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Today people try to find easier and simpler 
ways to interact with their mobile devices 
such as smart phones and tablet computers to 
have their work done and access to 
information. In this regard, voice-controlled 
mobile assistant applications became very 
popular recently. Ever since SIRI 1became a 
success and several alternative applications 
have been released to the application 
markets. Nevertheless, most of those 
applications support only English and 
provide services mostly for English-speaking 
countries.
In the last years, successful voice recognition 
[1], and natural language processing [2], [3], 
[4], [5], [6], [7], [8] components have been 

released for Turkish. However, such 
components have not been integrated with 
any high tier applications.

In this study, we present our ongoing effort 
on developing a mobile assistant application 
and its associated services that understands 
Turkish input and accomplish users’ requests 
with high accuracy. The application is able 
to understand various user intents including 
but not limited to calling and texting to a 
contact, accessing to weather and traffic 
information. We explain our system 
architecture and our methodology of 
understanding user requests, in which we 
leverage and improve existing research and 
tools for Turkish NLP such as morphological 
analyzer, morphological disambiguator, 
named entity recognizer, and dependency 
parser. 

Understanding user requests is a multi-step 
process in our system; the user query is 
processed with NLP tools, and then the 
query is mapped to one of the supported 
operations through a hybrid approach of 
rule-based and statistical classification. In 
the following step, the parameters such as 
contact name or search term -if any- from the 
query are extracted so that the mobile device 
can handle the requested operation or an 
external web service can be queried with 
correct parameters in order to fetch the 
requested information. We present and 
discuss the performance of the classification 

1 http://www.apple.com/ios/siri/
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and parameter extraction methods that we 
have tested using a set of real user queries. 

The rest of this paper is organized as 
follows: Section 2 gives brief information 
about related work, Section 3 describes the 
design of our system, Section 4 explains the 
process and methodology of understanding 
users’ requests in the Turkish language 
within the context of our application, and
finally, Section 5 concludes and discusses 
future work. 

 
As it is the case for most of the language 
technology studies, the mobile assistant 
technology also started firstly for English. 
There are various patents [9], [10], 
publications [11] and applications for 
English; e.g. Siri (Apple) and Google Now 
(Google) are the most advanced and the most 
used voice-controlled personal mobile 
assistant applications in the world today. 
Since Turkish is a morphologically rich 
language, its morphology and syntax are very 
different and arguably more complex 
compared to English. Thus, most of the time 
it is not convenient to use the same 
methodologies and tools that are proposed 
and available for English. 
To the best of our knowledge, there do not 
exist any voice-controlled assistant 
application that supports the Turkish 
language by leveraging advanced natural 
language processing techniques and services 
to understand users’ true intent with high 
accuracy. Our survey on the existing Turkish 
virtual assistant applications, of which there 
are a few in total, revealed that they rely on 
rule-based approaches and use very simple 
natural language processing components or 
even none and focusing more on visual user 
experience. For such reasons, the ability of 
those applications to process queries in 
natural language and perform the requested 
actions is not strong or comprehensive. 
Turkcell Mobil Assistant2 is one of the most 
well-known Turkish mobile assistant 
application. However, it can reply questions 
only in a specific pattern. For instance, while 
it can understand the question “hava nasıl?” 
(how is the weather?) and returns the weather 

2 http://www.turkcell.com.tr/servisler/turkcell-mobil-
asistan

forecast in the current location, it fails to 
reply with the correct result to the question 
“NewYork’da hava nasıl?” (how is the 
weather in NewYork?) where the user 
actually wants to query the weather in a 
different location. In this work, we show that 
utilizing the recent research and tools on 
Turkish NLP will facilitate the development 
of a mobile assistant application with a high 
level of performance. By this way, we expect 
our project to become a pioneer in its field of 
practice.  

 
In this section we describe the design of our 
system which comprises a mobile Android 
client application and a server-side service. 
The mobile application (Figure 1) is 
responsible to convey user requests to server 
and display the service results or perform the 
requested operation on behalf of the user 
such as calling a contact person or starting an 
application. The server processes a user 
query to understand his/her true intent, then 
if required delegates the request to the third 
party web services, and finally, compiles the 
results and send it back to the client. It is 
beyond the scope of this paper to discuss the 
runtime performance of the server-side 
implementation; though, it is worth 
mentioning that the query understanding 
(natural language processing and query 
classification) takes about half a second on 
average on a commodity hardware. 

Figure 1: Screen shots of the mobile 
application: recognizing speech input (left), 
displaying results for a weather query (right).

We use Google’s built-in speech recognizer 
to convert users’ speech queries into text, 
which we have tested and found efficient for 
Turkish speech recognition (we have 
considered accent variations of Turkish as 
well). The speech recognizer has a limit of 
160 characters per speech request. Besides, it 
provides a set of confidence levels along 
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with the text results. We consider the text 
with the highest confidence level as the 
correct mapping of what user has said, if the 
confidence level of this text is greater than 
0.7 (max. being 1.0), otherwise, the 
application presents a list of text suggestions 
to the user ordered in the descending order 
of their confidence levels. The selected query 
text is further sent to the server along with 
user context which includes the user id, the 
current location and time. The 
communication between client and server is 
based on REST principles to make the 
server-side more scalable as no user session 
being stored on the server between requests. 
Both the request and response messages are 
encoded with JSON format on our messaging 
protocol.  

Figure 2:The flow of operations for 
understanding user requests. 

  In 
this section, we explain the process and 
methodology of understanding users’ 
requests in Turkish. Currently our 
application supports nine types of requests: 
 calling a contact,
 sending sms to a contact,
 sending email to a contact,
 searching terms on Web (we rely on Google

search),
starting installed apps on the phone,
getting route directions or searching a point
of intereston the map (Google Maps),
exchanging between currencies (Google
Currency Service),
accessing the weather forecast (World
Weather Online)
accessing to traffic information (Yandex
Traffic Service)

Figure 2 presents the flow of operations for 
understanding user requests. Upon receiving 
a user’s query and context, the query is 
normalized (curated) through the steps of 
abbreviation expansion, capitalization of 
proper nouns, and verb tense correction [8]. 
In the second phase, the normalized query is 
processed via a Turkish NLP pipeline 
available as a SaaS [12] consisting of a 
morphological analyzer [7], a morphological 
disambiguator, a named entity recognizer 
[6], and a dependency parser [5]. The 
outputs of natural language processing 
components are used both in the 
classification and parameter extraction 
phases. In the classification phase, the 
processed query is mapped to one of the 
supported operations (i.e., domains). Our 
classification methodology is a hybrid 
approach of rule-based and statistical 
classification. After a query is mapped to a 
domain, the parameters3 are extracted from 
the query, so that the phone can perform the 
requested operation or related web services 
can be called with correct parameters. 

As speech queries are in natural language, 
they often include grammar and 
pronunciation errors. Moreover, the used 
speech recognizer contributes to such errors 
by for instance separating suffixes from their 
stem despite the fact that Turkish is an 
agglutinative language and by outputting 
mistakenly the first letter of proper nouns 
with lower case letters (e.g. “gökhan a” 
instead of the correct form “Gökhan'a”). 
Consequently, the performance of the NLP 
tools we use degrades due to these erroneous 
spellings. In order to alleviate this problem, 
we needed to make extra normalization effort 
in addition to the previous work [8] 
normalizes its input by the following stages: 
letter case transformation, replacement rules 
and lexicon lookup, proper noun detection, 
deasciification, vowel restoration, accent 
normalization. During our experiments, we 
observed that the most important 
normalization layers for our case were 1) The 
capitalization of Proper Nouns and 2) Accent 
Normalization which fixes verb tense errors 
occurring under spoken accents. The 

3 Since we do not extract any parameter for the traffic 
service, Figure 2 shows only 8 domains in the parameter 
extraction phase
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normalizer understands the tense of a given 
verb and replaces it with its correct tense 
form. For example “gelcem” (informal way of 
saying “I will come”) is turned into 
“geleceğim” (I will come) which is the proper 
form. In addition to verb inflections, incorrect 
spelled question words are corrected as well. 
For instance, “gidiyozmu?” is corrected into 
“gidiyor muyuz?” (are we going?). In this 
work, we have extended the normalizer with a 
support for handling separated suffixes issue 
which is special to our used speech 
recognizer. We have compiled a Turkish 
suffix list, which we use to merge separated 
suffixes with the preceding word. If the word 
is a proper noun, we merge the noun and its 
suffix with an apostrophe and then capitalize 
the proper noun. For instance; “ahmet e” 
(Ahmet is a proper noun) becomes 
“Ahmet'e”.

The Named Entity Recognizer (NER) tool 
that we use in this work is based on the work 
of Şeker and Eryiğit, [6]. It utilizes a 
statistical modeling method, namely 
Conditional Random Fields (CRFs) [13], 
which is a framework for building 
probabilistic models to segment and label 
sequences of input samples. The original 
NER tool is designed for general purpose, 
hence we needed to adapt it for our domain of 
concern. To this end, we have added 750 
tagged queries and commands in to the 
existing data set. We have also added 
currency and time gazetteers, and then 
divided all the gazetteers into two categories: 
1) Base Gazetteers: First Name, Last Name,
Location, Money, Time and 2) Generator 
Gazetteers: Person, Location, Organization. 
Similarly to the original article, to retrain the 
NER tool, we considered the following 
features; whole word, word stem, POS tag or 
word, noun state, proper noun, inflectional 
groups, lower-upper case, sentence begin, 
and existence in gazetteers. Besides, the 
extended NER tool is able to tag PERSON, 
LOCATION, ORGANIZATION, TIME, 
MONEY, and PERCENTAGE entities in a 
given sentence. This tool is crucial for our 
system, since the output of the NER tool is 
directly used in the classification and 
extraction phases presented in the following 
sections, respectively.  

 
In this section, we explain our query 
classification methodology.
1) Rule Based Classification: In this work,
we have developed a rule engine to directly 
create and modify sets of classification rules. 
The engine enables to define rules containing 
regular expressions, and POS and NER tags 
together. Each rule expression follows the 
order of a pattern string to be matched against 
the processed user query, the domain name, 
and a value to define an order of priority for 
the evaluation sequence. The following 
expression is an example of a rule of Call 
domain.

2) Statistical Classification: As it is
impractical to define rules that would cover
all possible kinds of queries for a domain, we 
use a statistical classifier for the queries that 
do not match any rules. In our current 
application setting, we use a Support Vector 
Machine (SVM) classifier [14], a decision 
based on our performance evaluation that we 
present below.
a) Data Model: Our training and test data
consists of 1000 queries or commands (100+ 
queries per domain) collected from real users. 
For each query, first, we remove the stop 
words. Then, each remaining word in the 
query is stemmed, and replaced with a NER 
tag if it matches any. As a consequence, the 
same type of entities are represented with the 
same feature to improve the classification 
performance. Finally, we tag the resulting 
query with its corresponding domain type. 
Below is an example of this process.

To represent the data as numerical values, we 
use the bag-of-words (bag-of-n-grams) model, 
in which a query is represented as the multi 
set of its n-gram (contiguous sequence of n 
items from the query). This model is widely 
considered in document classification 
methods, where the frequency of occurrence 
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of each n-gram is used as a feature for 
training a classifier.
b) Classification Methods: In this work, we
have evaluated the performance of various 
classification methods using our query data 
set. These methods include Decision Tree 
(with 0.25, 0.5 and unpruned as confidence 
factors), Logistic Regression, NaiveBayes 
(Multinominal), Bayesian Network, K-
Nearest-Neighbor, and Support Vector 
Machine. Since the scale of our data is small, 
we have used 10-fold cross validation to 
compare the performance of the classification 
methods. We repeated the tests ten times and 
we report the average results. We only 
present the results in which we use 1-gram 
model, which yields better results compared 
to that of when we use 2-gram and 3-gram 
models.
Table 1 presents the performance of the 
classification methods in terms of accuracy, 
precision, recall, F-Score, ROC area, true and 
false positive rate metrics. The SVM and the 
Bayesian Network achieves the best and 
worst results, respectively. The SVM 
outperforms the other methods except for the 
metric of ROC area. We observe that the 
overall results are very high as by nature our 
data set comprises relatively short queries 
and commands. Moreover, we also found out 
that the performance of the classifiers for the 
Web Search and Start Application related 
queries are relatively low. We attribute this to 
the lack of NER support for application 
names and to the fact that one can search on 
web with very broad search terms.

For each domain, we have devised a complex 
individual parameter extraction method. 
Table 3 presents the parameters that we can 
extract from queries for each domain. The 
explanation of all extraction methods is 

beyond the scope of this paper, though, it is 
worth mentioning that the extraction methods 
leverage user context, NER and POS tags, the 
dependency relations, and the existence of 
pre-defined keyword patterns. As an example, 
Figure 3 illustrates the parameter extraction 
method for the Map domain.

Figure 3:Parameter extraction process of 
the Map domain

Table 3:The parameters that can be extracted 
for each domain

Domain Parameters
Call receiver name, phone number
Sms body text, receiver name, phone number
Email body text, receiver name, email address
Web Searc hquery text, web site
Start Apps application name
Map departure, destination, point of interest 
Weather location, time 
Exchange from/to currency pair 
Traffic location 

Table 2 shows the accuracy results of our 
parameter extraction methods that we run on 
our 1000 queries data set. We define accuracy 
as the ratio of true parameter extractions to 
the total number of parameters. We have 
attained high accuracy results for our 
parameter extraction methods, with an 
average score of 88%, except the methods of 
Call and Web Search, which yields around 
70% accuracy.
1) Mapping Parameters to the Entities in the
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Phone: The Turkish alphabet, which is a 
variant of the Latin alphabet, consists of 29 
letters, six of which (C-Ç, G-Ğ, I-İ, O-Ö, S-Ş, 
U-Ü) have two variants for the phonetic 
requirements of the language. This poses a 
challenge in matching names in queries to the 
names on the contact list of a phone, as users 
tend to save contact names using dot-less 
characters while speech-to-text service 
converts person names to their original form 
(e.g., saving Özgür as Ozgur – a Turkish 
person name). Moreover, users may mention 
only the first or last name of a contact or 
partial name for an application when they ask 
to call someone or start an application. To 
solve the exact matching issues mentioned 
above, in the mobile application we use the 
Monge-Elkan approximate text string 
matching algorithm [15], which measures the 
similarity between two strings each of which
may comprise one or more words. In case the 
highest similarity score is below a certain 
threshold, we let the user choose among a few 
results corresponding to the strings with the 
highest similarity scores. 

  In 
this paper we have presented our ongoing 
work on developing a mobile assistant 
application that understands Turkish 
language. We explained our system 
architecture and our methodology of 
understanding user queries, in which we 
leverage and improve existing research and 
tools for Turkish NLP. We also presented the 
performance of query classification and 
parameter extraction methods that we use in 
this work. 
As future work, we plan to support a dialog-
based interaction between users and the 
application and make the application 
personalized considering the context and 
previous queries of the users. We also plan to 
extend our services for instance with support 
for factual questions, and extend the 
performance tests with a broader set of real 
user queries. 
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