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In this paper, a new mathematical model of Hepatitis B is constructed to investigate the 

dynamics of the transmission of the Hepatitis virus. The model is developed by considering the 

vertical transmission. In the model, susceptible, latent, acute, carrier, recovered, and vaccinated 

populations are taken into account. Moreover, positivity is performed, and disease-free 

equilibrium point is calculated. Finally, the numerical results and their biological interpretations 

are performed to estimate the future directions of the disease. 
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INTRODUCTION 

Infectious diseases have caused problems for humanity throughout history. From past to present, 

infectious diseases that have caused social, economic and cultural losses have also caused mass deaths. 

In the historical process, it is known that infectious diseases such as plague, smallpox, typhus, typhoid, 

cholera, influenza, malaria and Hepatitis-B cause the death of many people. Various solutions and 

effects on the transmission routes and course of these diseases, which pose problems for humanity, are 

being investigated. For this reason, in recent years, especially with a major process such as a pandemic, 

studies on infectious disease research have begun to appear widely in the literature [54–57]. One of the 

infectious diseases that has been a problem throughout history is Hepatitis-B disease. Hepatitis-B is a 

liver infection caused by Hepatitis-B virus (HBV). It poses a global health problem because it causes 

many deaths [1, 2]. 

HBV disease, which causes elevated liver enzymes, is an infectious disease that is transmitted 

through body fluids, blood and mucosal contact. In some individuals infected with HBV, the disease 

can survive silently in the body. The virus can also manifest itself in some individuals. Hepatitis-B 

disease is divided into acute and chronic. Acute HBV is a short-term illness that occurs within the first 

6 months after exposure to the Hepatitis-B virus. Even if the virus does not cause any symptoms in these 

people, the risk of being a carrier and transmitting the infection continues. Among the symptoms 

observed in individuals, complaints such as fever, fatigue, loss of appetite, nausea or vomiting, muscle, 

joint and stomach pain are observed. Chronic HBV infection is the form of the Hepatitis-B virus that 

cannot be eliminated and can cause bad consequences such as liver damage (cirrhosis), liver cancer and 

death [3]. While there is no known treatment for acute HBV, the disease can be controlled with the help 

of various medications in chronic HBV. HBV can be transmitted horizontally or vertically between 

individuals. Transmission between individuals through blood or water, sexual contact, or reuse of unsafe 

syringes is called horizontal transmission, while transmission of the virus from an HBV-infected mother 

to her newborn baby is called vertical transmission. 

Mathematical modeling in infectious diseases is an important method to examine the course of 

diseases. Mathematical models provide information about the estimated number of cases of infectious 

diseases and the estimated number of deaths from the disease [4]. Moreover, mathematical modeling 

also helps determine parameters and solution methods to alleviate the disease [5]. Therefore, 

mathematical modeling of the disease has become a highly preferred subject to determine the course of 

infectious diseases. 

Many studies have been conducted in the literature on the mathematical modeling of HBV, one 

of the infectious diseases. Bashir and Umar [6] established a new mathematical model by combining 

three control strategies known as treatment, vaccination and media campaign in order to reduce the 

spread of HBV. Combining the three interventions was shown to improve the outcome of the study as 

much as possible. Kiemtore et al. [7] conducted a study in Africa, one of the places in the world where 

HBV is most likely to occur. They developed a model that included vaccination and treatment of HBV 

in the Burkina Faso population. They estimated the disease parameters using Gray Wolf Optimization 

(GWO). Li and Chai [8], developed a mathematical model that models the drug resistance treatment of 

HBV. Their aim was to investigate the reason for the decrease in drug resistance of the disease as a 

result of the mutation of HBV over time. As a result, it has been revealed that if the virus resistance of 

the disease is high in the body, combined drug treatment shortens the clearance time of the resistant 

HBV virus. 

Liu et al. [9] designed a fractional model for Hepatitis-B. They created a non-linear epidemic 

model by investigating the stages of transmission of HBV. They formulated the model with the vaccine 

effect using the Atangana-Baleanu derivative (AB derivative). As a result, it has been demonstrated that 
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vaccination is a method that can end the HBV epidemic process. Elaiw et al. [10] pointed out that there 

may be model inaccuracies that may arise when modeling HBV disease, and they modeled the disease 

with a non-linear ordinary differential equation. Possible disruptions and uncertainties were reflected in 

the model as social limited disruptions. They expanded their model by adding two types of drug 

therapies used to prevent new infections. Khan et al. [11] established an HBV model and conducted a 

sensitivity analysis of the model by examining its existence and positivity. They performed numerical 

simulations to analyze parameter sensitivities. de Villiers et al. [12] compared two deterministic HBV 

models, the Imperial HBV model and CDA. Additionally, the effect of the birth dose of HBV vaccine 

was investigated. They contributed to the literature by revealing some differences between the two 

models. 

Preventing the HBV epidemic in Ghana and the Brong Ahafo region is a major challenge due to 

limited resources in these regions. Otoo et al. [13] drew attention to this problem and formulated a model 

that explains the spread of HBV. They proposed an intervention that would minimize the impact of the 

epidemic. As a result, they have shown that it is possible to combat the spread of the disease by 

vaccinating susceptible people and treating infected people. Cardoso et al. [14] explained the dynamics 

of HBV with a fractional model. They presented the main results of this model. They calculated the 

equilibrium point and basic reproduction number. Finally, by performing numerical simulations, they 

demonstrated that the model converged to an equilibrium point. Farman et al. [15] created a time-

spanning and non-linear model of HBV. They used fractional parameters to develop the system. Finally, 

they applied numerical simulation. In this way, they investigated the effect of the system parameter on 

the spread of the disease. Reinharz et al. [16] developed a multicompartmental model that included 

infected human hepatocytes and total intracellular HBV DNA per infected human hepatocyte. They also 

modeled HBV kinetics during 14-day treatment of Humanized Chimeric Mice. As a result of the study, 

they obtained new information about HBV DNA dynamics in infected human hepatocytes. 

There are many models in the form of in vivo model systems to demonstrate the progression of 

HBV in different animal species. Ortega-Priet et al. [17] drew attention to this situation and conducted 

a study examining in vivo model systems to examine the HBV life cycle. They examined models such 

as the chimpanzee model, tree mouse model and carrier animal models of HBV. Khan et al. [18] 

considered various stages of HBV using generalized saturated incidence. They created a model to 

demonstrate HBV dynamics and control strategies. They investigated the time dynamics and stability 

conditions of the model. Finally, they updated their models to increase the number of the recovered 

population and minimize the infected population. Friedman and Siewe [19], discussed the treatment of 

chronic HBV with the combination of IFN-alpha and adefovir. In their study, they investigated what the 

optimal ratio between IFN-alpha and adefovir should be for the best results. They designed a model of 

HBV pathogenesis using a partial differential equation system. 

Oludoun et al. [20] formulated a model to examine the impact of testing and treatment on HBV 

and to analyze the transmission process. They used the Next Generation Matrix method for the basic 

reproduction number. As a result, they revealed that testing in cases of acute HBV and chronic 

unconsciousness will contribute to controlling the disease. Moreover, a number of illustrative 

applications have been performed in terms of the investigations on HBV, COVID-19 [21–25], HIV-

AIDS [26–28], SARS-CoV [29–32], tuberculosis [33–36], Malaria [37–40], other infectious diseases 

[41–46] and prey-predator competition research that successfully explain mathematical modelling [47–

50]. 

In this study, mathematical modeling was used to examine the effect of vertical transmission and 

migration parameters of HBV on the course of HBV infectious disease. In the mathematical model 

consisting of 6 compartments, susceptible population, latent population, acute population, carrier 
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population, protected infected (in the sense of recovered) and vaccinated population were used. 

The rest of the study is organized as follows: Numerical results and discussion are presented in 

Section 4, and the conclusion is explained in Section 5. 

DERIVATION OF THE MATHEMATICAL MODEL FOR HBV INFECTION 

In this section, the basic SLACPV mathematical model for the effect of HBV on vertical 

transmission and migration factor is proposed and analyzed. Total population, susceptible population 

𝑆(𝑡), latent population 𝐿(𝑡), acute population 𝐴(𝑡), carrier population 𝐶(𝑡), protective rescued 𝑃(𝑡) and 

vaccinated population 𝑉(𝑡) is divided into six mutually exclusive parts. 

The parameters provided constitute elements of a mathematical model describing the transmission 

dynamics of Hepatitis-B virus (HBV). 𝛬 denotes the recruitment rate of individuals into the susceptible 

population, while 𝜍 represents the rate of immunity decrease due to vaccination. µ stands for the natural 

mortality rate, and 𝛽 signifies the transmission rate. 𝜙 indicates reduced transmission compared to acute 

infection, and 𝜔 represents the rate of babies born infected from mothers. 𝜗 signifies the proportion of 

infected mothers transmitting HBV to their offspring. 𝜛 is the vaccination rate, 𝜉 is the recovery rate 

from acute infection, and 𝑓 is the recovery rate of carriers. 𝑝 denotes the transition rate from acute to 

carrier status, and 𝜇𝑜 is the HBV-related death rate. 𝑔 represents the rate of new individuals joining the 

community through migration. 𝑏 signifies the transition rate from susceptible to latent infection, 𝑙 is the 

vaccine leakage rate, and 𝑘 is the transition rate from latent to acute infection. ℘ is the rate of babies 

born infected. These parameters collectively depict the interplay of various processes in HBV 

transmission dynamics, aiding in understanding and predicting disease spread and control measures. 

The same situation is represented by a schematic diagram and stated in Section 2. The equation system 

of the given schematic diagram is given in Eq. (1)  

Hence, by considering this assumption the rate of change of susceptible, latent, acute, carrier, 

protected infected (protective rescued) and vaccinated population is described in the following nonlinear 

system of differential equations. 

  

Figure 1  

Schematic diagram of the SLACPV model. 

𝑑𝑆

𝑑𝑡
 =  𝛬𝜔(1 − 𝜗𝐴) − (𝑏𝐿)𝑆 + 𝜍𝑉 − (µ + 𝛽𝐴 + 𝜙𝛽𝐶 + 𝜛)𝑆 + 𝑔 − 𝛬℘𝐴, 

𝑑𝐿

𝑑𝑡
 =  (𝛽𝐴 + 𝜙𝛽𝐶)𝑆 − µ𝐿 + (𝑏𝐿)𝑆 − 𝑘𝐿, 

𝑑𝐴

𝑑𝑡
 =  𝛬𝜔𝜗𝐴 − µ𝐴 − 𝜇𝑜𝐴 − 𝑝𝐴 − 𝜉𝐴 + 𝑘𝐿 + ℓ𝑉 + 𝛬℘𝐴, 

(1) 
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𝑑𝐶

𝑑𝑡
 =  𝑝𝐴 − 𝑓𝐶 − µ𝐶, 

𝑑𝑃

𝑑𝑡
 =  𝜉𝐴 − µ𝑃 + 𝑓𝐶, 

𝑑𝑉

𝑑𝑡
 =  𝛬(1 − 𝜔) + 𝜛𝑆 − µ𝑉 − 𝜍𝑉 − ℓ𝑉, 

(1) 

with initial conditions 𝑆(0) =  𝑆0  ≥ 0, 𝐿(0) =  𝐿0  ≥ 0, 𝐴(0) =  𝐴0  ≥ 0, 𝐶(0) =  𝐶0  ≥ 0,

𝑃(0)  =  𝑃 0 ≥ 0, 𝑉 (0)  =  𝑉0  ≥ 0. The used model parameters and their biological description are 

listed in Table 1. 

QUALITATIVE ANALYSIS OF THE MODEL 

Equilibria of the Model 

In this subsection, we evaluate the disease-free equilibrium (DFE) and its stability to study the 

steady-state behaviour of the model constructed for the HBV disease model. In order to achieve this, we 

reconsider the following system of equations: 

𝛬𝜔(1 − 𝜗𝐴) − (𝑏𝐿)𝑆 + 𝜍𝑉 − (µ + 𝛽𝐴 + 𝜙𝛽𝐶 + 𝜛)𝑆 + 𝑔 − 𝛬℘𝐴 = 0, 

(𝛽𝐴 + 𝜙𝛽𝐶)𝑆 − µ𝐿 + (𝑏𝐿)𝑆 − 𝑘𝐿 = 0, 

𝛬𝜔𝜗𝐴 − µ𝐴 − 𝜇𝑜𝐴 − 𝑝𝐴 − 𝜉𝐴 + 𝑘𝐿 + ℓ𝑉 + 𝛬℘𝐴 = 0, 

𝑝𝐴 − 𝑓𝐶 − µ𝐶 = 0, 

𝜉𝐴 − µ𝑃 + 𝑓𝐶 = 0, 

𝛬(1 − 𝜔) + 𝜛𝑆 − µ𝑉 − 𝜍𝑉 − ℓ𝑉 = 0, 

(2) 

By solving the last equation, we get the following DFE point: 

𝛹0 = (𝑆0, 𝐿0, 𝐴0, 𝐶0, 𝑃0, 𝑉0) = (𝑆0, 0, 0, 0, 0, 0), (3) 

where 

𝑆0 =
𝛬𝜔 + 𝑔

µ + 𝜛
 

or 

𝑆0 =
𝛬(𝜔 − 1)

𝜛
. 

NUMERICAL RESULT AND DISCUSSION 

In this study, we want to examine the effect of HBV on the course of the disease by establishing 

a new model that takes into account the vertical transmission and migration parameters. For this, we are 

building a mathematical model with 6 compartments: susceptible population 𝑆(𝑡), latent population 

𝐿(𝑡), acute population 𝐴(𝑡), carrier population 𝐶(𝑡), protected infected (protective rescued) 𝑃(𝑡) and 

vaccinated population 𝑉(𝑡). We use the 4𝑡ℎ order Runge-Kutta method to obtain numerical solutions 

of the model within these compartments. In general, m.-order Runge-Kutta method has the following 

advantages: 

• To calculate the approximate value of the 𝑌𝑖+1 solution, it is found by calculating only the 𝑌𝑖 

value. That’s why the one-step method is the most important method of its kind. 
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• When m = 4, it turns into the method called classical Runge Kutta. This method is the most used 

method [51]. 

After performing the numerical solutions of the relevant model, we obtain some results. We use 

the literature [52, 53] for some of our parameters used in the model and estimate many of them. Our 

parameter estimates are shown in Table 1: 

Table 1  

Parameters used for the HBV model. 

Par. Biological description Value Sources 

𝛬 Recruitment rate 0.22996 fitted 

𝜍 Rate of decrease in immunity due to the effect of the vaccine 0.1546 fitted 

µ Natural mortality rate 3.4857e-05 [52] 

𝛽 Transmission rate 0.001 fitted 

𝜙 Reduced transmission rate relative to acute 0.21 fitted 

𝜔 The rate of births without successful insemination 

(babies born sick after insemination from mothers) 

0.003 fitted 

𝜗 Infected rate of mothers with HBV acute virus 0.02456 fitted 

𝜛 Vaccination rate 0.21 fitted 

𝜉 Recovery rate of individuals with acute infection 0.17 fitted 

𝑓 Recovery rate of individuals in the carrier class 0.2124 fitted 

𝑝 Transition rate from Acute to Carrier 0.1349 fitted 

𝜇𝑜 Death rate from HBV disease 0.1025 fitted 

𝑔 Rate of community coming from outside 0.3899 fitted 

𝑏 Transition rate from susceptible to latent 0.002 fitted 

ℓ Vaccine leakage rate 0.1356 fitted 

𝑘 Transition rate from latent to acute 0.1174 fitted 

℘ Rate of babies born infected 0.2438 fitted 

𝑆(0) Initial Susceptible population 6000 fitted 

𝐿(0) Initial Latent population 500 fitted 

𝐴(0) Initial Acute population 1497 [53] 

𝐶(0) Initial Carrier population 100 fitted 

𝑃(0) Initial protected infected population 150 fitted 

𝑉(0) Initial Vaccinated population 300 fitted 

In this investigation we have performed all numerical results and finding by benefiting from 

Matlab R2023b Software. Below, we examine the development and change of some populations in our 

model over time. In Figure 2, we examine the change and development of acute individuals, vaccinated 

individuals and recovered individuals over time. 

In Figure 3, we examine the effect of individuals in the latent phase on acute individuals and 

recovering individuals. In addition, on these populations, the mortality rate from HBV disease in Figure 

4, the recovery rate of individuals with acute infection in Figure 5, the transmission rate in Figure 6 and 

in Figure 7 we also examine the change in vaccination rate over time. 

It has been observed that when the number of vaccinated individuals is kept at a minimum level, 

the number of infected individuals decreases, and the number of protected infected individuals reaches 

a maximum. 

The Protected Infected population increased as a result of the decrease in Latent and Acute 

individuals towards the end of the process. This positively affected the course of the disease. 
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Figure 2 

Status of Acute, Vaccination, Protected Infected populations relative to each other. 

 

Figure 3 

Latent Status of Latent, Acute, Protected Infected populations relative to each other. 

 

Figure 4 

The mortality rate from HBV disease. 

The graph in Figure 4 depicts the mortality rates attributable to HBV (Hepatitis B Virus) over a 

specific period of time (30 years). Trends in the graph indicate the change in death rates from HBV 
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disease over time. The reasons for sudden decreases or fluctuations in a certain period in the graph are; 

epidemics, changes in health policies or difficulties in access. A clear downward trend is observed in 

the death rates caused by HBV disease over time. This decline is generally due to factors such as the 

expansion of vaccination programs, improvements in treatment options, and effective implementation 

of health education.  

The graph in Figure 5 shows the recovery rates of individuals with acute infectious disease over 

30 years. Examining the changes in the trends in the graph over time is important for the management 

and treatment of the disease. It is necessary to determine the underlying reasons for a significant increase 

or decrease in recovery rates in a certain period. These reasons include factors such as the nature of the 

disease, treatment methods used, access to healthcare and patients’ lifestyle. Additionally, information 

can be obtained about the change in recovery rates by demographic characteristics by examining the 

change in recovery rates. Evaluating the impact of factors such as age, gender, geographical location or 

underlying health condition on recovery rates is important to understand how the disease is affected 

among different groups. There is a clear trend in the graph, so appropriate strategies are being developed 

to understand the reasons for this trend and increase recovery rates. This is a critical step for improving 

health policies and health services and improving patients’ quality of life. 

 

Figure 5 

The recovery rate of individuals with acute infection disease. 

 

Figure 6 

The transmission rate of the HBV virus. 

The graph in Figure 6 depicts the change in the transmission rate of the HBV virus over a certain 
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period of time. An important point is that the continuous, graphical changes increase over time. For 

example, it is necessary to determine the underlying causes of sudden increases or decreases in 

transactions over a certain period. These include factors such as epidemics, changes in health policies, 

changes in the development of society, or a new treatment or vaccine. In addition, a clear formation is 

seen in the graph, and it is necessary to examine how the events progress. It should also be determined 

how long the increases or decreases continue over 30 years and what factors they depend on. The results 

of such analyzes should evaluate health policies and interventions. Finally, appropriate strategies are 

developed to understand the reasons for this trend and prevent similar situations from occurring in the 

future. These strategies control the spread of the disease. 

 
Figure 7 

Rate of babies born infected. 

The graph in Figure 7 shows the change in the rate of infected babies over time over 30 years. It 

is important to know the reasons behind the increase or decrease in the rates of babies born in certain 

periods of these data. The reason for the increase at the beginning of this process is due to the high 

vertical transmission rate of HBV. In the middle of the process, a clear intersection can be seen on the 

graph. The reason for this intersection is that the vertical transmission of HBV is under control. After 

this point, a significant decrease is observed in the graph. Appropriate strategies are developed to 

understand the reasons for this trend and prevent similar situations from occurring in the future. As a 

result of these strategies, vertical transmission of the disease is controlled. As a result of these analyses, 

the number of healthy babies is expected to increase. 

 
Figure 8 

Acute population dynamics according to various values of k. 
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CONCLUSION 

In this paper, we have developed a new Hepatitis-B mathematical model containing a vertical 

transmission from mothers to newborn babies. Also, we have evaluated the disease-free equilibrium 

point. In the numerical simulation section of the article presents the results obtained throughout our 

study process. The effectiveness of this model and its performance by developing a new expanding 

structure that models Hepatitis-B by selecting the appropriate effect for the model. In the modelling of 

the results we obtained, it is seen that the course of Hepatitis-B disease is modelled by predicting it and 

predictions about its process are obtained. Non-negative solutions have been obtained to ensure 

biological augmentation of our system of equations of the model. 
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