1(−𝑎−3) + 𝑎2𝑎−1(−𝑎−3)2

+ 𝑎𝑎−1(−𝑎−3)3 + 𝑎−1(−𝑎−3)4 

𝑄[𝐺∗] = −𝑎7 − 𝑎−1 + 𝑎−5 − 𝑎−9 + 𝑎−13 = 𝑃𝐾2,5∗ (𝑎). 
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