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A New Mathematical Model for Hepatitis-B and the Effect of Vertical Transmission in the Model

INTRODUCTION

Infectious diseases have caused problems for humanity throughout history. From past to present,
infectious diseases that have caused social, economic and cultural losses have also caused mass deaths.
In the historical process, it is known that infectious diseases such as plague, smallpox, typhus, typhoid,
cholera, influenza, malaria and Hepatitis-B cause the death of many people. Various solutions and
effects on the transmission routes and course of these diseases, which pose problems for humanity, are
being investigated. For this reason, in recent years, especially with a major process such as a pandemic,
studies on infectious disease research have begun to appear widely in the literature [54—57]. One of the
infectious diseases that has been a problem throughout history is Hepatitis-B disease. Hepatitis-B is a
liver infection caused by Hepatitis-B virus (HBV). It poses a global health problem because it causes
many deaths [1, 2].

HBV disease, which causes elevated liver enzymes, is an infectious disease that is transmitted
through body fluids, blood and mucosal contact. In some individuals infected with HBV, the disease
can survive silently in the body. The virus can also manifest itself in some individuals. Hepatitis-B
disease is divided into acute and chronic. Acute HBV is a short-term illness that occurs within the first
6 months after exposure to the Hepatitis-B virus. Even if the virus does not cause any symptoms in these
people, the risk of being a carrier and transmitting the infection continues. Among the symptoms
observed in individuals, complaints such as fever, fatigue, loss of appetite, nausea or vomiting, muscle,
joint and stomach pain are observed. Chronic HBV infection is the form of the Hepatitis-B virus that
cannot be eliminated and can cause bad consequences such as liver damage (cirrhosis), liver cancer and
death [3]. While there is no known treatment for acute HBV, the disease can be controlled with the help
of various medications in chronic HBV. HBV can be transmitted horizontally or vertically between
individuals. Transmission between individuals through blood or water, sexual contact, or reuse of unsafe
syringes is called horizontal transmission, while transmission of the virus from an HBV-infected mother
to her newborn baby is called vertical transmission.

Mathematical modeling in infectious diseases is an important method to examine the course of
diseases. Mathematical models provide information about the estimated number of cases of infectious
diseases and the estimated number of deaths from the disease [4]. Moreover, mathematical modeling
also helps determine parameters and solution methods to alleviate the disease [5]. Therefore,
mathematical modeling of the disease has become a highly preferred subject to determine the course of
infectious diseases.

Many studies have been conducted in the literature on the mathematical modeling of HBV, one
of the infectious diseases. Bashir and Umar [6] established a new mathematical model by combining
three control strategies known as treatment, vaccination and media campaign in order to reduce the
spread of HBV. Combining the three interventions was shown to improve the outcome of the study as
much as possible. Kiemtore et al. [7] conducted a study in Africa, one of the places in the world where
HBYV is most likely to occur. They developed a model that included vaccination and treatment of HBV
in the Burkina Faso population. They estimated the disease parameters using Gray Wolf Optimization
(GWO). Li and Chai [8], developed a mathematical model that models the drug resistance treatment of
HBV. Their aim was to investigate the reason for the decrease in drug resistance of the disease as a
result of the mutation of HBV over time. As a result, it has been revealed that if the virus resistance of
the disease is high in the body, combined drug treatment shortens the clearance time of the resistant
HBYV virus.

Liu et al. [9] designed a fractional model for Hepatitis-B. They created a non-linear epidemic
model by investigating the stages of transmission of HBV. They formulated the model with the vaccine
effect using the Atangana-Baleanu derivative (AB derivative). As a result, it has been demonstrated that
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vaccination is a method that can end the HBV epidemic process. Elaiw et al. [10] pointed out that there
may be model inaccuracies that may arise when modeling HBV disease, and they modeled the disease
with a non-linear ordinary differential equation. Possible disruptions and uncertainties were reflected in
the model as social limited disruptions. They expanded their model by adding two types of drug
therapies used to prevent new infections. Khan et al. [11] established an HBV model and conducted a
sensitivity analysis of the model by examining its existence and positivity. They performed numerical
simulations to analyze parameter sensitivities. de Villiers et al. [12] compared two deterministic HBV
models, the Imperial HBV model and CDA. Additionally, the effect of the birth dose of HBV vaccine
was investigated. They contributed to the literature by revealing some differences between the two
models.

Preventing the HBV epidemic in Ghana and the Brong Ahafo region is a major challenge due to
limited resources in these regions. Otoo et al. [ 13] drew attention to this problem and formulated a model
that explains the spread of HBV. They proposed an intervention that would minimize the impact of the
epidemic. As a result, they have shown that it is possible to combat the spread of the disease by
vaccinating susceptible people and treating infected people. Cardoso et al. [14] explained the dynamics
of HBV with a fractional model. They presented the main results of this model. They calculated the
equilibrium point and basic reproduction number. Finally, by performing numerical simulations, they
demonstrated that the model converged to an equilibrium point. Farman et al. [15] created a time-
spanning and non-linear model of HBV. They used fractional parameters to develop the system. Finally,
they applied numerical simulation. In this way, they investigated the effect of the system parameter on
the spread of the disease. Reinharz et al. [16] developed a multicompartmental model that included
infected human hepatocytes and total intracellular HBV DNA per infected human hepatocyte. They also
modeled HBV kinetics during 14-day treatment of Humanized Chimeric Mice. As a result of the study,
they obtained new information about HBV DNA dynamics in infected human hepatocytes.

There are many models in the form of in vivo model systems to demonstrate the progression of
HBYV in different animal species. Ortega-Priet et al. [17] drew attention to this situation and conducted
a study examining in vivo model systems to examine the HBV life cycle. They examined models such
as the chimpanzee model, tree mouse model and carrier animal models of HBV. Khan et al. [18]
considered various stages of HBV using generalized saturated incidence. They created a model to
demonstrate HBV dynamics and control strategies. They investigated the time dynamics and stability
conditions of the model. Finally, they updated their models to increase the number of the recovered
population and minimize the infected population. Friedman and Siewe [19], discussed the treatment of
chronic HBV with the combination of IFN-alpha and adefovir. In their study, they investigated what the
optimal ratio between IFN-alpha and adefovir should be for the best results. They designed a model of
HBYV pathogenesis using a partial differential equation system.

Oludoun et al. [20] formulated a model to examine the impact of testing and treatment on HBV
and to analyze the transmission process. They used the Next Generation Matrix method for the basic
reproduction number. As a result, they revealed that testing in cases of acute HBV and chronic
unconsciousness will contribute to controlling the disease. Moreover, a number of illustrative
applications have been performed in terms of the investigations on HBV, COVID-19 [21-25], HIV-
AIDS [26-28], SARS-CoV [29-32], tuberculosis [33—36], Malaria [37—40], other infectious diseases
[41-46] and prey-predator competition research that successfully explain mathematical modelling [47—
50].

In this study, mathematical modeling was used to examine the effect of vertical transmission and
migration parameters of HBV on the course of HBV infectious disease. In the mathematical model
consisting of 6 compartments, susceptible population, latent population, acute population, carrier
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population, protected infected (in the sense of recovered) and vaccinated population were used.

The rest of the study is organized as follows: Numerical results and discussion are presented in
Section 4, and the conclusion is explained in Section 5.

DERIVATION OF THE MATHEMATICAL MODEL FOR HBV INFECTION

In this section, the basic SLACPV mathematical model for the effect of HBV on vertical
transmission and migration factor is proposed and analyzed. Total population, susceptible population
S(t), latent population L(t), acute population A(t), carrier population C(t), protective rescued P(t) and
vaccinated population V (t) is divided into six mutually exclusive parts.

The parameters provided constitute elements of a mathematical model describing the transmission
dynamics of Hepatitis-B virus (HBV). A denotes the recruitment rate of individuals into the susceptible
population, while ¢ represents the rate of immunity decrease due to vaccination. p stands for the natural
mortality rate, and f§ signifies the transmission rate. ¢ indicates reduced transmission compared to acute
infection, and w represents the rate of babies born infected from mothers. 9 signifies the proportion of
infected mothers transmitting HBV to their offspring. @ is the vaccination rate, ¢ is the recovery rate
from acute infection, and f is the recovery rate of carriers. p denotes the transition rate from acute to
carrier status, and y,, is the HBV-related death rate. g represents the rate of new individuals joining the
community through migration. b signifies the transition rate from susceptible to latent infection, [ is the
vaccine leakage rate, and k is the transition rate from latent to acute infection. £ is the rate of babies
born infected. These parameters collectively depict the interplay of various processes in HBV
transmission dynamics, aiding in understanding and predicting disease spread and control measures.
The same situation is represented by a schematic diagram and stated in Section 2. The equation system
of the given schematic diagram is given in Eq. (1)

Hence, by considering this assumption the rate of change of susceptible, latent, acute, carrier,
protected infected (protective rescued) and vaccinated population is described in the following nonlinear
system of differential equations.

(44
(44
us ML oA | pA uC upP g
g+ Alw — wdA — pA) (bL + BA + $BC)S| kL pA fc
S L A C P \Y
AwBA + APA ¢4 ACL— )
[op)

Figure 1
Schematic diagram of the SLACPV model.
ds
i Aw(1 —9A) — (BL)S + ¢V — (u+ BA + ¢pBC + @)S + g — ApA,
dL
i = (BA+ ¢pBC)S — uL + (bL)S — kL, (D)
dA
a = AwIA — pA — u,A —pA —EA+ kL + £V + ApA,
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dC— A C Cc

dp

— = fA—pP+fC 1
7t 3 uP + fC, (1)
dv

EzA(l—a))+wS—uV—cV—€V,

with  initial  conditions S(0)= S, =0, L(0) = L, =0, A(0)= A, =0, C(0)= Cy =0,
P(0) = Py =0,V (0) = Vy =0. The used model parameters and their biological description are
listed in Table 1.

QUALITATIVE ANALYSIS OF THE MODEL
Equilibria of the Model
In this subsection, we evaluate the disease-free equilibrium (DFE) and its stability to study the
steady-state behaviour of the model constructed for the HBV disease model. In order to achieve this, we
reconsider the following system of equations:
Aw(1 —94) — (BL)S+ ¢V —(u+ BA+ ¢BC +@)S + g — ApA =0,
(BA+ ¢BC)S —pL + (bL)S — kL =0,
AwIYA — pA — uyA —pA —EA+ kL + 4V + ApA =0,

()
pA—fC—nC=0,
EA—pP+ fC=0,
Al —w)+@S—uV —¢V -2V =0,
By solving the last equation, we get the following DFE point:
lIUO = (SO' Lo,Ao, CO' PO: VO) = (505 0' 0' 0; 0' O)I (3)
where
_Aw+g
o~ UL+
or
_MNw—-1)
0= P

NUMERICAL RESULT AND DISCUSSION

In this study, we want to examine the effect of HBV on the course of the disease by establishing
a new model that takes into account the vertical transmission and migration parameters. For this, we are
building a mathematical model with 6 compartments: susceptible population S(t), latent population
L(t), acute population A(t), carrier population C(t), protected infected (protective rescued) P(t) and
vaccinated population V (t). We use the 4th order Runge-Kutta method to obtain numerical solutions
of the model within these compartments. In general, m.-order Runge-Kutta method has the following
advantages:

* To calculate the approximate value of the Y;,; solution, it is found by calculating only the Y;
value. That’s why the one-step method is the most important method of its kind.
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* When m = 4, it turns into the method called classical Runge Kutta. This method is the most used
method [51].

After performing the numerical solutions of the relevant model, we obtain some results. We use
the literature [52, 53] for some of our parameters used in the model and estimate many of them. Our
parameter estimates are shown in Table 1:

Table 1
Parameters used for the HBV model.

Par. Biological description Value Sources
A Recruitment rate 0.22996 fitted
9 Rate of decrease in immunity due to the effect of the vaccine 0.1546 fitted
u Natural mortality rate 3.4857¢-05 [52]
B Transmission rate 0.001 fitted
¢ Reduced transmission rate relative to acute 0.21 fitted
W The rate of births without successful insemination 0.003 fitted

(babies born sick after insemination from mothers)

) Infected rate of mothers with HBV acute virus 0.02456 fitted
(0] Vaccination rate 0.21 fitted
& Recovery rate of individuals with acute infection 0.17 fitted
f Recovery rate of individuals in the carrier class 0.2124 fitted
D Transition rate from Acute to Carrier 0.1349 fitted
Uo Death rate from HBV disease 0.1025 fitted
g Rate of community coming from outside 0.3899 fitted
b Transition rate from susceptible to latent 0.002 fitted
' Vaccine leakage rate 0.1356 fitted
k Transition rate from latent to acute 0.1174 fitted
%) Rate of babies born infected 0.2438 fitted

S(0) Initial Susceptible population 6000 fitted

L(0) Initial Latent population 500 fitted

A(0) Initial Acute population 1497 [53]

C(0) Initial Carrier population 100 fitted

P(0) Initial protected infected population 150 fitted

V(0) Initial Vaccinated population 300 fitted

In this investigation we have performed all numerical results and finding by benefiting from
Matlab R2023b Software. Below, we examine the development and change of some populations in our
model over time. In Figure 2, we examine the change and development of acute individuals, vaccinated
individuals and recovered individuals over time.

In Figure 3, we examine the effect of individuals in the latent phase on acute individuals and
recovering individuals. In addition, on these populations, the mortality rate from HBV disease in Figure
4, the recovery rate of individuals with acute infection in Figure 5, the transmission rate in Figure 6 and
in Figure 7 we also examine the change in vaccination rate over time.

It has been observed that when the number of vaccinated individuals is kept at a minimum level,
the number of infected individuals decreases, and the number of protected infected individuals reaches
a maximum.

The Protected Infected population increased as a result of the decrease in Latent and Acute
individuals towards the end of the process. This positively affected the course of the disease.
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The mortality rate from HBV disease.

The graph in Figure 4 depicts the mortality rates attributable to HBV (Hepatitis B Virus) over a
specific period of time (30 years). Trends in the graph indicate the change in death rates from HBV
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disease over time. The reasons for sudden decreases or fluctuations in a certain period in the graph are;
epidemics, changes in health policies or difficulties in access. A clear downward trend is observed in
the death rates caused by HBV disease over time. This decline is generally due to factors such as the
expansion of vaccination programs, improvements in treatment options, and effective implementation
of health education.

The graph in Figure 5 shows the recovery rates of individuals with acute infectious disease over
30 years. Examining the changes in the trends in the graph over time is important for the management
and treatment of the disease. It is necessary to determine the underlying reasons for a significant increase
or decrease in recovery rates in a certain period. These reasons include factors such as the nature of the
disease, treatment methods used, access to healthcare and patients’ lifestyle. Additionally, information
can be obtained about the change in recovery rates by demographic characteristics by examining the
change in recovery rates. Evaluating the impact of factors such as age, gender, geographical location or
underlying health condition on recovery rates is important to understand how the disease is affected
among different groups. There is a clear trend in the graph, so appropriate strategies are being developed
to understand the reasons for this trend and increase recovery rates. This is a critical step for improving
health policies and health services and improving patients’ quality of life.
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Figure 5
The recovery rate of individuals with acute infection disease.
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Figure 6
The transmission rate of the HBV virus.

The graph in Figure 6 depicts the change in the transmission rate of the HBV virus over a certain
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period of time. An important point is that the continuous, graphical changes increase over time. For
example, it is necessary to determine the underlying causes of sudden increases or decreases in
transactions over a certain period. These include factors such as epidemics, changes in health policies,
changes in the development of society, or a new treatment or vaccine. In addition, a clear formation is
seen in the graph, and it is necessary to examine how the events progress. It should also be determined
how long the increases or decreases continue over 30 years and what factors they depend on. The results
of such analyzes should evaluate health policies and interventions. Finally, appropriate strategies are
developed to understand the reasons for this trend and prevent similar situations from occurring in the
future. These strategies control the spread of the disease.

2000
— = 0.2438 (baseline value)
— = 0.4
1500 pe=0g
=
RS
E 1000 F
=]
Q
o]
o
o 500 -
5
(s}
<
O L
-500 L - L ‘ L
0 5 10 15 20 25 30

Time (Years)
Figure 7
Rate of babies born infected.

The graph in Figure 7 shows the change in the rate of infected babies over time over 30 years. It
is important to know the reasons behind the increase or decrease in the rates of babies born in certain
periods of these data. The reason for the increase at the beginning of this process is due to the high
vertical transmission rate of HBV. In the middle of the process, a clear intersection can be seen on the
graph. The reason for this intersection is that the vertical transmission of HBV is under control. After
this point, a significant decrease is observed in the graph. Appropriate strategies are developed to
understand the reasons for this trend and prevent similar situations from occurring in the future. As a
result of these strategies, vertical transmission of the disease is controlled. As a result of these analyses,
the number of healthy babies is expected to increase.
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Figure 8
Acute population dynamics according to various values of k.
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CONCLUSION

In this paper, we have developed a new Hepatitis-B mathematical model containing a vertical
transmission from mothers to newborn babies. Also, we have evaluated the disease-free equilibrium
point. In the numerical simulation section of the article presents the results obtained throughout our
study process. The effectiveness of this model and its performance by developing a new expanding
structure that models Hepatitis-B by selecting the appropriate effect for the model. In the modelling of
the results we obtained, it is seen that the course of Hepatitis-B disease is modelled by predicting it and
predictions about its process are obtained. Non-negative solutions have been obtained to ensure
biological augmentation of our system of equations of the model.
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