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Abstract. The supercharacter theory was developed by P. Diaconis and I.

M. Isaacs as a natural generalization of the classical ordinary character the-

ory. There are different constructions for finding the supercharacter theories

of a finite group. Supercharacter theories of many finite groups, such as cyclic

groups, Frobenius groups, dihedral groups, elementary abelian p-groups, and

Camina groups, etc. are studied with different constructions. One of the con-

structions uses normal subgroups. In this paper, we consider dicyclic groups

and find some of their normal supercharacter theories and some automorphic

supercharacter theories in special cases.
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1. Introduction

The supercharacter theory was first defined in [2], [3], and [12] by Andre, Neto

and Yan to study the irreducible complex characters of the group Un(q) of n × n

unipotent upper triangular matrices with entries in the Galois field GF (q). In [6],

Diaconis and Isaacs formally defined the notion of supercharacter theory for an

arbitrary finite group and studied supercharacter theory of a family of finite groups

known as algebra groups. This theory is a generalization of the theory of irreducible

characters of a group G. In supercharacter theory, certain characters assume the

role of irreducible characters, and the role of conjugacy classes is played by a cer-

tain union of conjugacy classes. A given group can have multiple supercharacter

theories. The problem is then to describe, in a useful way, how to obtain such

supercharacter theories with enough information about the representations.

Some supercharacter theories of dicyclic groups have been studied using auto-

morphism construction [11]. All supercharacter theories of dicyclic groups were

classified [4]. A construction was presented to find a supercharacter theory from an

arbitrary set of normal subgroups in [1]. The noted supercharacter theory is called
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a normal supercharacter theory. In this paper, we consider the dicyclic groups and

find some of its normal supercharacter theories and some new automorphic super-

character theories for these groups. In addition, we display some supercharacter

tables for the dicyclic groups.

2. Terminology and notation

Using [1], [7], and [8], we define a few concepts. Let G be a finite group. The

set of irreducible characters of G is denoted by Irr(G), and the set of conjugacy

classes of G is denoted by Con(G). The identity character of G is denoted by 1G

and the identity element of G is denoted by 1.

Definition 2.1. Let G be a finite group. Let K be a partition of G, and let X be a

partition of Irr(G). Suppose that for every X ∈ X , there is a character σX whose

irreducible constituents lie in X such that

(1) Each of the characters σX is constant on every part K ∈ K.

(2) |X | = |K|.
(3) Every irreducible character is a constituent of some σX .

In this case, (X ,K) is called the supercharacter theory for G. On the other hand,

for each subset X ⊆ Irr(G), let σX =
∑
χ∈X

χ(1)χ, then σX is called a supercharacter

and each member of K is called a superclass. The set of all supercharacters of G is

denoted by Sup(G). It is shown in [6] that {1} ∈ K, {1G} ∈ X .

For a finite group G, trivial supercharacter theories

• X = {1G} ∪ {Irr(G)− {1G}} and K = {1} ∪ {G− {1}},
• X =

⋃
χ∈Irr(G)

{χ} and K =
⋃

x∈G

{x}

exist. We denote these supercharacter theories for a group G by M(G) and m(G)

respectively. If |G| > 2, these two supercharacter theories are distinct. Moreover, it

is shown in [5] that the only finite groups with exactly two supercharacter theories

are Z3, S3, and SP6(2).

The set of supercharacter theories for a finite group G forms a lattice in the

following way. Sup(G) is a poset by defining (X ,K) ⪯ (Y,L) if and only if X ⪯ Y
in the sense that every part of X is a subset of some part of Y. It is shown in [9]

that this is equivalent to K ⪯ L.

Definition 2.2. Let G be a finite group and (X ,K) be a supercharacter theory for

G. Suppose X = {X1 = 1G, X2, . . . , Xh} is a partition of Irr(G) and

σi =
∑

χ∈Xi

χ(1)χ
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are the corresponding supercharacters and K = {K1 = {1},K2, . . . ,Kh} is the par-

tition of G into superclasses. In fact, K ,
is are the conjugacy classes of G. The

supercharacter table of G corresponding (X ,K) is Table 1. This h× h table is the

h× h matrix S = (σi(Kj))
h
i,j=1.

Table 1. Supercharacter table

K1 K2 . . . Kj . . . Kh

σ1 σ1(K1) σ1(K2) . . . σ1(Kj) . . . σ1(Kh)

σ2 σ2(K1) σ2(K2) . . . σ2(Kj) . . . σ2(Kh)
...

...
...

...
...

σi σi(K1) σi(K2) . . . σi(Kj) . . . σi(Kh)
...

...
...

...
...

σh σh(K1) σh(K2) . . . σh(Kj) . . . σh(Kh)

3. Supercharacter theories for the dicyclic group

3.1. Normal supercharacter theories. Let G be a finite group and Norm(G)

be the set of all normal subgroups of G. Since the product of two normal subgroups

of G is again a normal subgroup of G, the set Norm(G) has the structure of a

semigroup; in fact, it is a lattice [1].

Definition 3.1. Let S ⊆ Norm(G). We define A(S) to be the smallest subsemi-

group generated by S with the following obeying properties:

(1) {1}, G ∈ A(S);

(2) S ⊆ A(S);

(3) A(S) is closed under intersection.

If we set S = {{1}, G}, then A(S) = {{1}, G} satisfies (1), (2), and (3). Also

S = Norm(G) satisfies (1), (2), and (3). It is easy to verify that A(S) is a sublattice

of Norm(G). For N ∈ A(S), we define N◦ = N \
⋃
H

H⊂N, H∈A(S)

. So {1}◦ = {1}. For

each N ∈ A(S) such that N ⊴ G, we let XN = {φ ∈ Irr(G) : N ⩽ kerφ} and

χN =
∑

φ∈XN

φ(1)φ. We set XN∗
= XN \

⋃
XK

N⊂K, K∈A(S)

.

Theorem 3.2. [1] For an arbitrary S ⊆ Norm(G),

({XN∗ ̸= ∅ : N ∈ A(S)}, {N◦ ̸= ∅ : N ∈ A(S)})

is a supercharacter theory for G.
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This supercharacter theory is called the normal supercharacter theory generated

by S. Note that if we choose A(S) = {{1}, G}, then {1}◦ = {1}, G◦ = G−{1} and

we obtain the supercharacter theory M(G) = ({{1}, G − {1}}, {{1G}, ρG − 1G})
which is a trivial supercharacter theory and was defined earlier in this paper. Here

ρG is the regular character of G.

It is shown in [1] that every sublattice of the lattice of normal subgroups of G

containing {1} and G yields a normal supercharacter theory.

3.2. The dicyclic group. The dicyclic group is defined by the generators and

relations as follows:

T4n = ⟨a, b|a2n = 1, an = b2, b−1ab = a−1⟩.

We have T4 ∼= Z4 and T8 ∼= Q8 (the quaternion group of order 8). Furthermore

|T4n| = 4n, Z(T4n) = {1, b2} and T4n

Z(T4n)
∼= D2n. It is clear that ⟨a⟩ ∼= Z2n is a

normal subgroup of T4n.

Lemma 3.3. If N is a normal subgroup of T4n, then either N ⩽ ⟨a⟩ or in the case

of n even N = ⟨a2, b⟩ or ⟨a2, ab⟩.

Proof. N⟨a⟩ is a subgroup of T4n, hence |N⟨a⟩| ≤ 4n implying |N |
|N∩⟨a⟩| ≤ 2. If

N
|N∩⟨a⟩| = 1, then N ⩽ ⟨a⟩. Suppose N ⊈ ⟨a⟩ and for some 0 ≤ i < 2n, we have

aib ∈ N . Because of the normality of N and using the relations in defining T4n, we

obtain

a−1aiba = ai−2b ∈ N,

(aib)2 = b2 ∈ N,

ai−2bb−1a−i = a−2 ∈ N.

Therefore {1, a2, . . . , a2n−2} ⊆ N , b2 = an ∈ N implying that n must be even in

this case. Hence

N ⊇ {1, a2, . . . , a2n−2, aib, ai+2b, . . . , a2n−2+ib}

which implies N = ⟨a2, ab⟩ or N = ⟨a2, a2b⟩. □

3.3. Normal supercharacter theories of the dicyclic group. We now use

[10] to display the character table of T4n (Tables 2 and 3). The group T4n has n+3
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conjugacy classes as follows:

K1 = {1},

K2 = {an},

K3 = {ar, a−r}, (1 ≤ r ≤ n− 1),

K4
′ = {a2jb : 0 ≤ j ≤ n− 1},

K5
′ = {a2j+1b : 0 ≤ j ≤ n− 1}.

Table 2. The character table of T4n, n odd (ω = e
πi
n , G

Ǵ
∼= Z4)

|CG(x)| 4n 4n 2n 4 4

x 1 an ar(1 ≤ r ≤ n− 1) b ab

χ1 1 1 1 1 1

χ2 1 −1 (−1)r i −i
χ3 1 1 1 −1 −1

χ4 1 −1 (−1)r −i i

ψj
1≤j≤n−1

2 2(−1)j ωrj + ω−rj 0 0

Table 3. The character table of T4n, n even (ω = e
πi
n , G

Ǵ
∼= Z2 × Z2)

|CG(x)| 4n 4n 2n 4 4

x 1 an ar(1 ≤ r ≤ n− 1) b ab

χ1 1 1 1 1 1

χ2 1 1 1 −1 −1

χ3 1 1 (−1)r 1 −1

χ4 1 1 (−1)r −1 1

ψj
1≤j≤n−1

2 2(−1)j ωrj + ω−rj 0 0

To find normal supercharacters of a group G in the sense of [1], one needs to

know Norm(G). If n is odd, then Norm(T4n) consists of all the subgroups of

⟨a⟩ ∼= Z2n.

Proposition 3.4. The group T4p, p is an odd prime, has seven normal superchar-

acter theories.
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Proof. If n is an odd prime p, T4p has subgroups isomorphic to {1}, Z2, Zp, and

Z2p. Therefore, for the various choices of S ⊆ Norm(T4n), A(S) can be one of the

following forms (we use A(Si) to count the number of A(S)):

A(S1) = {{1}, T4p},

A(S2) = {{1}, T4p,Z2p},

A(S3) = {{1}, T4p,Zp},

A(S4) = {{1}, T4p,Z2},

A(S5) = {{1}, T4p,Zp,Z2p},

A(S6) = {{1}, T4p,Z2,Z2p},

A(S7) = {{1}, T4p,Zp,Z2,Z2p}.

Thus, A(S1) = S1, A(S2) = S2, A(S3) = S3, A(S4) = S4, A(S5) = S5. If we

consider A(S1), then {1}◦ = {1}, T4p◦ = T4p − {1} and we obtain

({{1},T4p − {1}}, {{1G}, ρ− 1G})

as the corresponding normal supercharacter theory for T4p, where ρ is the regular

character of T4p. Let us consider A(S2). In this case, we have

{1}◦ = {1},

Z2p
◦ = Z2p − {1} = {a, a2, . . . , a2p−1} = K2 ∪Kr (1 ≤ r ≤ p− 1),

T4p
◦ = T4p − Z2p = {b, ab, a2b, . . . , a2n−1b} = Ḱ3 ∪ Ḱ4.

Then the corresponding supercharacters are

X Z2p = {χ1, χ2} ⇒ X Z2p
∗
= {χ2},

X T4p = {1T4p
} ⇒ X T4p

∗
= {χ1},

X {1} = Irr(T4p) ⇒ X {1}∗ = Irr(T4p)− {χ1, χ2}.

So

σ1 = χ1,

σ2 = χ2,

σ3 = χ3 + χ4 + 2

p−1∑
j=1

ψj.

Using Table 1, we obtain Table 4. Similarly, we consider A(S3), A(S4), A(S5),

A(S6) and A(S7) and obtain Tables 5, 6, 7, 8 and 9. □
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Table 4. Supercharacter table corresponding to A(S2)

K1 K2 ∪Kr, (1 ≤ r ≤ p− 1) Ḱ3 ∪ Ḱ4

σ1 1 1 1

σ2 1 1 0

σ3 4p− 2 −2 0

Table 5. Supercharacter table corresponding to A(S3)

{1} ⟨a2⟩◦ T ◦
4p

σ1 = χ1 1 1 1

σ2 = χ2 + χ3 + χ4 3 3 -1

σ3 = 2
∑i=p−1

i=1 ψi 4p− 4 −4 0

Table 6. Supercharacter table corresponding to A(S4)

{1} ⟨ap⟩◦ T ◦
4p

σ1 = χ1 1 1 1

σ2 = χ3 + 2
∑ p−1

2
i=1 ψ2i 2p− 1 2p− 3 −1

σ3 = χ2 + χ4 + 2
∑ p−1

2
i=1 ψ2i−1 2p −2p+ 2 0

Table 7. Supercharacter table corresponding to A(S5)

{1} ⟨a⟩◦ ⟨a2⟩◦ T ◦
4p

σ1 = χ1 1 1 1 1

σ2 = χ3 1 1 1 −1

σ3 = χ2 + χ4 2 −2 2 0

σ4 = 2
∑i=p−1

i=1 ψi 4p− 4 0 −4 0

Next we consider the group T4pq, where p and q are distinct odd primes.

Proposition 3.5. The group T4pq = ⟨a, b : a2pq = 1, apq = b2, b−1ab = a−1⟩,
(Where p and q are distinct odd primes) has 36 normal supercharacter theories.

Proof. The lattice of normal subgroups of G = T4pq is as Figure 1.
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Table 8. Supercharacter table corresponding to A(S6)

{1} ⟨a⟩◦ ⟨ap⟩◦ T ◦
4p

σ1 = χ1 1 1 1 1

σ2 = χ3 1 1 1 −1

σ3 = 2
∑ p−1

2
i=1 ψ2i 2(p− 2) −2 2p− 2 0

σ4 = χ2 + χ4 + 2
∑ p−1

2
i=1 ψ2i−1 2p+ 2 0 −2p 0

Table 9. Supercharacter table corresponding to A(S7)

{1} ⟨a⟩◦ ⟨a2⟩◦ ⟨ap⟩◦ T ◦
4p

σ1 = χ1 1 1 1 1 1

σ2 = χ3 1 1 1 1 −1

σ3 = χ2 + χ4 2 −2 2 −2 0

σ4 = 2
∑ p−1

2
i=1 ψ2i 2p− 2 −2 −2 2p− 2 0

σ5 = 2
∑ p−1

2
i=1 ψ2i−1 2p− 2 2 0 −2p+ 2 0

Figure 1: The lattice of normal subgroups of G = T4pq

T4pq

Z2pq

Z2q Zpq Z2p

Zq Z2 Zp

{1}
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From this lattice we see that the candidates for S and A(S) in the following (Note

that all normal subgroups of T4pq are contained in ⟨a⟩ ∼= Z2pq).

S1 = {Z2pq} =⇒ A(S1) = {G,Z2pq, 1},

S2 = {Zpq} =⇒ A(S2) = {G,Zpq, 1},

S3 = {Z2p} =⇒ A(S3) = {G,Z2p, 1},

S4 = {Zq} =⇒ A(S4) = {G,Zq, 1},

S5 = {Zp} =⇒ A(S5) = {G,Zp, 1},

S6 = {Z2} =⇒ A(S6) = {G,Z2, 1},

S7 = {Z2q} =⇒ A(S7) = {G,Z2q, 1},

S8 = {Z2pq,Zpq} =⇒ A(S8) = {G,Z2pq,Zpq, 1},

S9 = {Zpq,Zq} =⇒ A(S9) = {G,Zpq,Zq, 1},

S10 = {Z2pq,Zq} =⇒ A(S10) = {G,Z2pq,Zq, 1},

S11 = {Z2pq,Zpq,Zq} =⇒ A(S11) = {G,Z2pq,Zpq,Zq, 1},

S12 = {Z2pq,Z2q,Zq} =⇒ A(S12) = {G,Z2pq,Z2q,Zq, 1},

S13 = {Z2q,Zq} =⇒ A(S13) = {G,Z2q,Zq, 1},

S14 = {Z2pq,Z2q} =⇒ A(S14) = {G,Z2pq,Z2q, 1},

S15 = {Z2pq,Z2q,Z2} =⇒ A(S15) = {G,Z2pq,Z2q,Z2, 1},

S16 = {Z2pq,Zpq} =⇒ A(S16) = {G,Z2pq,Zpq, 1},

S17 = {Z2q,Z2} =⇒ A(S17) = {G,Z2q,Z2, 1},

S18 = {Z2pq,Z2p,Z2} =⇒ A(S18) = {G,Z2pq,Z2p,Z2, 1},

S19 = {Z2p,Z2} =⇒ A(S19) = {G,Z2p,Z2, 1},

S20 = {Z2pq,Z2p} =⇒ A(S20) = {G,Z2pq,Z2p, 1},

S21 = {Z2pq,Z2q,Zp} =⇒ A(S21) = {G,Z2pq,Z2q,Zp, 1},

S22 = {Z2pq,Zp} =⇒ A(S22) = {G,Z2pq,Zp, 1},

S23 = {Z2p,Zp} =⇒ A(S23) = {G,Z2p,Zp, 1},

S24 = {Z2pq,Zpq,Zp} =⇒ A(S24) = {G,Z2pq,Zpq,Zp, 1},

S25 = {Zpq,Zp} =⇒ A(S25) = {G,Zpq,Zp, 1},

S26 = {Zpq,Z2p, } =⇒ A(S26) = {G,Z2pq,Zpq,Z2p,Zp, 1},

S27 = {Zpq,Z2q, } =⇒ A(S27) = {G,Z2pq,Zpq,Z2q,Zq, 1},

S28 = {Z2q,Z2p} =⇒ A(S28) = {G,Z2pq,Z2q,Z2p,Z2, 1},

S29 = {Zq,Z2} =⇒ A(S29) = {G,Z2q,Zq,Z2, 1},
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S30 = {Zp,Z2} =⇒ A(S30) = {G,Z2p,Zp,Z2, 1},

S31 = {Zp,Zq} =⇒ A(S31) = {G,Zpq,Zp,Zq, 1},

S32 = {Zp,Z2q} =⇒ A(S32) = {G,Z2pq,Zp,Z2q, 1},

S33 = {Z2p,Zq} =⇒ A(S33) = {G,Z2pq,Z2p,Zq, 1},

S34 = {Zpq,Z2} =⇒ A(S34) = {G,Z2pq,Zpq,Z2, 1},

S35 = {1, G} =⇒ A(S35) = {1, G},

S36 = {G,Z2pq,Z2p,Z2q,Zp,Zq,Zpq,Z2, 1}

=⇒ A(S36) = {G,Z2pq,Z2p,Z2q,Zp,Zq,Zpq,Z2, 1}. □

Example 3.6. As an example, we consider S = {⟨a2p⟩, ⟨a2q⟩}, where

A(S) = {G, {1},Zp
∼= ⟨a2q⟩,Zq

∼= ⟨a2p⟩,Zpq
∼= ⟨a2⟩}

is a sublattice of the lattice of normal subgroups of G. We construct the normal

supercharacter table for the normal supercharacter theory of S.

χG∗
= σ1 = χ1,

χ⟨a2⟩∗ = σ2 = χ2 + χ3 + χ4,

χ⟨a2p⟩∗ = σ3 = 2

p∑
i=2

ψ(i−1)q,

χ⟨a2q⟩∗ = σ4 = 2

q∑
i=2

ψ(i−1)p,

χ1∗ = σ5 = 2

pq−1∑
i=1

ψi.

Where i is not a multiple of p or q. Table 10 shows the normal supercharacter of

A(S).

Table 10. Normal Supercharacter table for a sublattice of T4pq

{1} ⟨a2⟩◦ ⟨a2p⟩◦ ⟨a2q⟩◦ G◦

σ1 1 1 1 1 1

σ2 3 3 3 3 −1

σ3 4(p− 1) −4 4(p− 1) −4 0

σ4 4(q − 1) −4 −4 4(q − 1) 0

σ5 4(pq − p− q) + 4 4 −4(p− 1) −4(q − 1) 0
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Now we consider the normal supercharacter theories of the dicyclic group T4n

where A(S) = {1, N,G} such that 1 ≨ N ≨ G. We consider separately the cases

where n is odd and n is even.

case 1: n odd

Let N = ⟨ad⟩. If d is odd, then the normal supercharacter table of G is Table 11.

If d is even, the normal supercharacter table is Table 12.

Table 11. Normal Supercharacter table where d is odd

{1} N◦ G◦

χ1 1 1 1

χ3 + 2
∑

1≤i= 2nl
d ≤n−1 ψi 2d− 1 2d− 1 −1

χ2 + χ4 + 2
∑

1≤i ̸=( 2nl
d )≤n−1 ψi 4n− 2d −2d 0

Table 12. Normal Supercharacter table where d is even

{1} N◦ G◦

χ1 1 1 1

χ2 + χ3 + χ4 + 2
∑

1≤i= 2nl
d ≤n−1ψi 2d− 1 2d− 1 −1

2
∑

1≤i ̸=( 2nl
d )≤n−1 ψi 4n− 2d −2d 0

case 2: n even

In this case there are two additional normal subgroups ⟨a2, b⟩ or ⟨a2, ab⟩. Now

we determine normal supercharacter table corresponding to each normal subgroup.

N = ⟨ad⟩, where d is a divisor of 2n. The normal supercharacters of G appear in

Table 13 and 14.

Table 13. Normal Supercharacter table where d is odd

{1} N◦ G◦

χ1 1 1 1

χ2 + 2
∑

1≤i= 2nl
d ≤n−1ψi 2d− 1 2d− 1 −1

χ3 + χ4 + 2
∑

1≤i ̸=( 2nl
d )≤n−1 ψi 4n− 2d −2d 0

If N = ⟨a2, b⟩, then we have

N◦ = {a2, a4, . . . , a2n−2, b, a2b, . . . , a2n−2},

G◦ = {a, a3, . . . , a2n−1, ab, a3b, . . . , a2n−1b}.
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Table 14. Normal Supercharacter table where d is even

{1} N◦ G◦

χ1 1 1 1

χ2 + χ3 + χ4 + 2
∑

1≤i= 2nl
d ≤n−1ψi 2d− 1 2d− 1 −1

2
∑

1≤i ̸=( 2nl
d )≤n−1 ψi 4n− 2d −2d 0

Also

σ1 = χ1,

σ2 = χN ∗
= χ3,

σ3 = χ2 + χ4 + 2
∑

1≤i≤n−1

ψi,

and so the normal supercharacter table is Table 15. If N = ⟨a2, ab⟩, then the

corresponding table is Table 16.

Table 15. Normal Supercharacter table, N = ⟨a2, b⟩

{1} N◦ G◦

χ1 1 1 1

χ3 1 1 −1

χ2 + χ4 + 2
∑n−1

i=1 ψi 4n− 2 −2 0

Table 16. Normal Supercharacter table where N = ⟨a2, ab⟩

{1} N◦ G◦

χ1 1 1 1

χ4 1 1 −1

χ2 + χ3 + 2
∑n−1

i=1 ψi 4n− 2 −2 0

Now we can classify the normal supercharacter theories of G = T4pq where

S = {N = ⟨ad⟩} and so A(S) = {1, N,G} (d is a divisor of 4pq). If d = 2, 2p or 2q,

then the corresponding normal supercharacter table is coincident to Table 12 and if

d = 1, p, q or pq, then the corresponding normal supercharacter table is coincident

to Table 11.
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4. Automorphic supercharacters of the dicyclic group

For a non-trivial supercharacter theory of a group the following is described in

[7]. Let G be a finite group and A ≤ Aut(G). Let

Irr(G) = {χ1 = 1G, χ2, · · · , χh} and Con(G) = {C1 = {1}, C2, · · · , Ch}.

Suppose that for each α ∈ A, Cα
i = Cj , 1 ≤ i ≤ h, and χα

i (g) = χi(g
α), for all g ∈ G,

and α ∈ A. In this case, we have an action of A on both Irr(G) and Con(G) and

by a Lemma of Brauer mentioned in [11] the number of conjugacy classes of G fixed

by α equals the number of irreducible characters fixed by α, moreover the number

of orbits of A on Con(G) equals the number of orbits of A on Irr(G). It is easy to

see that the orbits of A on Irr(G) and Con(G) yield a supercharacter theory for

G. This supercharacter theory for G is called automorphic. There are groups that

all of its supercharacter theories are automorphic.

Theorem 4.1. Every supercharacter theory of Zp, p prime, is automorphic. More-

over, for each divisor d of p−1, there is a unique supercharacter theory for Zp whose

non-trivial superclasses all have size d. Therefore the number of supercharacter the-

ories is equal to φ(p− 1), where φ denotes the Euler totient function.

We know that the dicyclic group has T4n ∼= Z2n · Z2 presentation, where “·”
denotes non-split extension. It is easy to verify that the automorphism group of

T4p is as follows, where ϕ2n is the group of units of Z2n with order ϕ(2n):

Aut(T4n) = {fk,l : fk,l(a) = ak, fk,l(b) = alb, (k, 2n) = 1, 0 ≤ l < 2n} ∼= Z2n ⋊ ϕ2n.

In this section, we let n = p be an odd prime and then using the Brauer’s

theorem on character table to find some automorphic supercharacter theories of

T4n. Throughout this section, we let A = Aut(T4p) ∼= Z2p ⋊ Zp−1.

Proposition 4.2. The dicyclic group T4p has five A-invariant supercharacters and

superclasses.

Proof. It is enough to find orbits of A on Con(T4p) and Irr(T4p). By inspecting

Table 2 and considering the elements of A, we can obtain the orbits K1 = {1},
K2 = {ap}, K3 = Class(a), K4 = Class(a2) and K5 = Class(b) ∪ Class(ab) of A on

Con(T4p). Orbits of A on Irr(T4p) are X1 = {χ1}, X2 = {χ2, χ4}, X3 = {χ3},

X4 = {2ψj : j odd, 1 ≤ j ≤ p− 1}, and X5 = {2ψj : j even, 1 ≤ j ≤ p− 1}.

If we set σ1 = χ1, σ2 = χ2 + χ4, σ3 = χ3,

σ4 =
∑

2ψj
1≤j≤p−1, j odd

and σ5 =
∑

2ψj
1≤j≤p−1, j even

,
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then the supercharacter table of T4p with respect of A is Table 17. □

Table 17. Supercharacter table of T4p with respect to A

K1 K2 K3 K4 K5

σ1 1 1 1 1 1

σ2 2 −2 −2 2 0

σ3 1 1 1 1 −1

σ4 2p− 2 −2p+ 2 −1 0 0

σ5 2p− 2 2p− 2 −1 0 0

Now we consider the two subgroups H and K of A.

H = {f1,l : 0 ≤ l < 2p} ∼= Z2p,

K = {fk,0 : (k, 2p) = 1} ∼= Zp−1.

Proposition 4.3. The dicyclic group T4p has p + 2 H-invariant supercharacters

and superclasses.

Proof. We know the acting of H on T4p is f1,l(a) = a, f1,l(b) = alb, 0 ≤ l <

2p. From this, we see that class(b) ∪ class(ab) is an orbit of H. Other orbits

are contained in ⟨a⟩ which fixed under action of H. These are {1}, {ap}, and

{a±r : 1 ≤ r ≤ p− 1} whose number is p+ 1. Therefore, altogether there are p+ 2

superclasses. The supercharacters are {1}, {χ2, χ4}, {χ3} and {ψj}1≤j≤p−1. □

Proposition 4.4. The dicyclic group T4p has 6 K-invariant superclasses and su-

percharacters.

Proof. We know that for fk,0 ∈ K, fk,0(a) = ak, (k, 2p) = 1 and fk,0(b) = b.

Therefore, b is fixed by K. Orbits of K on Con(T4p) are {1}, {ap}, {b}, {apb},
{ai : 1 ≤ i < 2p}, and {aib : 1 ≤ i < 2p}. The corresponding supercharacters can

be found from Table 1. □
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