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Abstract. This paper investigates position vectors of arbitrary curves in isotropic 3-space (denoted by I3).
We first establish the relationship between a curve’s position vector and the Frenet frame. Then, we derive a
natural representation of any curve’s position vector using curvature and torsion. Furthermore, we define various
curves within isotropic space, including straight lines, plane curves, helices, general helices, Salkowski curves, and
anti-Salkowski curves. Finally, graphical illustrations accompany illustrative examples to elucidate the discussed
concepts.
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1. Introduction

The concept that our universe exhibits homogeneity and isotropy implies that its progression can be depicted as a
sequential arrangement of three-dimensional space-like hypersurfaces, each displaying uniformity and isotropy. These
hypersurfaces naturally serve as the surfaces of constant time. Homogeneity denotes uniform physical conditions
across every point on a given hypersurface, while isotropy implies identical physical conditions in all directions from
any point on the hypersurface. Isotropy inherently ensures homogeneity, although the reverse isn’t necessarily true.

Homogeneous and isotropic spaces, boasting the ultimate level of symmetry with free translations and rotations in
all three dimensions, strictly limit their possible geometries. These spaces fall into just three categories, each with a
distinct curvature: flat, spherical with constant positive curvature, and hyperbolic with constant negative curvature.

Meanwhile, helices, captivating curves found throughout science and nature, have long captivated scientists. From
the nanoscale (nano-springs and carbon nanotubes) to the biological realm (DNA, collagen, and bacterial flagella),
helices weave their way into countless structures. Their presence extends to horns, vines, screws, and seashells, show-
casing their diverse applications. Helices even find a home in the realm of fractal geometry (hyperhelices) and practical
applications like computer-aided design (tool paths and kinematic simulations) and highway design

The curves arising from the solution of significant physical problems also hold significance in the theory of curves
and surfaces. The fundamental theorem of curves asserts that curvatures uniquely determine curves, making curvature
functions invaluable for extracting special and crucial information about curves. In this paper, our study delves into
some special curves within Isotropic Space.
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As indicated in [3], the challenge of determining the position vector of a space curve relative to the Frenet frame
remains unresolved in Euclidean space, posing a generally difficult problem to solve. However, certain special curves
such as plane curves, helices, and slant helices have seen successful resolutions, as documented in [1, 2, 8].

In contrast, within the Galilean space G3, the aforementioned problem has been addressed comprehensively for
all curves as outlined in [19]. This study aims to extend these solutions to encompass all curves on a surface in I3

concerning the Frenet Frame. The study of curves in geometric spaces has been a subject of fascination and inquiry for
mathematicians and physicists alike. In particular, the exploration of curves within the Isotropic 3-space I3 presents
intriguing challenges and opportunities due to its unique geometric properties. In this paper, we delve into the investi-
gation of position vectors of arbitrary curves within Isotropic space and their relationship with the Frenet frame.

Building on this approach, researchers have used similar methods with different moving reference frames, like
the Frenet frame, to find the position vectors of special curves in various spaces, including familiar Euclidean space,
Minkowski spacetime, Galilean space and Isotropic space in [6, 7, 9, 13, 16, 19].

The concept of the Frenet frame provides a powerful framework for understanding the behavior of curves in Eu-
clidean space. It characterizes the orientation and curvature of a curve at each point along its path, offering valuable
insights into its geometric properties. Extending this framework to Isotropic space introduces new complexities and
nuances, prompting a deeper exploration of curve analysis in this setting.

Our study begins by establishing the position vector of a curve with respect to the Frenet frame in Isotropic 3-
space. This foundational understanding serves as the cornerstone for our subsequent investigations. By determining
the position vector in relation to the Frenet frame, we gain valuable insights into the intrinsic geometry of curves within
Isotropic space.

Building upon this framework, we then derive the natural representation of the position vector of an arbitrary curve
using curvature and torsion. These intrinsic properties of curves play a fundamental role in characterizing their shape
and behavior, allowing for a concise and elegant description of curve dynamics in Isotropic space.

In addition to exploring the position vectors of arbitrary curves, we define various types of curves within Isotropic
space, including straight lines, plane curves, helices, general helices, Salkowski curves, and anti-Salkowski curves.
Each of these curve types exhibits distinct geometric properties, contributing to the richness and diversity of curves in
Isotropic 3-space.

Throughout this paper, we provide examples and graphical illustrations to elucidate the concepts and methods
discussed. These examples serve to illustrate the practical applicability of our findings and showcase the versatility of
our approach in analyzing and understanding curves in Isotropic space.

In summary, this paper aims to contribute to the theoretical framework of curve analysis in Isotropic 3-space I3.
By investigating the position vectors of curves with respect to the Frenet frame and exploring various curve types, we
endeavor to deepen our understanding of curves in this unique geometric setting. We hope that this study will inspire
further research and exploration in the field of differential geometry and spatial mathematics.

2. Preliminaries

2.1. The Simple Isotropic Space (I(1)
3 ). The simple isotropic geometry belongs to the real Cayley-Klein geometries

in [10]. Its absolute consists of an ordered triple w, f1, f2, where w represents the ideal (absolute) plane and f1, f2
denote a pair of complex conjugate lines in w.

The geometry of simple isotropic space I(1)
3 has been extensively elucidated in [4, 17]. In particular, the scalar

product of two vectors a = (a1, a2, a3) and b = (b1, b2, b3) in I(1)
3 is defined as follows:

a · b =
{

a1.b1 + a2.b2, if ai , 0 or bi , 0 , (i = 1, 2),
a3.b3, if ai = 0 and bi = 0 , (i = 1, 2).

For an admissible curve c: I → I(1)
3 , where I ⊆ R is parameterized by arc length, given by

c =
(
x(s), y(s), z(s)

)
,

c̃ =
(
x(s), y(s)

)
,
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the curvature κ(s) and torsion τ(s) are defined as follows:

κ(s) = det
(̃
c′(s), c̃′′(s)

)
,

τ(s) =
det

(
c′(s), c′′(s), c′′′(s)

)
κ2(s)

.

The associated trihedron is given by

T =
(
x′(s), y′(s), z′(s)

)
,

N =
1
κ(s)

(
x′′(s), y′′(s), z′′(s)

)
,

B =
(
0, 0, 1

)
.

For these vector fields, the following Frenet’s formulas hold:

T′ = κ · N, N′ = −κ · T + τ · B, B′ = 0. (2.1)

The general solution of Frenet’s system in the simple isotropic space is provided in [15]. The geometry of simple
isotropic space is detailed in [17].

2.2. The Double Isotropic Space (I2
3 ). The double isotropic geometry is another instance of real Cayley-Klein ge-

ometries. Its absolute consists of an ordered triple {w, f ,U}, where w represents the ideal (absolute) plane, f ⊂ w is an
(absolute) line, and U ∈ f denotes a point (the absolute point).

The geometry of the double isotropic space I2
3 has been expounded in [5]. In particular, the scalar product of two

vectors a = (a1, a2, a3) and b = (b1, b2, b3) in I2
3 is defined as follows:

a · b =


a1 · b1, a1 , 0 or b1 , 0,
a2 · b2, a1 = b1 = 0 and (a2 , 0 or b2 , 0),
a3 · b3, a1 = b1 = a2 = b2 = 0.

For an admissible curve c: I → I(2)
3 , where I ⊆ R is parameterized by arc length ds = dx, given by

c(x) =
(
x, y(x), z(x)

)
,

the curvature κ(x) and torsion τ(x) are defined as follows:

κ(x) = y′′(x),

τ(x) =
( z′′(x)
y′′(x)

)′
.

The associated trihedron is given by

T = (1, y′(x), z′(x)), N = (0, 1,
z′′

y′′
), B = (0, 0, 1).

For these vector fields, the following Frenet’s formulas hold:

T′ = κN, N′ = τB, B′ = 0.

The general solution of Frenet’s system in the double isotropic space is given in [14].

3. Position Vector of a Curve in Isotropic Space

In this section, we will consider an arbitrary curve on a surface in I3. We aim to analyze the position vector of the
curve with respect to the Frenet frame in I3.

Theorem 3.1. The position vector α(s) of an arbitrary curve with respect to the Frenet frame in the Isotropic space I3

is computed from the natural representation form:

α(s) =
( ∫ [ ∫

κCκ ds
]

ds,
∫ [∫

κS κ ds
]

ds,

−

∫ [∫ (
κCκ

∫
S κ

(
τ

κ

)′
ds

)
ds

]
ds +

∫ [∫ (
κS κ

∫
Cκ

(
τ

κ

)′
ds

)
ds

]
ds

)
,

(3.1)
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where Cκ = cos
[ ∫
κ ds

]
and S κ = sin

[ ∫
κ ds

]
.

Proof. If α(s) is an arbitrary curve in Isotropic space I3, then the Frenet equations (2.1) hold.

T′ = κN, (3.2)
N′ = τB − κT,

B′ = 0.

From Eq. (3.2), we obtain
κT = τB − N′. (3.3)

Dividing Eq. (3.3) by κ, we get

T =
τ

κ
B −

1
κ

N′.

Taking the derivative of Eq. (3.3) with respect to s, we obtain

T′ =
(
τ

κ

)′
B −

(
1
κ

N′
)′
. (3.4)

By substituting Eq. (3.4) into Eq. (3.2), we get

κN =
(
τ

κ

)′
B −

(
1
κ

N′
)′
.

The above equation can be rewritten as

N′′ + N =
(
τ

κ

)′
B, (3.5)

where t is the new variable that equals
∫
κds. We know that B = (0, 0, 1). Therefore, Eq. (3.5) becomes

(N1)′′ + (N1) = 0,

(N2)′′ + (N2) = 0,

(N3)′′ + (N3) =
(
τ

κ

)′
.

(3.6)

Let g(t) =
(
τ
κ

)′
. Solving Eq. (3.6), we find

N1 = cos(t),
N2 = sin(t),

N3 = − cos(t)
(∫

sin(t)g(t)dt
)
+ sin(t)

(∫
cos(t)g(t)dt

)
.

Thus, we can rewrite N as follows:

N(t) =
(

cos(t), sin(t),− cos(t)
(∫

sin(t)g(t)dt
)
+ sin(t)

(∫
cos(t)g(t)dt

) )
. (3.7)

Substituting t =
∫
κds and g(t) =

(
τ
κ

)′
into Eq. (3.7), we obtain

N =
(

cos
[∫
κds

]
, sin

[∫
κds

]
,− cos

[∫
κds

] [∫
sin

[∫
κds

] (
τ

κ

)′
ds

]
+ sin

[∫
κds

] [∫
cos

[∫
κds

] (
τ

κ

)′
ds

] )
.

Integrating Equation (3.2) with respect to s, we have

T =
(∫
κCκds,

∫
κS κds,−

∫
κCκ

[∫
S κ

(
τ

κ

)′
ds

]
+

∫
κS κ

[∫
Cκ

(
τ

κ

)′
ds

])
+ d,

where d is a constant vector. Setting d = (0, 0, 0), we get

T =
(∫
κCκds,

∫
κS κds,−

∫
κCκ

[∫
S κ

(
τ

κ

)′
ds

]
+

∫
κS κ

[∫
Cκ

(
τ

κ

)′
ds

])
. (3.8)
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Integrating Equation (3.8) with respect to s, we obtain

α(s) =
(∫ [∫

κCκds
]

ds,
∫ [∫

κS κds
]

ds,−
∫ [∫

κCκ

[∫
S κ

(
τ

κ

)′
ds

]
+

∫
κS κ

[∫
Cκ

(
τ

κ

)′
ds

]]
ds

)
.

This leads to Equation (3.1), and the proof is complete. □

4. Applications

Definition 4.1. We can say that α is called:

κ, τ α

κ ≡ 0 =⇒ a straight line.
τ ≡ 0 =⇒ a plane curve.

κ ≡ cons.>0, τ ≡ cons.>0 =⇒ a circular helix
τ
κ
≡ cons. =⇒ a generalized helix.

κ ≡ cons., τ , cons. =⇒ Salkowski curve [11, 18].
κ , cons., τ ≡ cons. =⇒ anti-Salkowski curve [18].

(4.1)

Corollary 4.2. The position vector α(s) of a straight line in the Isotropic space I3 is given by

α(s) =
(
d1s + d2, d3s + d4, d5s + d6

)
,

where d1, d2, d3, d4, d5 and d6 are constants.

Proof. By using κ≡0 in the equation (4.1), we obtain the above equation. □

Corollary 4.3. The position vector α(s) of a plane curve in the Isotropic space I3 is given by

α(s) =
( ∫ [ ∫

κcos(
∫
κds) ds

]
ds,

∫ [∫
κsin(

∫
κds) ds

]
ds,

−

∫ [∫
κcos(

∫
κds)d1ds

]
ds +

∫ [∫
κsin(

∫
κds)d2ds

]
ds,

)
where d1 and d2 are constants.

Proof. By using τ≡0 in the equation (4.1), we obtain the above equation. □

Corollary 4.4. The position vector α(s) of a circular helix in the Isotropic space I3 is given by

α(s) =
(
−

1
κ

cos[κs + d1] + d2s + d3,−
1
κ

sin[κs + d4] + d5s + d6,
d7

κ
cos[κs + d8] −

d9

κ
sin[κs + d10] + d11s + d12

)
,

where d1, d2 , d3, d4 , d5, d6, d7, d8, d9, d10, d11 and d12 are constants.

Proof. By using κ≡cons. and τ≡ cons. in the equation (4.1), we obtain the above equation. □

Example 4.5. Assuming κ = 1 and τ = 1, and choosing the integration constants as d1 = d3 = d4 = d6 = d8 = d10 =

d12 = 0, d2 = d5 = d7 = d9 = d11 = 1, the curve is obtained as follows (Figure 1).

α(s) =
(
− cos[s] + s,−sin[s] + s, cos[s] − sin[s] + s

)
.

Corollary 4.6. The position vector α of a generalized helix in the isotropic space I3 is given by

α(s) =
(
−

1
κ

cos[
∫
κds] + d1s + d2,−

1
κ

sin[
∫
κds] + d3s + d4,

d5

κ
cos[

∫
κds] + d6s + d7 −

d8

κ
sin[

∫
κds]

)
where d1, d2, d3, d4, d5,d6, d7 and d8 are constants.

Proof. By using
(τ
κ

)′
≡ 0 in the equation (4.1), we obtain the equation. □
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Figure 1. Curve with κ ≡ 1 and τ ≡ 1

Example 4.7. If we take κ ≡ s and τ ≡ s, and the integration constants as d1 = d3 = d5 = d6 = d8 = 1, d2 = d4 = d7 =

0, the curve is as follows (Figure 2)

α(s) =
(
−

1
s

cos[
s2

2
] + s,−

1
s

sin[
s2

2
] + s,

1
s

cos[
s2

2
] −

1
s

sin[
s2

2
] + s

)
.

Figure 2. Curve with κ=s and τ=s
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Corollary 4.8. The position vector α of a Salkowski curve in the isotropic space I3 is given by

α(s) =
(
−

1
κ

cos[κs + d1] + d2s + d3,−
1
κ

sin[κs + d4] + d5s + d6,

−

∫ [∫
cos[κs + d7]

[ ∫
sin[κs + d8]τ′ds

]
ds

]
ds

+

∫ [∫
sin[κs + d9]

[ ∫
cos[κs + d10]τ′ds

]
ds

]
ds

)
,

where d1, d2, d3, d4, d5, d6, d7, d8, d9 and d10 are integral constants.

Proof. If we take κ as constant and τ as non-constant in (4.1), then the equation above is obtained. □

Example 4.9. If we take κ = 1 and τ = s, and the integration constants as d1=d3=d4=d6=d7=d9=0 and d2=d5=1, the
curve is as follows (Figure 3)

α(s) =
(
− cos[s] + s,−sin[s] + s,

s2

2

)
.

Figure 3. Curve with κ=1 and τ=s

Corollary 4.10. The position vector α of a anti-salkowski curve in the isotropic space I3 is given by

α(s) =
(
−

1
κ

cos[
∫
κds] + d1s + d2,−

1
κ

sin[
∫
κds] + d3s + d4,

− τ

∫ [
κcos[

∫
κds]

[ ∫
sin[

∫
κds]

(1
κ

)′
ds

]
ds

]
ds

+ τ

∫ [
κsin[

∫
κds]

[ ∫
cos[

∫
κds]

(1
κ

)′
ds

]
ds

]
ds

)
,

where d1 , d2, d3 and d4 are constants.

Proof. If we take κ. cons. and τ≡cons. in equation (3.1), the above equation is obtained. □

Definition 4.11. Let α be a Frenet curve of order 3 of I3. For τ(s) ,0, α is a Bertrand curve if and only if there exist a
linear relation

Aκ(s) + Bτ(s) = 1, (4.2)

where A, B are non-zero constant and κ(s) and τ(s) are the curvature functions of α [12].
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Corollary 4.12. The position vector α of a Bertrand curve in the isotropic space I3 is given by

α(s) =
( ∫ [ ∫

κCκ ds
]

ds,
∫ [∫

κS κ ds
]

ds,

−

∫ [∫ (
κCκ

∫
S κ

(1 − Aκ
Bκ

)′
ds

)
ds

]
ds

+

∫ [∫ (
κS κ

∫
Cκ

(1 − Aκ
Bκ

)′
ds

)
ds

]
ds

)
,

where A and B are constants other than zero.

Proof. If we use equation (4.2) in (3.1), the above equation is obtained. □

5. Conclusion

In this study, we have explored the position vectors of arbitrary curves within the Isotropic 3-space I3 and their
relationship with the Frenet frame. Our investigation began with the determination of the position vector of a curve
with respect to the Frenet frame, providing a foundational understanding of how curves behave within this unique
space.

Furthermore, we elucidated the natural representation of the position vector of an arbitrary curve in terms of curva-
ture and torsion. This representation not only allows for a concise description of the curve’s behavior but also provides
insights into its geometric properties.

Moreover, we extended our exploration by defining various types of curves within Isotropic space, including straight
lines, plane curves, helices, general helices, Salkowski curves, and anti-Salkowski curves. Each of these curve types
offers distinct characteristics and geometric features, enriching our understanding of curves in Isotropic space.

Through the examination of examples and graphical illustrations, we have demonstrated the applicability of our
findings and concepts discussed throughout this paper. These examples serve to illustrate the versatility and utility of
our methods in analyzing and understanding curves in Isotropic space.

In conclusion, this study contributes to the theoretical framework of curve analysis within Isotropic 3-space I3. By
investigating the position vectors of curves with respect to the Frenet frame and exploring various curve types, we have
advanced our understanding of curves in this unique geometric setting. We hope that this paper will serve as a valuable
resource for further research in the field of differential geometry and spatial mathematics.
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[7] Güzelkardeşler, G., Şahiner, B., An alternative method for determination of the position vector of a slant helix, Journal of New Theory,

44(2023), 97–105.
[8] Izumiya, S., Takeuchi,N., New special curves and developable surfaces, Turk. J. Math., 28(2004), 531–537.



Position Vectors of Curves in Isotropic Space I3 506
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