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Abstract. Eliahou and Kervaire defined splittable monomial ideals and pro-

vided a relationship between the Betti numbers of the more complicated ideal

in terms of the less complicated pieces. We extend the concept of splittable

monomial ideals showing that an ideal which was not splittable according to

the original definition is splittable in this more general definition. Further, we

provide a generalized version of the result concerning the relationship between

the Betti numbers.
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1. Introduction

Splittable monomial ideals were developed by Eliahou and Kervaire [3] to study

the Betti numbers of stable ideals. These splittings have further been used by

Fatabbi [4] and Francisco [5] to obtain results on the graded Betti numbers of ideals

of fat points, as well as by Ha and Van Tuyl [9] to study the resolutions of edge ideals

of both graphs and hypergraphs. In particular, Eliahou and Kervaire provided an

example of a monomial ideal that is not splittable, using their definition. The aim

of this paper is to extend the concept of splittable monomial ideals in order to

expand the results on the graded Betti numbers.

Throughout this paper, R = k[x1, . . . , xn] will be a polynomial ring in the vari-

ables x1, . . . , xn over the field k. Then ifM is a finitely generated graded R-module,

associated to M is a minimal free resolution, which is of the form

0 →
⊕
a
R(−a)βp,a(M) δp−−→

⊕
a
R(−a)βp−1,a(M) δp−1−−−→ · · · δ1−→

⊕
a
R(−a)β0,a(M)→M→ 0,

where the maps δi are exact and where R(−a) denotes the translation of R obtained

by shifting the degree of elements of R by a ∈ N. The numbers βi,a(M) are called

the graded Betti numbers of M , and they correspond to the number of minimal

generators of degree a occurring in the i-th syzygy module of M .
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In Section 2, we review the definition of splittable monomial ideal, as given by

Eliahou and Kervaire [3], and provide examples. Throughout this paper, we will

refer to the splittings of Eliahou and Kervaire as 2-splittings. Then, in Section 3,

we will generalize this definition by allowing ideals to be split into more than two

parts. In particular, we will show an example of an ideal that does not have a

2-splitting, but does indeed have a splitting in a more general definition (which we

will call a k-splitting). Lastly, in Section 4, we will show the relationship between

the Betti numbers in a generalized k-splitting and extend the earlier examples to

show a class of ideals that has several different k-splittings.

2. Splittable monomial ideals

Consider the polynomial ring R := k[x1, . . . , xn]. For a monomial ideal I ⊂ R,

we let G(I) denote the canonical generating set of I. Eliahou and Kervaire [3]

introduced the concept of a splittable monomial ideal, which we call a 2-splitting

with the following definition:

Definition 2.1. We say that I ⊂ R is 2-splittable if I is the sum of two nonzero

monomial ideals J and K such that

(1) G(I) is the disjoint union of G(J) and G(K), i.e., G(I) = G(J)⊔G(K), and

(2) there is a splitting function

G(J ∩K) → G(J)×G(K), w 7→ (ϕ(w), ψ(w))

satisfying the following properties:

(S1) for all w ∈ G(J ∩K), we have that w = lcm(ϕ(w), ψ(w)) and

(S2) for every subset G′ ⊂ G(J∩K), both lcm ϕ(G′) and lcm ψ(G′) strictly

divide lcm G′.

These splittings of monomial ideals have been used to study triangulated hyper-

graphs [9] and extremal Betti numbers [1] and have been applied to Boij–Söderberg

theory [8], in addition to many other areas. An example of a splittable ideal is the

squarefree domino ideals studied by the authors [2].

Definition 2.2. Consider a 2 × n rectangle, D. Each 2 × 1 region in D corre-

sponds to a domino tile. We assign to horizontally-oriented dominos the labels

x1, x2, . . . , x2n−2 and to vertically-oriented dominos the labels y1, y2, . . . , yn.

(1) A tiling τ of D is a degree n squarefree monomial τ = z1z2 · · · zn, where
zi ∈ {x1, x2, . . . , x2n−2, y1, y2, . . . , yn} and, when considering the variables

as dominos in the array, we have zi ∩ zj = ∅ for all 1 ≤ i, j ≤ n. We will

let Tn denote the set of all tilings τ of D.
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(2) The domino ideal corresponding to Tn is the ideal generated by all tilings

in Tn, i.e.,

In := (τ | τ ∈ Tn) ⊆ R = k[x1, . . . , x2n−2, y1, . . . , yn].

Example 2.3. Let R be a 2×4 rectangle. The horizontal dominos are labeled with

{x1, x2, x3, x4, x5, x6} and the vertical dominos are labeled with {y1, y2, y3, y4}.
Then

I4 = ⟨x1x3x4x6, x1x4y3y4, x2x5y1y4, x3x6y1y2, y1y2y3y4⟩.

The domino ideal is 2-splittable as I4 = J +K, where

J = ⟨x1x3x4x6, x1x4y3y4⟩ and K = ⟨x2x5y1y4, x3x6y1y2, y1y2y3y4⟩

with splitting function

G(J ∩K) → J ×K → G(J)×G(K), w 7→
( w
x1
,
w

y1

)
7→ (x, y),

where x ∈ G(J) and y ∈ G(K) are such that w = lcm(x, y). Because every element

in G(J) and no element in G(K) is divisible by x1 and similarly every element

in G(K) and no element in G(J) is divisible by y1, it is straightforward to check

the splitting function satisfies conditions (S1) and (S2).

In the example above, each of the four minimal generators in G(J ∩ K) has a

unique representation as the least common multiple of a generator from J and a

generator from K. More generally, in domino ideals, when the representation is

not unique, we choose the representative in G(J)×G(K) which is lexicographically

smallest by some linear ordering on the variables.

Furthermore, Example 2.3 illustrates an xi-splitting defined by Francisco, Há,

and Van Tuyl [6]. The following restricts their definition:

Definition 2.4. Let I be a monomial ideal in R = k[x1, . . . , xn]. Let J be the ideal

generated by all elements of G(I) divisible by xi, and let K be the ideal generated

by all other elements of G(I). If I = J +K is a 2-splitting, we call I = J +K an

xi-splitting.

Proposition 2.5. Let R be a planar region on the square lattice with a corner,

that is, the region contains a square this is connected via adjacent edges to exactly

two other squares and is not adjacent to squares along the other two edges. Then

the domino ideal IR is xi-splittable.

Proof. At any corner of R, exactly two dominos may be placed: one vertical

and one horizontal. Without loss of generality, label these dominos by x and y,

respectively. Every tiling must contain exactly one of these dominos, so every
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generator of IR is divisible by x or y, but not both. We split the ideal into ideals

J and K with disjoint generating sets

G(J) = {z ∈ G(IR) : x | z} and G(K) = {z ∈ G(IR) : y | z}.

This is a splitting with splitting function analogous to that in Example 2.3. □

One of the uses for splittings of monomial ideals is to more easily calculate the

Betti numbers on the minimal free resolution of the monomial ideal. Given a 2-

splittable ideal I = J + K, we can calculate its graded Betti numbers using the

graded Betti numbers of the ideals J and K along with the graded Betti numbers

of the intersection J ∩K. The following theorem is due to Eliahou and Kervaire [3]

for Betti numbers and Fatabbi [4] for graded Betti numbers:

Theorem 2.6. Suppose that I is a 2-splittable monomial ideal with 2-splitting

I = J +K. Then for all i, j ≥ 0,

βi,j(I) = βi,j(J) + βi,j(K) + βi−1,j(J ∩K).

This theorem gives a nice way to compute the Betti numbers of more complicated

monomial ideals by understanding the less complicated components given by the

splitting. However, there are even relatively simple monomial ideals that are not

2-splittable. The following example comes from [3, Remark 2]:

Example 2.7. Let k be a field. Then the ideal

I = (x1x2x3, x1x3x5, x1x4x5, x2x3x4, x2x4x5) ⊆ k[x1, . . . , x5]

does not have a splitting according to Definition 2.1.

We will revisit this ideal in Example 3.2, when we consider splitting a monomial

ideal into more than two nonzero ideals.

3. The k-splittable ideals

To begin, we extend Definition 2.1 to allow for any finite number of parts.

Definition 3.1. We say that I is k-splittable if I is the sum of k nonzero monomial

ideals J1, J2, . . . , Jk such that

(1) G(I) is the disjoint union of G(J1), G(J2), . . . , G(Jk), i.e.,

G(I) = G(J1) ⊔G(J2) ⊔ · · · ⊔G(Jk),
and

(2) there is a splitting function

G(J1∩J2∩· · ·∩Jk) → G(J1)×G(J2)×· · ·×G(Jk), w 7→ (ϕ1(w), ϕ2(w), . . . , ϕk(w)),

satisfying the following properties:
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(S1) for all monomials w ∈ G(J1 ∩ J2 ∩ · · · ∩ Jk), we have that

w = lcm(ϕ1(w), ϕ2(w), . . . , ϕk(w)), and

(S2) for every subset G′ ⊂ G(J1 ∩ J2 ∩ · · · ∩ Jk), we have lcm ϕi(G
′) strictly

divides lcmG′ for all 1 ≤ i ≤ k.

The definition above allows us to use splitting techniques in greater general-

ization. We note that Definition 2.1 is equivalent to the case where k = 2 in

Definition 3.1.

Recall, the ideal in Example 2.7 that was not 2-splittable. We now show that

this ideal is 3-splittable.

Example 3.2. Let k be a field. Consider the ideal

I = (x1x2x3, x1x3x5, x1x4x5, x2x3x4, x2x4x5) ⊆ k[x1, . . . , x5]

from Example 2.7. Set

J = (x1x2x3, x1x3x5), K = (x1x4x5), and L = (x2x3x4, x2x4x5).

Then G(I) = G(J) ⊔G(K) ⊔G(L). Consider the function

ϕ : G(J ∩K ∩ L) → G(J)×G(K)×G(L), w 7→
( w

x2x4
,
w

x2x3
,
w

x1x5

)
.

Since J ∩K ∩L = (x1x2x3x4x5), it is clear that the conditions of Definition 3.1 are

satisfied. Therefore, I is 3-splittable.

We will prove a result concerning the Betti numbers of k-splittable monomial

ideals, but first, let us consider the generalizations of xi-splittable ideals in which

each component ideal in the sum is divisible by a distinct element. We prove that

these ideals are k-splittable.

Theorem 3.3. Given a monomial ideal I with disjoint sum I = J1 + J2 + · · ·+ Jk

such that

G(Ji) = {z : z ∈ G(I) and ∃zi ∈ R such that zi | z and

zi ∤ w for any w ∈ G(Jj) with i ̸= j}.

Then I is a k-splittable ideal for k > 1.

Proof. For any w ∈ G(J1 ∩ J2 ∩ · · · ∩ Jk), we have w = lcm(x1, x2, . . . , xk) for

at least one k-tuple (x1, x2, . . . , xk), where each xi ∈ G(Ji). Canonically, choose

the lexicographically smallest k-tuple (x1, x2, . . . , xk) whose least common multiple

is w for some linear ordering on the variables. To show that I is k-splittable, we

define the function ϕ = (ϕ1, ϕ2, . . . , ϕk) as

ϕi : G(J1 ∩ J2 ∩ · · · ∩ Jk) → G(Ji), where ϕi(w) = xi.
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For condition (S1), by construction

lcm
(
ϕ1(w), ϕ2(w), . . . , ϕk(w)

)
= lcm(x1, x2, . . . , xk) = w.

For condition (S2), given w ∈ G(J1 ∩ J2 ∩ · · · ∩ Jk), we know w = z1z2 · · · zky for

some y. Therefore, in any subset G′ = {w1, w2, . . . , wm} of the intersection, there

exists a monomial ŷ such that

lcm(G′) = lcm(w1, w2, . . . , wm) = z1z2 · · · zkŷ.

But zj does not divide ϕi(w) when j ̸= i, so zj also does not divide

lcm
(
ϕi(G

′)
)
= lcm

(
ϕi(w1), ϕi(w2), . . . , ϕi(wm)

)
,

and hence lcm
(
ϕi(G

′)
)
strictly divides lcm(G′). □

Now, we prove an extension of Theorem 2.6.

Theorem 3.4. Given a k-splittable monomial ideal I = J1+J2+ · · ·+Jk such that

Ji = {z : zi | z and zi ∤ w for any w ∈ G(Jj), with i ̸= j}

for some zi, where 1 ≤ i ≤ k. Then for all i, j ≥ 0,

βi,j(I) =

k∑
m=1

( ∑
i1,i2,...,im

βi−m+1,j(Ji1 ∩ Ji2 ∩ · · · ∩ Jim)

)
,

where the sum is over all m-subsets {i1, i2, . . . , im} ⊆ [k].

Proof. By [3, Proposition 3.1], the claim holds for k = 2; so by induction, we

assume it holds up to k. Given a k-splittable ideal I = J1 + J2 + · · · + Jk, set

J ′
k−1 = Jk−1 + Jk. As above, note that any w ∈ G(J1 ∩ J2 ∩ · · · ∩ Jk−2 ∩ J ′

k−1) can

be written as the lcm(x1, x2, . . . , xk−2, x
′
k−1) for some lexicographically smallest

(k − 1)-tuple such that xi ∈ G(Ji) for 1 ≤ i ≤ k − 2 and x′k−1 ∈ G(Jk−1) ∪G(Jk).
Define the function ϕ′ = (ϕ′1, ϕ

′
2, . . . , ϕ

′
k−1) as follows: If 1 ≤ i ≤ k − 2,

ϕ′i : G(J1 ∩ · · · ∩ Jk−2 ∩ J ′
k−1) → G(Ji), where ϕ′i(w) = xi,

and

ϕ′k−1 : G(J1 ∩ · · · ∩ Jk−2 ∩ J ′
k−1) → G(J ′

k−1), where ϕk−1(w) = x′k−1.

We claim ϕ′ is a (k − 1)-splitting. Easily ϕ′ satisfies (S1) as

lcm
(
ϕ′1(w), ϕ

′
2(w), . . . , ϕ

′
k−1(w)

)
= lcm(x1, x2, . . . , xk−2, x

′
k−1) = w.

Further for w ∈ G(J1 ∩ · · · ∩ Jk−1 ∩ J ′
k−1), w has one of three forms:

(1) wi = z1 · · · zk−1y,

(2) wi = z1 · · · zk−1zky, or
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(3) wi = z1 · · · zk−2zky.

So, given a subset G′ ⊆ G(J1 ∩ · · · ∩ Jk−2 ∩ J ′
k−1),

lcm(G′) = lcm(w1, . . . , wm)

also has one of those three forms. For 1 ≤ i ≤ k − 2, we have that zj does not

divide ϕ′(w) when j ̸= i, so zj also does not divide

lcm
(
ϕ′i(G

′)
)
= lcm

(
ϕ′i(w1), . . . , ϕ

′
i(wm)

)
,

so lcm
(
ϕ′i(G

′)
)
strictly divides lcm(G′). Depending on the type, it may be that

both zk−1 and zk do divide lcm
(
ϕ′k−1(G

′)
)
, but zj for 1 ≤ j ≤ k−2 does not divide

lcm
(
ϕ′k−1(G

′)
)
, so again lcm

(
ϕ′k−1(G

′)
)
strictly divides lcm(G′). Thus, we have

satisfied (S2), so ϕ′ is a (k − 1)-splitting, and we have

βi,j(J1 + · · ·+ Jk−1 + J ′
k−1) =

k−1∑
m=1

( ∑
i1,i2,··· ,im

βi−m+1,j(Ji1 ∩ · · · ∩ Jim)

)
, (1)

where the sum is taken over all m-subsets {i1, i2, . . . , im} ⊆ [k − 1].

Further, J ′
k−1 = Jk−1+Jk is a 2-splitting with the canonical map ϕ̄ = (ϕ̄k−1, ϕ̄k),

where ϕ̄k−1(w) = xk−1 and ϕ̄k(w) = xk for w given by the lexicographically smallest

lcm(xk1
, xk). Set W = J1 ∩ J2 ∩ · · · ∩ Jk−2. We have

W ∩ J ′
k−1 = (W ∩ Jk−1) + (W ∩ Jk)

is also a 2-splitting as the map ϕ̄ still acts on the elements of the intersection as a

subset of J ′
k−1, so

βi,j
(
(W ∩ Jk−1) + (W ∩ Jk)

)
= βi,j(W ∩ Jk−1) + βi,j(W ∩ Jk) + βi−1,j(W ∩ Jk−1 ∩ Jk). (2)

Combining (1) and (2), we obtain the desired result. □

Domino ideals still fall nicely in the category of xi-splittings, sometimes in several

ways, because we can partition the tilings by the domino variables that covers any

particular square of the band.

Example 3.5. Consider the ideal

I = (x1x2x3, x1x3x5, x1x4x5, x2x3x4, x2x4x5) ⊆ k[x1, . . . , x5]

from Example 3.2, with the 3-splitting

J = (x1x2x3, x1x3x5), K = (x1x4x5), and L = (x2x3x4, x2x4x5).
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The Betti table for the minimal free resolution of I, obtained usingMacaulay2 [7], is

0 1 2
total: 5 5 1

3: 5 5 1.

Further, the results from Theorem 4.2 can be verified using the following Betti ta-

bles for the minimal free resolutions of J , K, L, J ∩K, J ∩L, K∩L, and J ∩K∩L,
respectively:

0 1
total: 2 1

3: 2 1

0
total: 1

3: 1

0 1
total: 2 1

3: 2 1

0
total: 1

4: 1

0
total: 1

4: 1

0
total: 1

4: 1

0
total: 1

5: 1.

Example 3.6. Let Mn be the region describing the 2 × n Möbius band and IMn

be the domino ideal of this region. Then the domino ideal is 3-splittable, where

IMn
= Jn + Kn + Ln. Any tiling must contain exactly one domino from the set

{yn, xn, xn−1}, so we define Jn, Kn, and Ln as

Jn = {τ ∈ Tn : yn | τ}, Kn = {τ ∈ Tn : xn | τ}, and Ln = {τ ∈ Tn : xn−1 | τ}.

As a consequence, we can use Theorem 4.2 to calculate the Betti numbers that

describe the minimal free resolution of the domino ideal IMn
. In the next section,

we look at the relationship between k-splittable ideals as defined in Definition 3.1

and generalized k-Betti splittings.

4. The k-splitting and Betti numbers

Before our main result showing the relationship between the Betti numbers of

a k-splittable monomial ideal and the Betti numbers of its k component ideals, we

prove the following proposition:

Proposition 4.1. Suppose that I is a k-splittable monomial ideal with splitting

I = J1 + J2 + · · · + Jk. Then for every pair 1 ≤ i < j ≤ k, we have the ideal

I ′ = Ji + Jj with the property

βq,j(I
′) = βq,j(Ji) + βq,j(Jj) + βq−1,j(Ji ∩ Jj)

for all q, j ≥ 0.

Proof. SetW = Ji∩Jj . Given that I is a k-splittable monomial ideal with splitting

I = J1+J2+ · · ·+Jk, define an embedding γ : G(W ) → G(J1∩· · ·∩Jk) as follows:
Every element of G(W ) has the form w = lcm(xi, xj) for at least one pair (xi, xj) ∈
G(Ji)×G(Jj). Choose the lexicographically smallest k-tuple (x1, x2, . . . , xk) such

that w divides lcm(x1, x2, . . . , xk). Because lcm(x1, x2, . . . , xk) is a monomial, we

can find at least one generator z = lcm(x′1, x
′
2, . . . , x

′
k) ∈ G(J1∩· · ·∩Jk) such that z
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divides lcm(x1, x2, . . . , xk). Choosing z so that (x′1, x
′
2, . . . , x

′
k) is lexicographically

smallest, define γ(w) = z.

Thus, we can define a function ψ : W → Ji ⊕ Jj , where ψ = (ϕi ◦ γ, ϕj ◦ γ).
Consider the short exact sequence

0 →W → Ji ⊕ Jj → I → 0,

with standard maps α(w) = (w,w) and π(u, v) = u− v.

We want to prove that the map

ψq : TorRq (W,k) → TorRq (Ji, k)⊕ TorRq (Jk, k)

induced by ψ is 0 for all q ≥ 0.

Let (Ji)∗, (Jj)∗, W∗ be the Taylor resolutions for Ji, Jj , and W with generators

G((Ji)0), G((Jj)0), and G(W0), respectively. We have basis elements gA of W∗ for

A ⊆ G(W ) with gA = gw1
∧ · · · ∧ gwℓ

, where wi ∈ A for all i.

There is a bijection between the basis of W0 and the basis of W defined by

σ :W →W0, where σ(w) = gw. The splitting function is then lifted giving

ψ0 :W0 → (Ji)0 ⊕ (Jj)0, gw 7→ (gϕi(γ(w)), gϕj(γ(w))).

Thus, more generally, α can be lifted to a map on the resolution using the same

splitting function ψ as
ψ∗ :W∗ → (Ji)∗ ⊕ (Jj)∗,

where

ψ∗(gA) =

(
mγ(A)

mϕi(γ(A))
gϕi(γ(A)),

mγ(A)

mϕj(γ(A))
gϕj(γ(A))

)
,

with mA = lcm(w : w ∈ A).

We slightly modify the coefficient in the standard differential so our differential

acts on an element of the Taylor resolution by

∂(gA) =
∑
w∈A

(−1)sgn(w,A) mγ(A)

mγ(A\{w})
gA\{w},

where sgn is the number of elements in A greater than w under the linear order

and mA = lcm(w : w ∈ A). One can check it is still true that ∂2 = 0.

We now show that ψ and ∂ commute.

∂(ψ(gA) = ∂

(
mγ(A)

mϕi(A)
gϕi(γ(A)),

mγ(A)

mϕj(γ(A))
gϕj(γ(A))

)
=

( ∑
w′∈ϕi(γ(A))

(−1)sgn(w
′,ϕi(γ(A))) mγ(A)

mϕi(γ(A))
·

mϕi(γ(A))

mϕi(γ(A))\{w′}
gϕi(γ(A))\{w′},∑

w′∈ϕj(γ(A))

(−1)sgn(w
′,ϕj(γ(A))) mγ(A)

mϕj(γ(A))
·

mϕj(γ(A))

mϕj(γ(A))\{w′}
gϕj(γ(A))\{w′}

)
.

On the other hand,
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ψ(∂(gA)) = ψ

( ∑
w∈A

(−1)sgn(w,A) mγ(A)

mγ(A\{w})
gA\{w}

)
=

( ∑
w∈A

(−1)sgn(w,A) mγ(A)

mγ(A\{w})
·

mγ(A\{w})

mϕi(γ(A\{w}))
gϕi(γ(A\{w})),∑

w∈A

(−1)sgn(w,A) mγ(A)

mγ(A\{w})
·

mγ(A\{w})

mϕj(γ(A\{w}))
gϕj(γ(A\{w}))

)
.

Because we have a k-splitting on I, by Property 2, we see the remaining coeffi-

cients mγ(A)/mϕi(γ(A\{w})) do not reduce to a unit, so they lie in the augmentation

ideal. Thus, ψ induces 0 in the homology, so we conclude by Proposition 2.1 in [6]

that I ′ = Ji + Jj has the decomposition

βq,j(I
′) = βq,j(Ji) + βq,j(Jj) + βq−1,j(Ji ∩ Jj)

for all q, j ≥ 0. □

We can now state our main result.

Theorem 4.2. Suppose that I is a k-splittable monomial ideal with splitting I =

J1 + J2 + · · ·+ Jk. Then for all i, j ≥ 0,

βi,j(I) =

k∑
m=1

( ∑
i1,i2,...,im

βi−m+1,j(Ji1 ∩ Ji2 ∩ · · · ∩ Jim)

)
,

where the sum is over all m-subsets {i1, i2, . . . , im} ⊆ [k].

Proof. Given a k-splittable ideal I = J1+J2+· · ·+Jk and utilizing Proposition 4.1

as the base case, we apply induction and assume this sum holds for any ideal

Ji1 +Ji2 + · · ·+Jim for m < k, where {i1, i2, . . . , im} ⊂ [k]. Then consider the ideal

I = J1 + J2 + · · ·+ Jk.

Set U = J1 + J2 + · · · + Jk−1, and set W = U ∩ Jk. Define an embedding

γ : G(W ) → G(J1 ∩ · · · ∩ Jk) as follows: Every element of G(W ) has the form

w = lcm(x, y) for some x ∈ G(U) and y ∈ G(Jk). Because generators of the sum

ideal U are all generators of one of the summand ideals, without loss of generality,

suppose x ∈ G(J1).

As in the proof of Proposition 4.1, we may find an element lcm(x1, x2, . . . , xk−1) ∈
J1 ∩ J2 ∩ · · · ∩ Jk that is divisible by w. Find the generator z = lcm(x′1, x

′
2, . . . , x

′
k)

that divides lcm(x1, x2, . . . , xk), canonically. We choose these monomials so that

(x1, x2, . . . , xk) and (x′1, x
′
2, . . . , x

′
k) are lexicographically smallest. Set γ(w) = z.

The proof follows exactly as above, and we see that the multigraded Betti num-

bers of the ideal I = (J1 + J2 + · · ·+ Jk−1) + Jk are

βq,j(I) = βq,j(J1+J2+· · ·+Jk−1)+βq,j(Jk)−βq−1,j

(
(J1+J2+· · · Jk−1)∩Jk

)
for q, j ≥ 0.

By the induction hypothesis, we know
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βq,j(Ji1 + Ji2 + · · ·+ Jiℓ) =

ℓ∑
m=1

( ∑
j1,j2,...,jm

βq−m+1,j(Jj1 ∩ Jj2 ∩ · · · ∩ Jjm)

)
,

where the sum is over all m-subsets {j1, j2, . . . , jm} ⊆ {i1, i2, . . . , iℓ}. We note that

(Ji1 + Ji2 + · · ·+ Jiℓ) ∩ Jiℓ+1
= (Ji1 ∩ Jiℓ+1

) + (Ji2 ∩ Jiℓ+1
) + · · ·+ (Jiℓ ∩ Jiℓ+1

)

is an ℓ-splittable ideal as the splitting function carries through intersection. Now,

with a shift of indices,

βi−1,j((Ji1 + Ji2+ · · ·+ Jiℓ) ∩ Jiℓ+1
)

=

k−1∑
m=1

( ∑
j1,j2,...,jm

βi−m,j

(
(Jj1 ∩ Jj2 ∩ · · · ∩ Jjm) ∩ Jiℓ+1

))

=

k∑
m=2

( ∑
j1,j2,...,jm−1

βi−m+1,j

(
(Jj1 ∩ Jj2 ∩ · · · ∩ Jjm−1

) ∩ Jiℓ+1

))
,

where the sums are over all m-subsets {j1, j2, . . . , jm} ⊆ {i1, i2, . . . , iℓ}. We can

now combine the two equations to achieve the desired result:

βi,j(Ji1 + Ji2 + · · ·+ Jiℓ + Jiℓ+1
)

= βi,j(Ji1 + Ji2 + · · ·+ Jiℓ) + βi,j(Jiℓ+1
) + βi−1,j((Ji1 + Ji2 + · · ·+ Jiℓ) ∩ Jiℓ+1

)

=

k−1∑
m=1

( ∑
j1,j2,...,jm

βi−m+1,j(Jj1 ∩ Jj2 ∩ · · · ∩ Jjm)

)
+ βi,j(Jiℓ+1

)

+

k∑
m=2

( ∑
j1,j2,...,jm−1

βi−m+1,j

(
(Jj1 ∩ Jj2 ∩ · · · ∩ Jjm−1

) ∩ Jiℓ+1

))

=

k∑
m=1

( ∑
j1,j2,...,jm

βi−m+1,j(Jj1 ∩ Jj2 ∩ · · · ∩ Jjm)

)
,

where the first two sums are over all m-subsets {j1, j2, . . . , jm} ⊆ {i1, i2, . . . , iℓ}
and the final sum is over all m-subsets {j1, j2, . . . , jm} ⊆ {i1, i2, . . . , iℓ, iℓ+1}. In

particular, if ℓ = k, then we see that I has a Betti k-splitting. □

Returning to (and generalizing) domino ideals, we end with an example showing

that a monomial ideal can have several different k-splittings.

Example 4.3. Consider the domino ideal arising from tiling a 4 × 4 rectangle.

This tableau is covered by the horizontal dominos {xi,j : 1≤ i≤ 4 and 1≤ j ≤ 3}
and the vertical dominos {yi,j : 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4}. If we consider the

highlighted cell,

then we have a 2-splitting I = J2 +K2, with G(J2) = {z : x1,1 | z} and G(K2) =

{z : y1,1 | z}.
If we consider the highlighted cell,
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then we have a 3-splitting I = J3 + K3 + L3, where G(J3) = {z : x1,1 | z},
G(K3) = {z : x1,2 | z}, and G(L3) = {z : y1,2 | z}.

If we consider the highlighted cell,

then we have a 4-splitting I = J4 +K4 + L4 +M4, where G(J4) = {z : x2,1 | z},
G(K4) = {z : x2,2 | z}, G(L4) = {z : y1,2 | z}, and G(M4) = {z : y2,2 | z}.

Notice that the generating sets for the ideals among the different splitting are

related. We can look at some tilings of basic regions of the square that are affected

by the yellow squares, namely the upper left quadrant, the upper and lower halves

of the square, and the whole 4× 4 squares. Define the following sets:

A1 = {z : x1,1x2,1 | z}
A2 = {z : y1,1y1,2 | z}
B = {z : x1,1x4,1y2,1y2,2 | z}
C = {z : x1,2x2,2y1,1y1,4 | z}
D1 = {z : x1,1x1,3x2,2x3,2x4,1x4,3y2,1y2,4 | z}
D2 = {z : x1,2x4,2y1,1y1,4y2,2y2,3y3,1y3,4 | z}.

We can represent the generators of the ideals in terms of these sets.

G(J2) = A1 ∪B ∪D1, G(J3) = A1 ∪B ∪D1, G(J4) = A1,

G(K2) = A2 ∪ C ∪D2, G(K3) = C ∪D2, G(K4) = B ∪D1,

G(L3) = A2, G(L4) = A2,

G(M4) = C ∪D2.
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