
bstract

Today people try to find easier and simpler
ways to interact with their mobile devices
such as smart phones and tablet computers to
have their work done and access to
information. In this regard, voice-controlled
mobile assistant applications became very
popular recently. Ever since SIRI 1became a
success and several alternative applications
have been released to the application
markets. Nevertheless, most of those
applications support only English and
provide services mostly for English-speaking
countries.
In the last years, successful voice recognition
[1], and natural language processing [2], [3],
[4], [5], [6], [7], [8] components have been

released for Turkish. However, such
components have not been integrated with
any high tier applications.

In this study, we present our ongoing effort
on developing a mobile assistant application
and its associated services that understands
Turkish input and accomplish users’ requests
with high accuracy. The application is able
to understand various user intents including
but not limited to calling and texting to a
contact, accessing to weather and traffic
information. We explain our system
architecture and our methodology of
understanding user requests, in which we
leverage and improve existing research and
tools for Turkish NLP such as morphological
analyzer, morphological disambiguator,
named entity recognizer, and dependency
parser.

Understanding user requests is a multi-step
process in our system; the user query is
processed with NLP tools, and then the
query is mapped to one of the supported
operations through a hybrid approach of
rule-based and statistical classification. In
the following step, the parameters such as
contact name or search term -if any- from the
query are extracted so that the mobile device
can handle the requested operation or an
external web service can be queried with
correct parameters in order to fetch the
requested information. We present and
discuss the performance of the classification

1 http://www.apple.com/ios/siri/

TÜRK YE B L M VAKFI B LG SAYAR B L MLER VE MÜHEND SL DERG S (2014 Cilt:7 - Say :1) - 3

4

and parameter extraction methods that we
have tested using a set of real user queries.

The rest of this paper is organized as
follows: Section 2 gives brief information
about related work, Section 3 describes the
design of our system, Section 4 explains the
process and methodology of understanding
users’ requests in the Turkish language
within the context of our application, and
finally, Section 5 concludes and discusses
future work.

As it is the case for most of the language
technology studies, the mobile assistant
technology also started firstly for English.
There are various patents [9], [10],
publications [11] and applications for
English; e.g. Siri (Apple) and Google Now
(Google) are the most advanced and the most
used voice-controlled personal mobile
assistant applications in the world today.
Since Turkish is a morphologically rich
language, its morphology and syntax are very
different and arguably more complex
compared to English. Thus, most of the time
it is not convenient to use the same
methodologies and tools that are proposed
and available for English.
To the best of our knowledge, there do not
exist any voice-controlled assistant
application that supports the Turkish
language by leveraging advanced natural
language processing techniques and services
to understand users’ true intent with high
accuracy. Our survey on the existing Turkish
virtual assistant applications, of which there
are a few in total, revealed that they rely on
rule-based approaches and use very simple
natural language processing components or
even none and focusing more on visual user
experience. For such reasons, the ability of
those applications to process queries in
natural language and perform the requested
actions is not strong or comprehensive.
Turkcell Mobil Assistant2 is one of the most
well-known Turkish mobile assistant
application. However, it can reply questions
only in a specific pattern. For instance, while
it can understand the question “hava nasıl?”
(how is the weather?) and returns the weather

2 http://www.turkcell.com.tr/servisler/turkcell-mobil-
asistan

forecast in the current location, it fails to
reply with the correct result to the question
“NewYork’da hava nasıl?” (how is the
weather in NewYork?) where the user
actually wants to query the weather in a
different location. In this work, we show that
utilizing the recent research and tools on
Turkish NLP will facilitate the development
of a mobile assistant application with a high
level of performance. By this way, we expect
our project to become a pioneer in its field of
practice.

In this section we describe the design of our
system which comprises a mobile Android
client application and a server-side service.
The mobile application (Figure 1) is
responsible to convey user requests to server
and display the service results or perform the
requested operation on behalf of the user
such as calling a contact person or starting an
application. The server processes a user
query to understand his/her true intent, then
if required delegates the request to the third
party web services, and finally, compiles the
results and send it back to the client. It is
beyond the scope of this paper to discuss the
runtime performance of the server-side
implementation; though, it is worth
mentioning that the query understanding
(natural language processing and query
classification) takes about half a second on
average on a commodity hardware.

Figure 1: Screen shots of the mobile
application: recognizing speech input (left),
displaying results for a weather query (right).

We use Google’s built-in speech recognizer
to convert users’ speech queries into text,
which we have tested and found efficient for
Turkish speech recognition (we have
considered accent variations of Turkish as
well). The speech recognizer has a limit of
160 characters per speech request. Besides, it
provides a set of confidence levels along

TÜRK YE B L M VAKFI B LG SAYAR B L MLER VE MÜHEND SL DERG S (2014 Cilt:7 - Say :1) - 3

with the text results. We consider the text
with the highest confidence level as the
correct mapping of what user has said, if the
confidence level of this text is greater than
0.7 (max. being 1.0), otherwise, the
application presents a list of text suggestions
to the user ordered in the descending order
of their confidence levels. The selected query
text is further sent to the server along with
user context which includes the user id, the
current location and time. The
communication between client and server is
based on REST principles to make the
server-side more scalable as no user session
being stored on the server between requests.
Both the request and response messages are
encoded with JSON format on our messaging
protocol.

Figure 2:The flow of operations for
understanding user requests.

 In
this section, we explain the process and
methodology of understanding users’
requests in Turkish. Currently our
application supports nine types of requests:
 calling a contact,
 sending sms to a contact,
 sending email to a contact,
 searching terms on Web (we rely on Google

search),
starting installed apps on the phone,
getting route directions or searching a point
of intereston the map (Google Maps),
exchanging between currencies (Google
Currency Service),
accessing the weather forecast (World
Weather Online)
accessing to traffic information (Yandex
Traffic Service)

Figure 2 presents the flow of operations for
understanding user requests. Upon receiving
a user’s query and context, the query is
normalized (curated) through the steps of
abbreviation expansion, capitalization of
proper nouns, and verb tense correction [8].
In the second phase, the normalized query is
processed via a Turkish NLP pipeline
available as a SaaS [12] consisting of a
morphological analyzer [7], a morphological
disambiguator, a named entity recognizer
[6], and a dependency parser [5]. The
outputs of natural language processing
components are used both in the
classification and parameter extraction
phases. In the classification phase, the
processed query is mapped to one of the
supported operations (i.e., domains). Our
classification methodology is a hybrid
approach of rule-based and statistical
classification. After a query is mapped to a
domain, the parameters3 are extracted from
the query, so that the phone can perform the
requested operation or related web services
can be called with correct parameters.

As speech queries are in natural language,
they often include grammar and
pronunciation errors. Moreover, the used
speech recognizer contributes to such errors
by for instance separating suffixes from their
stem despite the fact that Turkish is an
agglutinative language and by outputting
mistakenly the first letter of proper nouns
with lower case letters (e.g. “gökhan a”
instead of the correct form “Gökhan'a”).
Consequently, the performance of the NLP
tools we use degrades due to these erroneous
spellings. In order to alleviate this problem,
we needed to make extra normalization effort
in addition to the previous work [8]
normalizes its input by the following stages:
letter case transformation, replacement rules
and lexicon lookup, proper noun detection,
deasciification, vowel restoration, accent
normalization. During our experiments, we
observed that the most important
normalization layers for our case were 1) The
capitalization of Proper Nouns and 2) Accent
Normalization which fixes verb tense errors
occurring under spoken accents. The

3 Since we do not extract any parameter for the traffic
service, Figure 2 shows only 8 domains in the parameter
extraction phase

TÜRK YE B L M VAKFI B LG SAYAR B L MLER VE MÜHEND SL DERG S (2014 Cilt:7 - Say :1) - 3

normalizer understands the tense of a given
verb and replaces it with its correct tense
form. For example “gelcem” (informal way of
saying “I will come”) is turned into
“geleceğim” (I will come) which is the proper
form. In addition to verb inflections, incorrect
spelled question words are corrected as well.
For instance, “gidiyozmu?” is corrected into
“gidiyor muyuz?” (are we going?). In this
work, we have extended the normalizer with a
support for handling separated suffixes issue
which is special to our used speech
recognizer. We have compiled a Turkish
suffix list, which we use to merge separated
suffixes with the preceding word. If the word
is a proper noun, we merge the noun and its
suffix with an apostrophe and then capitalize
the proper noun. For instance; “ahmet e”
(Ahmet is a proper noun) becomes
“Ahmet'e”.

The Named Entity Recognizer (NER) tool
that we use in this work is based on the work
of Şeker and Eryiğit, [6]. It utilizes a
statistical modeling method, namely
Conditional Random Fields (CRFs) [13],
which is a framework for building
probabilistic models to segment and label
sequences of input samples. The original
NER tool is designed for general purpose,
hence we needed to adapt it for our domain of
concern. To this end, we have added 750
tagged queries and commands in to the
existing data set. We have also added
currency and time gazetteers, and then
divided all the gazetteers into two categories:
1) Base Gazetteers: First Name, Last Name,
Location, Money, Time and 2) Generator
Gazetteers: Person, Location, Organization.
Similarly to the original article, to retrain the
NER tool, we considered the following
features; whole word, word stem, POS tag or
word, noun state, proper noun, inflectional
groups, lower-upper case, sentence begin,
and existence in gazetteers. Besides, the
extended NER tool is able to tag PERSON,
LOCATION, ORGANIZATION, TIME,
MONEY, and PERCENTAGE entities in a
given sentence. This tool is crucial for our
system, since the output of the NER tool is
directly used in the classification and
extraction phases presented in the following
sections, respectively.

In this section, we explain our query
classification methodology.
1) Rule Based Classification: In this work,
we have developed a rule engine to directly
create and modify sets of classification rules.
The engine enables to define rules containing
regular expressions, and POS and NER tags
together. Each rule expression follows the
order of a pattern string to be matched against
the processed user query, the domain name,
and a value to define an order of priority for
the evaluation sequence. The following
expression is an example of a rule of Call
domain.

2) Statistical Classification: As it is
impractical to define rules that would cover
all possible kinds of queries for a domain, we
use a statistical classifier for the queries that
do not match any rules. In our current
application setting, we use a Support Vector
Machine (SVM) classifier [14], a decision
based on our performance evaluation that we
present below.
a) Data Model: Our training and test data
consists of 1000 queries or commands (100+
queries per domain) collected from real users.
For each query, first, we remove the stop
words. Then, each remaining word in the
query is stemmed, and replaced with a NER
tag if it matches any. As a consequence, the
same type of entities are represented with the
same feature to improve the classification
performance. Finally, we tag the resulting
query with its corresponding domain type.
Below is an example of this process.

To represent the data as numerical values, we
use the bag-of-words (bag-of-n-grams) model,
in which a query is represented as the multi
set of its n-gram (contiguous sequence of n
items from the query). This model is widely
considered in document classification
methods, where the frequency of occurrence

TÜRK YE B L M VAKFI B LG SAYAR B L MLER VE MÜHEND SL DERG S (2014 Cilt:7 - Say :1) -

of each n-gram is used as a feature for
training a classifier.
b) Classification Methods: In this work, we
have evaluated the performance of various
classification methods using our query data
set. These methods include Decision Tree
(with 0.25, 0.5 and unpruned as confidence
factors), Logistic Regression, NaiveBayes
(Multinominal), Bayesian Network, K-
Nearest-Neighbor, and Support Vector
Machine. Since the scale of our data is small,
we have used 10-fold cross validation to
compare the performance of the classification
methods. We repeated the tests ten times and
we report the average results. We only
present the results in which we use 1-gram
model, which yields better results compared
to that of when we use 2-gram and 3-gram
models.
Table 1 presents the performance of the
classification methods in terms of accuracy,
precision, recall, F-Score, ROC area, true and
false positive rate metrics. The SVM and the
Bayesian Network achieves the best and
worst results, respectively. The SVM
outperforms the other methods except for the
metric of ROC area. We observe that the
overall results are very high as by nature our
data set comprises relatively short queries
and commands. Moreover, we also found out
that the performance of the classifiers for the
Web Search and Start Application related
queries are relatively low. We attribute this to
the lack of NER support for application
names and to the fact that one can search on
web with very broad search terms.

For each domain, we have devised a complex
individual parameter extraction method.
Table 3 presents the parameters that we can
extract from queries for each domain. The
explanation of all extraction methods is

beyond the scope of this paper, though, it is
worth mentioning that the extraction methods
leverage user context, NER and POS tags, the
dependency relations, and the existence of
pre-defined keyword patterns. As an example,
Figure 3 illustrates the parameter extraction
method for the Map domain.

Figure 3:Parameter extraction process of
the Map domain

Table 3:The parameters that can be extracted
for each domain

Domain Parameters
Call receiver name, phone number
Sms body text, receiver name, phone number
Email body text, receiver name, email address
Web Searc hquery text, web site
Start Apps application name
Map departure, destination, point of interest
Weather location, time
Exchange from/to currency pair
Traffic location

Table 2 shows the accuracy results of our
parameter extraction methods that we run on
our 1000 queries data set. We define accuracy
as the ratio of true parameter extractions to
the total number of parameters. We have
attained high accuracy results for our
parameter extraction methods, with an
average score of 88%, except the methods of
Call and Web Search, which yields around
70% accuracy.
1) Mapping Parameters to the Entities in the

TÜRK YE B L M VAKFI B LG SAYAR B L MLER VE MÜHEND SL DERG S (2014 Cilt:7 - Say :1) - 4

Phone: The Turkish alphabet, which is a
variant of the Latin alphabet, consists of 29
letters, six of which (C-Ç, G-Ğ, I-İ, O-Ö, S-Ş,
U-Ü) have two variants for the phonetic
requirements of the language. This poses a
challenge in matching names in queries to the
names on the contact list of a phone, as users
tend to save contact names using dot-less
characters while speech-to-text service
converts person names to their original form
(e.g., saving Özgür as Ozgur – a Turkish
person name). Moreover, users may mention
only the first or last name of a contact or
partial name for an application when they ask
to call someone or start an application. To
solve the exact matching issues mentioned
above, in the mobile application we use the
Monge-Elkan approximate text string
matching algorithm [15], which measures the
similarity between two strings each of which
may comprise one or more words. In case the
highest similarity score is below a certain
threshold, we let the user choose among a few
results corresponding to the strings with the
highest similarity scores.

 In
this paper we have presented our ongoing
work on developing a mobile assistant
application that understands Turkish
language. We explained our system
architecture and our methodology of
understanding user queries, in which we
leverage and improve existing research and
tools for Turkish NLP. We also presented the
performance of query classification and
parameter extraction methods that we use in
this work.
As future work, we plan to support a dialog-
based interaction between users and the
application and make the application
personalized considering the context and
previous queries of the users. We also plan to
extend our services for instance with support
for factual questions, and extend the
performance tests with a broader set of real
user queries.

[1] H. Sak, M. Saraclar, and T. Gungor, “Morphology-

based and sub-word language modeling for turkish
speech recognition,” in Acoustics Speech and
Signal Processing (ICASSP), 2010 IEEE
International Conference on. IEEE, 2010, pp.
5402–5405.

[2] J. Nivre, J. Hall, J. Nilsson, G. Eryig ́it, and S.
Marinov, “Labeled pseudo-projective dependency

parsing with support vector machines,” in
Proceedings of the Tenth Conference on
Computational Natural Language Learning.
Association for Computational Linguistics, 2006,
pp. 221–225.

[3] S. Buchholz and E. Marsi, “Conll-x shared task on
multilingual de- pendency parsing,” in Proceedings
of the Tenth Conference on Compu- tational
Natural Language Learning. Association for
Computational Linguistics, 2006, pp. 149–164.

[4] K. Oflazer and Ì. Kuruöz, “Tagging and
morphological disambiguation of turkish text,” in
Proceedings of the fourth conference on Applied
natural language processing. Association for
Computational Linguistics, 1994, pp. 144–149.

[5] G. A. Şeker and G. Eryiğit, “Initial explorations on
using CRFs for Turkish named entity recognition,”
in Proceedings of COLING 2012, Mumbai, India,
8-15 December 2012.

[6] M. Şahin, U. Sulubacak, and G. Eryiğit,
“Redefinition of Turkish morphology using flag
diacritics,” in Proceedings of The Tenth
Symposium on Natural Language Processing
(SNLP-2013), Phuket, Thailand, October 2013.

[7] J. C. Hawkins, W. B. Rees, D. O. Chyi, and R. Y.
Haitani, Interface for processing of an alternate
symbol in a computer device. Google Patents, dec
” 13” 2005, uS Patent 6,975,304.

[8] P. Sawhney, P. King, H. W. Ham, and L. Wang,
Apparatus and method for mobile personal
assistant. Google Patents, aug ” 11” 2011, uS
Patent App. 13/207,781.

[9] A.NeusteinandJ.A.Markowitz,MobileSpeechandA
dvancedNatural Language Solutions. Springer,
2013.

[10] G. Eryiğit, “ITU Turkish NLP web service,” in
Proceedings of the Demonstrations at the 14th
Conference of the European Chapter of the
Association for Computational Linguistics
(EACL). Gothenburg, Sweden: Association for
Computational Linguistics, April 2014.

[11] J.Nivre,J.Hall,J.Nilsson,A.Chanev,G.Eryiğit,S.Küb
ler,S.Marinov, and E. Marsi, “Maltparser: A
language-independent system for data-driven
dependency parsing,” Natural Language
Engineering Journal, vol. 13, no. 2, pp. 99–135,
2007.

[12] G. Eryiğit, J. Nivre, and K. Oflazer, “Dependency
parsing of Turkish,” Computational Linguistics,
vol. 34, no. 3, pp. 357–389, 2008.

[13] D. Torunoğlu and G. Eryiğit, “A cascaded
approach for social media text normalization of
Turkish,” in 5th Workshop on Language Analysis
for Social Media (LASM) at EACL. Gothenburg,
Sweden: Association for Computational
Linguistics, April 2014.

[14] C. Cortes and V. Vapnik, “Support-vector
networks,” Mach. Learn., vol. 20, no. 3, pp. 273–
297, Sep. 1995. [Online]. Available:
http://dx.doi.org/10.1023/A:1022627411411

[15] A. Monge and C. Elkan, “The field matching
problem: Algorithms and applications,” in In
Proceedings of the Second International
Conference on Knowledge Discovery and Data
Mining, 1996, pp. 267–270

TÜRK YE B L M VAKFI B LG SAYAR B L MLER VE MÜHEND SL DERG S (2014 Cilt:7 - Say :1) - 4

