
Journal of Metaverse
Research Article

Received: 2024-05-25 | Reviewing: 2024-06-14& 2024-10-30 | Accepted: 2024-10-31 | Online: 2024-11-02 | Issue Date: 2024-12-31

Year:2024, Volume:4, Issue:2, Pages:126-137, Doi: 10.57019/jmv.1489060

This work is licensed under a Creative Commons Attribution 4.0 International License.

126

Cite (APA) : Zaazaa, O., El Bakkali, H. (2024). SmartLLMSentry: A Comprehensive LLM Based Smart Contract Vulnerability Detection Framework. Journal

of Metaverse. 4(2), 126-137. Doi: 10.57019/jmv.1489060

SmartLLMSentry: A Comprehensive LLM Based

Smart Contract Vulnerability Detection Framework
Oualid ZAAZAA

Mohammed V University in Rabat
Morocco

oualid_zaazaa@um5.ac.ma

0000-0003-4864-2486

 (Corresponding Author)

Hanan EL BAKKALİ

Mohammed V University in Rabat
Morocco

hanan.elbakkali@um5.ac.ma

0000-0003-2941-3768

Abstract— Smart contracts are essential for managing digital

assets in blockchain networks, highlighting the need for effective

security measures. This paper introduces SmartLLMSentry, a

novel framework that leverages large language models (LLMs),

specifically ChatGPT with in-context training, to advance smart

contract vulnerability detection. Traditional rule-based

frameworks have limitations in integrating new detection rules

efficiently. In contrast, SmartLLMSentry utilizes LLMs to

streamline this process. We created a specialized dataset of five

randomly selected vulnerabilities for model training and

evaluation. Our results show an exact match accuracy of 91.1%

with sufficient data, although GPT-4 demonstrated reduced

performance compared to GPT-3 in rule generation. This study

illustrates that SmartLLMSentry significantly enhances the

speed and accuracy of vulnerability detection through LLM-

driven rule integration, offering a new approach to improving

Blockchain security and addressing previously underexplored

vulnerabilities in smart contracts.

Keywords— Smart contract, Vulnerability, Software security,

Blockchain, Large Language Models

I. INTRODUCTION

In the rapidly evolving digital ecosystem, smart contracts

have emerged as a transformative technology, fundamentally

altering how agreements are executed and enforced. Embedded

within blockchain technology, these self-executing contracts

automatically carry out the terms of an agreement once

predetermined conditions are met. This automation not only

streamlines processes but also significantly reduces the need

for intermediaries, fostering a more direct and efficient

transactional environment.

The burgeoning reliance on these technologies underscores

the critical need for robust security measures. Smart contracts

are not impervious to vulnerabilities; their open-source nature

and the immutability of the blockchain make them susceptible

to various types of attacks, which could lead to significant

financial and reputational damage [1]. Common vulnerabilities

include reentrancy attacks [2], transaction-ordering

dependence [3], timestamp dependence [3], and several others

[3] that can compromise the intended functionality and security

of these applications [4].

The increasing complexity and deployment of smart

contracts across various industries [5] have highlighted the
necessity to automate the process of finding vulnerabilities. As

these contracts become more intricate, manually identifying

potential security risks becomes less feasible and more error-

prone [6]. This recognition has spurred interest in the research

community, leading to significant efforts toward developing

automated tools that can efficiently and accurately detect

vulnerabilities at scale. The drive for automation is not merely

a matter of convenience but a critical requirement to maintain

the integrity and trustworthiness of blockchain applications. As

the adoption of smart contracts continues to grow, fueled by

their potential to revolutionize traditional business models, the

development of advanced automated vulnerability detection

frameworks becomes imperative to ensure their safe operation.

In response to the need for more effective security

measures, various techniques have been employed to detect

vulnerabilities in smart contracts. Traditional methods

primarily involve static analysis, which analyzes the contract's

code without executing it. However, those frameworks

operates by comparing code against a set of predefined rules

that describe known vulnerabilities. However, this approach

has inherent limitations, primarily because it relies heavily on

the accurate definition of these rules by human experts. As a

result, this technique inherently depends on human experts to

continually define new rules for newly detected vulnerabilities.

The reliance on expert input not only limits the speed at which
new threats can be addressed but also underscores a

fundamental constraint: the system's efficacy is tied to the

timely and accurate update of its rule set. Without constant

refinement and expansion of these rules, the framework risks

missing novel vulnerabilities, highlighting the critical need for

ongoing expert involvement to maintain its effectiveness.

In recent years, the capabilities of LLMs such as GPT have

garnered significant interest due to their impressive

computational intelligence. These models are developed by

training on vast datasets and require substantial computational

resources. With billions of parameters, LLMs can discern
intricate patterns and demonstrate a level of general

intelligence across a range of tasks previously considered

challenging for AI to achieve in the short term. A notable

instance of this technology is ChatGPT, a sophisticated chatbot

powered by openAI [7]. It engages users in human-like

interactions, providing responses across various domains.

Given these advancements, recent research has explored the

potential of using ChatGPT to enhance the detection of

software vulnerabilities, suggesting a new application area

where LLMs could significantly impact [8, 9].

Following the same logic and to solve rule based

frameworks limitations, this paper launches a study on the
performance of rule generation using an in-context learning

Journal of Metaverse
 Zaazaa & El Bakkali

This work is licensed under a Creative Commons Attribution 4.0 International License.

127

version of ChatGPT with different prompt designs. gpt-4o-

mini-2024-07-18 is the newest version of ChatGPT when we

conduct this study [10].

The contributions of this work:

• We have developed an automated system for rule creation

within, which eliminates the need for continual expert

intervention and accelerates the integration of new rules.

This innovation enhances the responsiveness of the system

to emerging vulnerabilities and streamlines the update

process.

• In our research, we have identified and analyzed three new

common root causes for vulnerabilities which, to the best

of our knowledge, have not previously been explored in the

scientific literature. We provide a detailed examination of

their root causes, contributing valuable insights into the

underlying issues that lead to these security flaws.

• We have built a Dataset of Five different smart contract

vulnerabilities that could be used by research to test or train

their models.

• We have successfully created new rules into
SmartLLMSentry Analyzer component that extend its

capability to detect three additional types of vulnerabilities.

This expansion not only improves the comprehensiveness

of SmartLLMSentry's security measures but also increases

its utility in safeguarding smart contracts.

• We conducted a comprehensive study on the effectiveness

of various versions of GPT models in detecting

vulnerabilities within smart contracts. This investigation

helps in understanding which model iterations perform best

in this specific context and guides future implementations

of LLM technologies in security applications.

• We explored the impact of dataset size on the performance

of GPT models specifically in the context of generating

rules for vulnerability detection. Our findings reveal

significant insights into how the quantity and quality of

training data influence the accuracy and reliability of the

rules produced.

• Finally, we provide a detailed analysis of the advantages

and limitations of employing ChatGPT for detecting

vulnerabilities in smart contracts. This analysis offers a

balanced view, highlighting where ChatGPT excels and

where it may require further tuning or supplementation to

meet the demands of this application.

This paper is organized as follows: Section 2 provides a

review of related work in both traditional software and smart

contract security, including the application of LLMs in

vulnerability detection. This section also outlines the five

specific vulnerabilities targeted in our study and examines their

common root causes. Section 3 details the data collection and

preprocessing methods employed in the research. Following

this, Section 4 describes the prompt engineering process,

including the various prompts utilized during experimentation.

Section 5 presents and discusses the research findings, while

Section 6 addresses potential threats to validity. Finally, the

paper concludes with a summary of the results and suggestions

for future research.

II. RELATED WORK

A. Static analysis techniques

Due to both their immutability feature and the managed

sensitive data, smart contract vulnerabilities should be checked

and fixed before a production deployment. The rise in their

complexity make manual vulnerability detection of smart

contract not efficient and require to be completed by an
automated scan [11] Therefore, multiple previous researches

[12, 13, 14, 15, 16] have been performed to build frameworks

that automatically discover those vulnerabilities in the

development phase. Feist et al, [17] have built slither, a static

smart contract analyzer that is capable of detecting

vulnerabilities like Shadowing [3], Uninitialized variables [3],

Reentrancy [18] and a variety of other known security issues,

such as suicidal contracts, locked ether, or arbitrary sending of

ether. Grech et al., built MadMax [19], a static analysis

framework capable of detecting out-of-gaz related

vulnerabilities [3]. Nguyen et al., in 2020 have built sFuzz [20]
a dynamic analysis framework capable of detecting

vulnerabilities like Reentrancy, Timestamp Dependency [3],

Block Number Dependency [3], Integer Overflow [3], and

others. Ren et al., [21] have also built a static vulnerability

detection framework called Solidifier capable of detecting

vulnerabilities like, Reentrancy, Timestamp Dependency,

Front Running, Integer Overflow, and others.

However, a significant limitation of those frameworks lies

in the manual creation of rules for vulnerability detection. This

manual process can be time-consuming and prone to human

error, limiting the framework’s ability to adapt to new and

evolving threats. In this paper, we propose SmartLLMSentry
to solve those limitations using LLMs. By leveraging LLMs,

we aim to automate the rule generation process, thereby

improving the efficiency and accuracy in detecting a broader

range of vulnerabilities. This approach not only addresses the

current limitations of static analyzers but also enhances their

adaptability to emerging security threats in smart contracts.

B. Machine learning and LLMs

The emergence of machine learning and its proven success

across various domains has prompted researchers to apply

these techniques to the detection of smart contract

vulnerabilities. One of those researches was a framework built
by Zhipeng et al, called SMARTEMBED [22], which is a web

service tool for Solidity developers. SMARTEMBED uses

code embeddings and similarity checking to detect repetitive

code and clone-related bugs. Applied to over 22,000 Solidity

contracts, it identified a 90% code clone ratio and detected 194

clone-related bugs with 96% precision. Yu et al. developed

DeeSCVHunter [23], a modular framework for detecting smart

contract vulnerabilities, introducing the concept of

Vulnerability Candidate Slicing (VCS) which enriches

semantic and syntactic features to enhance deep learning

model performance. However, DeeSCVHunter is limited to

detecting re-entrency and timestamp vulnerabilities only. Wu
et al. [24] introduced a smart contract representation method

based on key data flow graph information to capture essential

Journal of Metaverse
Zaazaa & El Bakkali

This work is licensed under a Creative Commons Attribution 4.0 International License.

128

features for vulnerability detection while mitigating overfitting

during training. They proposed a tool named Peculiar, which

enhances detection performance by utilizing critical data flow

graphs. However, the construction of these graphs is complex,

and Peculiar's detection capabilities are limited to identifying

reentry vulnerabilities in smart contracts. Another research

performed by Nami et al, [25] resulted in building an effective

framework against code rewriting attacks. Eth2vec is a

machine learning-based static analysis tool, contrarely to the
other models Eth2vec works with Ethereum Virtual Machine

(EVM) bytecodes. Despite its strengths, Eth2vec requires

manually crafted vulnerability features to maintain detection

accuracy, which can be labor-intensive and limits its

adaptability to new types of vulnerabilities.

Lately, AI has undergone a revolution thanks to LLMs,

which have demonstrated extraordinary skill in a variety of

tasks [26, 27, 28]. LLMs are founded on the principle of

language modeling (LM), which involves modeling the

generative likelihood of word sequences to predict future

tokens. Unlike traditional LM approaches, LLMs are trained
on vast datasets using powerful computational resources. Their

versatility and adaptability are attributed to their billion-scale

parameters [29], a level of complexity and scale unprecedented

in previous models. This extensive parameterization allows

LLMs to achieve remarkable performance across a wide range

of language tasks. The most popular LLMs to the date of

writing this paper are OpenAI’s GPT [7, 30], Gemini [31] and

Claude [32]. Some of them provide an API access to finetune

their model, while others do not [33]. Many recent researchs

have used the LLM technology to automate the process of

vulnerability detection in softwares.

LLMs have been increasingly utilized in vulnerability
detection. Sihao et al. [34] provide an in-depth analysis of

using LLMs, such as GPT-4, to identify vulnerabilities in smart

contracts, emphasizing the challenge of balancing accurate

vulnerability detection with minimizing false positives. Their

empirical research demonstrates that increased randomness in

responses enhances the likelihood of correct detection but also

raises the incidence of false positives. To mitigate this issue,

the study introduces GPTLens, an adversarial framework that

divides the detection process into two phases: generation and

discrimination. In this framework, the LLM functions both as

an auditor and a critic. This dual-role approach, designed to
expand the scope of vulnerability detection while reducing

inaccuracies, significantly outperforms traditional methods,

establishing GPTLens as a versatile LLM-based solution that

does not require specialized expertise in smart contracts.

Additionally, LLM4Vuln [35] conducts a more detailed study

aimed at decoupling LLMs' vulnerability reasoning

capabilities from their other functionalities, yielding promising

results in the application of these models for vulnerability

assessment.

However, Static algorithm-based detectors offer significant

advantages in terms of deterministic and consistent results,

efficiency, and transparency. Unlike LLM-based analyzers,
static detectors produce consistent outputs for the same input,

ensuring reliability in critical environments. They are also

more efficient, requiring fewer computational resources,

making them faster and more cost-effective to operate.

Additionally, their decision-making process is transparent and

interpretable, as they rely on predefined rules and patterns.

This clarity allows developers to easily understand why a

particular vulnerability was detected, simplifying the

debugging process and enabling quicker remediation of

identified issues. Despite all those advantages, static analyzers

like any algorithm based technology suffer from a key

limitation related to depending on expert knowledge to create

detection rules [36]. Therefore, to avoid this dependency we
use LLMs to generate the right algorithm to detect known

vulnerabilities and enhance SmartLLMSentry framework

detectors integration.

C. Prompt Engineering for In-Context Learning

In-Context Learning (ICL) is a method by which a pre-

trained model, like a LLM, can perform new tasks without

needing additional training or fine-tuning [37]. Instead, the

model is given a prompt that includes examples of the task it

needs to perform [37]. The model then uses these examples to

infer the task and generate appropriate responses [38]. This

method leverages the model's existing knowledge and patterns
learned during its training to adapt to new situations quickly

[38]. For instance, if the model is given a few examples of a

translation task within a prompt, it can learn to translate new

sentences by understanding the context provided [38].

Fine-tuning a model, on the other hand, involves adjusting

the model’s parameters using a new dataset specific to a

particular task [39]. This process requires additional training

and computational resources [40, 41]. Fine-tuning typically

allows for higher accuracy and better performance on the

specific task but requires more data and time [40]. It also makes

the model specialized, potentially reducing its generalization

ability to other tasks [41].

We chose In-Context Learning over fine-tuning due to its

flexibility and efficiency [38]. In-Context Learning allows us

to leverage the model's pre-existing knowledge without the

need for extensive retraining [38]. This is particularly useful

when quick adaptation to new tasks is needed or when the task-

specific data is limited. Additionally, ICL maintains the

model’s generalization capabilities, making it more versatile

across various tasks. The ability to handle multiple tasks

without requiring separate fine-tuned models simplifies

deployment and reduces the computational overhead [41],

making it a more practical choice in dynamic environments.

Prompting-based learning has emerged as a dominant

paradigm in the utilization of language models. Rather than

relying on objective engineering to adapt pre-trained LMs for

downstream tasks, prompting-based learning reconfigures

these tasks using a textual prompt, aligning them more closely

with the tasks the LM was initially trained to solve [42].

Research has demonstrated that well-structured prompts can

significantly enhance the performance of LLMs across a

variety of downstream tasks [43, 44]. Consequently, a diverse

array of prompt design strategies has been developed to further

optimize the effectiveness of this approach [42].

Concerning prompt formulation, certain studies have
focused on exploring the search for optimal discrete prompts

[45, 46, 47]. However, other researchs have used continuous

Journal of Metaverse
 Zaazaa & El Bakkali

This work is licensed under a Creative Commons Attribution 4.0 International License.

129

vector as prompts [48, 49, 50]. Several studies have

investigated the impact of prompts on generative models. For

instance, Liu et al. [51] examine how different prompts

influence the generation of visualizations by LLMs [52].

Additionally, Liu et al. [53] propose various prompt designs

tailored for two distinct code generation tasks. Recent research

has also begun to explore the potential of ChatGPT in the

context of software vulnerability detection. Cao et al. [8]

design enhanced prompt templates to leverage ChatGPT for
deep learning-based program repair. White et al. [54] explore

various prompt patterns aimed at improving requirements

elicitation, rapid prototyping, code quality, deployment, and

testing. However, to our best knowledge none of the research

have analyzed the performance of combining static analysis

and LLMs power to detect smart contract vulnerabilities.

D. Smart contract vulnerabilities

Effective detection of smart contract vulnerabilities relies

on understanding their common root causes. This section

explores the frequent origins of five vulnerabilities that will be

used as a training data or testing data. By examining these
underlying issues, we aim to enhance the application of LLM

prompt engineering in identifying vulnerabilities. Recognizing

these root causes will not only improve the accuracy of our

LLM-based detection methods but also contribute to the

development of more robust and secure smart contracts.

In our research, we opted for a random selection of targeted

vulnerabilities to ensure that our enhanced framework is tested

against a diverse and representative set of potential threats. The

primary objective was to avoid any bias that might arise from

deliberately selecting certain types of vulnerabilities, which

could skew the results and limit the generalizability of our

findings. By using a random selection process, we aimed to
simulate real-world conditions where vulnerabilities can vary

widely in nature and impact. This approach allows us to assess

the robustness and adaptability of our framework in generating

and integrating rules of a broad spectrum of security issues,

ultimately leading to more comprehensive and reliable

improvements. Moreover, randomness in selection helps in

avoiding overfitting our framework to a specific subset of

vulnerabilities, ensuring that the LLM ICL is applicable across

various scenarios rather than being tailored to specific cases.

1) Array length manipulation (SWE-161)

In older versions of Solidity, it was possible to manipulate

the "length" field of an array using standard arithmetic
operations, leading to serious vulnerabilities. Specifically, the

"length" field, which determines the size of the array, could be

decremented using code such as anArray.length--;. If this

operation caused the length to underflow, it would result in the

array size being set to the maximum possible integer value

[55].

This underflow vulnerability could have severe

consequences, potentially disabling a smart contract by

allowing unauthorized or unintended access to memory

locations far beyond the array's intended bounds. Such an issue

could be exploited to disrupt the contract's functionality or

even lead to the loss of critical data, as the contract might

behave unpredictably [3].

2) Message call with hardcoded gas amount (SWE-134)

Hard forks in blockchain networks can lead to significant

changes in the gas costs associated with executing Ethereum

Virtual Machine (EVM) instructions. These changes can

disrupt existing smart contracts that were deployed with the

assumption of stable gas prices. As a result, hardcoding a fixed

gas amount for specific contract operations can become a

critical vulnerability over time. If the gas cost of certain EVM

instructions increases due to a hard fork, the previously

sufficient hardcoded gas limits may no longer cover the

necessary execution, leading to a DoS condition [4].

This issue is particularly problematic because smart

contracts, once deployed, are immutable and cannot be easily

updated to accommodate new gas costs. For instance, the

implementation of EIP-1884, which increased the gas cost of

the SLOAD instruction [56], inadvertently disrupted the

functioning of many existing smart contracts [57]. These

contracts had hardcoded gas values based on the previous cost

of SLOAD, and the increase rendered them unable to execute

certain operations, leading to failures and potential

vulnerabilities. The potential for such disruptions underscores
the risks associated with hardcoding gas values in smart

contracts. As blockchain protocols evolve and undergo hard

forks, the assumptions underlying gas costs may no longer

hold, and contracts that depend on these assumptions can

become vulnerable to DoS attacks [3].

3) Transaction order dependence (SWE-114)

In blockchain networks where the validation order of

transactions is not strictly enforced, nodes often prioritize

transactions with higher fees to optimize their financial returns.

This practice introduces a potential security risk, particularly

for smart contracts that depend on the specific sequence in

which transactions are validated. When the correct functioning

of a smart contract is contingent on the order of transactions, a
race condition may arise, leading to what is known in the

blockchain domain as a Transaction Order Dependence (TOD)

vulnerability [3].

A TOD vulnerability occurs when the outcome of a smart

contract can be manipulated by altering the order of

transactions [58]. This type of vulnerability is particularly

relevant in scenarios where multiple transactions interact with

the same contract in a short time frame. An attacker can exploit

this by submitting a transaction with a higher fee to ensure it is

processed before others, thereby gaining an unfair advantage

or causing unintended consequences within the contract’s logic

[3, 58].

 A common example of this vulnerability is found in the use

of the approve() function in ERC-20 tokens. The approve()

function allows a token holder to grant another address

permission to spend a specified amount of their tokens [59].

However, if two transactions to modify the approved amount

are processed out of order, it can lead to inconsistencies in the

allowance, potentially enabling unauthorized spending or other

malicious activities. This example illustrates how TOD

vulnerabilities can compromise the security and expected

behavior of smart contracts, emphasizing the importance of

careful design and implementation to mitigate such risks.

Journal of Metaverse
Zaazaa & El Bakkali

This work is licensed under a Creative Commons Attribution 4.0 International License.

130

4) Locked Money (SWE-138)

Smart contracts that accept tokens or funds without

incorporating a mechanism for their retrieval are susceptible to

vulnerabilities that can lead to the permanent locking of assets.

This vulnerability is inherent in any contract that receives

tokens or funds but lacks a clear procedure for their return or

withdrawal. Such a design flaw can result in funds being

trapped indefinitely, as the contract does not provide a way to

reverse or access the deposited assets [3].

Furthermore, the use of the _mint() function to create and
allocate tokens to unknown addresses introduces additional

risks. If the recipient address does not support the specific type

of token being minted, the tokens may become inaccessible,

resulting in a loss of resources [59]. This issue arises because

the receiving address may lack the necessary functionality or

compatibility to handle the minted tokens effectively [59].

To address this problem, it is advisable to use a safeMint

function instead. The safeMint function incorporates

additional safety checks to ensure that the recipient address can

handle the token being minted [59, 60].

5) Improper handling of exceptions (SWE-140)

One of the common root causes of the SWE-140
vulnerability is the use of the send or transfer functions for

sending funds in smart contracts. These functions

automatically impose a limit of 2300 gas for their execution

[61], which acts as a safeguard against reentrancy attacks by

restricting the amount of code that can be executed in the

fallback function [3]. However, with the enhanced protections

now available in modern smart contracts, it is increasingly

considered safe to use the call function instead of send or

transfer. The call function does not impose the same gas limits,

allowing the receiving contract to execute more complex code

within its fallback function [62, 63].

III. METHOD

A. Framework design

The architecture of SmartLLMSentry is characterized by

2 main parts Figure 1. The first one is the framework core

which is also built of three interdependent components as

shown in Figure 1. The pre-compiler, compiler, and analyzer,

each contributing to a holistic and thorough smart contract

analysis pipeline. The pre-compiler module, positioned as the

inaugural stage, serves as the entry point for the analysis

process. It accommodates diverse inputs, allowing users to
specify either a GitHub URL or a smart contract address on

the Ethereum Blockchain. The flexibility in input sources

caters to various development and deployment scenarios.

Figure 1. SmartLLMSentry Framework Design

Upon receiving the input Figure 1, the pre-compiler

diligently undertakes the task of retrieving the specified

codebase. This not only includes the primary smart contract

but also extends to encompass all associated libraries,

packages, and relevant code dependencies. The

comprehensive inclusion of these elements ensures a self-

contained and cohesive environment for subsequent

compilation stages. The goal is to preemptively address any

potential compilation challenges arising from dependencies,

thereby enhancing the efficiency of the overall analysis

process.

Journal of Metaverse
 Zaazaa & El Bakkali

This work is licensed under a Creative Commons Attribution 4.0 International License.

131

Moving forward, the compiler Figure 1, as the core

processing unit, takes charge of the compilation process.

Beyond the conventional compilation task, it plays a pivotal

role in generating crucial artifacts that form the basis of

subsequent analyses. Specifically, the compiler extracts both

the Abstract Syntax Tree (AST) and the Control Flow Graph

(CFG) from the compiled code. These representations provide

a high-level abstraction of the smart contract's structure and

the sequence of control flow, offering valuable insights into

the code's intricacies.

The extracted AST and CFG, now enriched with semantic

information, are then seamlessly transmitted to the static

analyzer Figure 1. This component constitutes the heart of

SmartSentry, employing static analysis techniques such as

AST and control flow analysis and dataflow analysis. The

static analyzer meticulously examines the received artifacts,

conducting an in-depth analysis to detect potential security

vulnerabilities. It scrutinizes the code for patterns indicative

of common vulnerabilities, potential exploits, and deviations

from best coding practices. The analyzer has been
systematically designed with a focus on modularity, adhering

to a structured approach that isolates each vulnerability's

detection mechanism from others within SmartSentry. This

deliberate separation of detectors ensures a modular and

flexible architecture, facilitating seamless integration and

scalability for future enhancements.

The segmentation of vulnerability detectors Figure 1

allows for targeted improvements or the addition of new

detectors without necessitating extensive modifications to the

existing framework. This design rationale is founded on the

principle of providing an adaptable framework where

individuals can effortlessly construct detectors tailored to
specific vulnerabilities. Leveraging the built-in functionalities

for AST analysis or dataflow analysis, stakeholders have the

capability to construct specialized detectors in accordance

with the unique requirements of distinct vulnerabilities. This

modular design philosophy not only enhances the extensibility

and versatility of the framework but also fosters a

collaborative environment conducive to continual

advancements in smart contract security analysis.

The second part is responsible for a continues and

automated enhancement of the framework and it is also built

upon 3 other components connected directly to the Analyzer
Figure 1. Once a new vulnerability is detected in the wild, a

number of vulnerable code instances are sent to the Generator.

This component is responsible for creating detectors for

specific vulnerabilities. It receives a set of instances

representing a particular vulnerability and utilizes these

instances to generate a detector tailored to identify that

vulnerability. The generator is essential for producing initial

candidate detectors based on real-world data, ensuring that the

detectors are relevant and applicable to the specific

vulnerabilities being addressed.

Following the generation of detectors, the validator

assesses their performance by evaluating their accuracy using
the same instances provided to the generator Figure 1. The

validator is critical for ensuring the reliability of the detectors.

If a detector achieves an accuracy rate below 80%, it is

deemed inadequate and rejected. The generator is then tasked

with producing a new detector to meet the accuracy threshold.

This iterative validation process is vital for maintaining high-

quality detection capabilities and preventing false positives or

negatives.

Detectors that surpass the 80% accuracy threshold are

accepted by the validator and subsequently passed to the

integrator Figure 1. The integrator’s role is to incorporate

these validated detectors into the SmartSentry framework.
This component ensures that new, high-performing detectors

are seamlessly integrated into the existing system, enhancing

the overall capability of SmartSentry. To facilitate debugging

and maintenance, the integrated detectors are labeled with the

term "generated," indicating their origin and allowing for

easier identification and troubleshooting of any issues.

B. Prompt Design

This section outlines the prompts we have designed to

improve ChatGPT’s performance in detecting software

vulnerabilities. For clarity, we denote each prompt as P𝑥,

where 𝑥 represents the specific components of the prompt.

Each component 𝑥 will be detailed as we introduce and

explain the corresponding prompt design for the first time.

TABLE I. LIST OF USED TRAINING PROMPTS

Code Prompt

Pb Write the if condition to detect this instruction.

Prb You are a smart contract security auditor. write the if
condition to detect this instruction.

Prcb You are a smart contract security auditor. Using
Solidity-ast and typescript, write the if condition to
detect this instruction.
The output should only contain the if condition.

Prcbi You are a smart contract security auditor. Using
Solidity-ast and typescript, write the if condition to
detect this instruction.
The output should only contain the if condition.
Keep in mind that The following ast structures could
have different values depending on their nodeType:
Expression.nodeType
rightExpression.nodeType
leftExpression.nodeType
leftHandSide.nodeType
rightHandSide.nodeType

1) Basic Prompting

Firstly, to conduct vulnerability detection via ChatGPT, it

is essential to have a basic prompt (Pb). We use the following

basic prompt in this study, and we ask ChatGPT to generate

the require if condition that should be injected in

SmartLLMSentry Analyzer component to be able to detect

this vulnerability in any other source code.

Following OpenAI’s gpt-best-practices document [10], we

further propose the role-based basic prompt Prb to remind

ChatGPT of its job (i.e., smart contract vulnerability

detection) so that it focuses on the vulnerability issue:

As the generated if condition will be included into our

previously developed framework, we needed to give more

context information to gpt model to further optimize its output

and focus only on the if condition.

Journal of Metaverse
Zaazaa & El Bakkali

This work is licensed under a Creative Commons Attribution 4.0 International License.

132

2) Prompting with Auxiliary Information

In Solidity, the AST structure of multiple nodes can vary

significantly based on the nodeType. Through extensive

testing, we observed that ChatGPT does not consistently

adhere to the correct Solidity AST structure. Therefore, we

decided to incorporate additional information regarding the

Solidity AST structure into our prompt. Specifically, we

augmented the Prompt with auxiliary information about the

AST structure of Solidity source code to improve its accuracy

and reliability in generating and interpreting Solidity code.

IV. DATASET

To train our model and apply the prompts we developed,

we required a suitable dataset. However, given that smart

contract security is a relatively new field, and the

vulnerabilities we selected are largely unexplored, we initially

lacked the necessary data to train our model effectively. In this

section, we explain the various steps involved in building the

dataset and how we addressed the challenges encountered

during the process. This includes our strategies for data

collection, preprocessing, and augmentation, which were
essential to overcoming the limitations of data scarcity in this

emerging field.

A. Data Collection

The first step in developing our dataset involved collecting

initial data from multiple sources. We gathered raw data from

two primary repositories: GitHub and live smart contracts

available on Etherscan. GitHub provided a valuable source of

open-source smart contracts, while Etherscan offered insights

into deployed contracts on the Ethereum network. This

combination of sources allowed us to capture a diverse range

of smart contracts and associated vulnerabilities.

To enhance and diversify our dataset, we implemented an
additional strategy of injecting vulnerable code snippets into

forged functions. By incorporating known vulnerabilities into

these synthetic functions, we were able to artificially amplify

the dataset and simulate various scenarios of interest. This

approach not only increased the volume of data but also

ensured that our dataset covered a broader spectrum of

potential vulnerabilities, thereby enriching the training and

testing phases of our model.

The dual approach of sourcing real-world data and

augmenting it with synthetic examples enabled us to build a

more comprehensive and robust dataset, addressing the
challenges posed by the initial data scarcity in the field of smart

contract security.

B. Data Pre-processing

In this study, we collected and utilized a dataset to train and

evaluate our framework for detecting smart contract

vulnerabilities through LLM prompt engineering. The data

collection and preparation involved several critical steps to

ensure the quality and effectiveness of our model.

First, we removed duplicate code snippets from the dataset

to maintain its uniqueness and relevance. Given the constraints

on input length imposed by ChatGPT, we carefully managed

the size and format of our data. The dataset initially comprised

150 instances, which we divided into two subsets: 112

instances for training and 38 instances for testing. This

partition allowed us to build and refine our model while

reserving a separate set of data for rigorous evaluation.

Based on OpenAI's guidelines, which recommend a range

of 50 to 100 instances for effective ICL, we structured our

training data accordingly. We created two training groups: the

first group included 100 instances, used to train the model

initially. The second group comprised these 100 instances plus
an additional 12 instances, totaling 112 examples, to

investigate whether increasing the dataset size would improve

the model's performance. The data was formatted into JSON

Lines (JSONL) to ensure compatibility with ChatGPT’s input

requirements. This format facilitated efficient data processing

and integration with the model. By using this structured

approach, we trained our model on the prepared data and

evaluated its performance using the reserved test set.

V. EXPERIMENTATION AND RESULTS DESCUSSION

In this section, we report and analyze the experimental

results inorder to answer the following research questions

(RQ):

RQ1: Can ChatGPT generate valid detection code for

specific vulnerabilities?

RQ2: How the amount of training data could affect the

effectiveness of the model?

RQ3: Which version of chatgpt is best suited for smart

contract vulnerability detection rule generation?

A. Experimental Settings

1) Finetunning Parameters

The ChatGPT fine-tuning platform provides several critical

parameters that can significantly influence the model's final

performance. Understanding and carefully configuring these
parameters is essential for optimizing the model for specific

tasks. The first parameter, Seed, is crucial for ensuring the

reproducibility of the fine-tuning process. By setting a specific

seed value, researchers can control the randomization involved

in training, allowing for consistent results across different runs.

The following tables present the different seeds used during

our experimentation to reproduce the same exact results.

TABLE II. SEEDS USED IN EACH TRAINING FOR DATASET SIZE

OF 100.
 Dataset size 100

 Pb Prb Prcb Prcbi

gpt3 184181018 1229186277 2050353472 1082851968

gpt4 1546849632 2143196420 1653381796 542758792

TABLE I. SEEDS USED IN EACH TRAINING FOR DATASET SIZE

OF 112

 Dataset size 112

 Pb Prb Prcb Prcbi

gpt3 317425969 1011665401 1553307650 294133873

gpt4 1692427035 1804209602 1109655604 956977286

Journal of Metaverse
 Zaazaa & El Bakkali

This work is licensed under a Creative Commons Attribution 4.0 International License.

133

The second parameter, Batch Size, determines the number

of training examples used in one iteration of the model's

learning process. A smaller batch size, enables the model to

update more frequently, which can be beneficial for tasks

requiring fine-grained adjustments. However, it also demands

more computational resources and time. The third parameter,

Learning Rate Multiplier, is a scaling factor applied to the

base learning rate. This multiplier adjusts the speed at which

the model learns during training. A higher learning rate
multiplier, allows the model to converge more quickly, but it

also risks overshooting the optimal solution, leading to

suboptimal performance. Lastly, the Number of Epochs

represents the total number of times the model will cycle

through the entire training dataset. Setting the number of

epochs to higher value indicates that the model will undergo

multiple training cycles, helping it generalize better by

repeatedly learning from the dataset.

Initial experiments indicate that the optimal configuration

for our use case includes setting the number of epochs to 3, the

batch size to 1, and the learning rate multiplier to 2. This
configuration has shown to produce the best results in terms of

model performance and accuracy in our specific application.

2) Used GPT versions

In our study, we have compared ChatGPT models

effectiveness:

• gpt-3.5-turbo-1106

• gpt-4o-mini-2024-07-18

The choice of gpt models comes from the a scientific

research performed by Wenpin et al. [64] that has clearly

shown that Chatgpt outperform all the existing LLM models

both opensource and closed source solutions in code

generation.

3) Evaluation Metrics

To evaluate the effectiveness of our LLM models, we will

use the Exact Match (EM), which is a commonly used metric

to evaluate the effectiveness of an LLM model in generating

valid code. However, we define the Exact match of two code

snippet as the situation where both code has the exact same

logic or the exact same syntax.

Exact Match (EM) =
Number of Exact Matches

Total Number of Examples
x100

Number of Exact Matches: Count the number of

generated code snippets that exactly match the expected

output code snippets.

Total Number of Examples: The total number of code

snippets evaluated.

The total number of examples in our experimentation test

inputs is 38.

Here are the results of our experimentations:

Figure 1. EM of both trained models with different Prompts

and 100 dataset inputs.

Figure 2. EM of both trained models with different Prompts

and 112 dataset inputs.

The results presented in Figures 2 and 3 illustrate the

performance of GPT-3 and GPT-4 in terms of EM accuracy

across different dataset sizes and prompt types. In Figure 2,
which evaluates the models with a dataset of 100 instances,

GPT-3 achieved an EM score of 36.8% for prompt type Pb,

47.4% for Prb, 68.4% for Prcb, and 89.5% for Prcbi. In

contrast, GPT-4's EM scores were lower, with 42.1% for Pb,

23.7% for Prb, 57.9% for Prcb, and 44.7% for Prcbi.

Figure 3 shows the results for a larger dataset of 112

instances. GPT-3's performance improved significantly,

achieving EM scores of 63.2% for Pb, 65.8% for Prb, 81.6%

for Prcb, and 92.1% for Prcbi. Conversely, GPT-4's

performance was notably poorer, with EM scores of 31.6% for

Pb, 28.9% for Prb, 28.9% for Prcb, and 39.5% for Prcbi.

B. Effectiveness of finetunned GPT models (RQ1)

The data reveal that GPT-3 consistently outperforms GPT-

4 across all prompt types and dataset sizes. Even with

additional training data, GPT-4's performance did not improve

and, in fact, declined, suggesting that simply increasing the

dataset size did not enhance its accuracy. Notably, GPT-4 did

outperform GPT-3 with a dataset of 100 instances and a basic

prompt. Nevertheless, under the specific experimental

conditions and dataset configurations employed, GPT-3

exhibited superior exact match accuracy compared to GPT-4.

This indicates that GPT-3 is more effective at leveraging

available data to produce accurate results, while GPT-4 may

Pb Prb Prcb Prcbi

gpt3 36.842 47.368 68.421 89.474

gpt4 42.105 23.684 57.895 44.736

0

20

40

60

80

100

gpt3 gpt4

Pb Prb Prcb Prcbi

gpt3 63.157 65.789 81.579 92.105

gpt4 31.579 28.947 28.947 39.473

0

20

40

60

80

100

gpt3 gpt4

Journal of Metaverse
Zaazaa & El Bakkali

This work is licensed under a Creative Commons Attribution 4.0 International License.

134

need further refinement or adjustment to improve its

performance.

C. The training data volum impact (RQ2)

The impact of increasing the training dataset on both GPT-

3 and GPT-4 models is evident from the data provided. With

a dataset of 100 instances, GPT-4 achieved higher EM

accuracy compared to GPT-3 for a basic prompt. However,

when the dataset size was increased to 112 instances, GPT-3's

EM scores improved significantly across all prompt types and
reached 92,1% EM, demonstrating its ability to effectively

utilize more data for enhanced accuracy. In contrast, GPT-4's

performance deteriorated with the larger dataset, as evidenced

by lower EM scores across all prompt types. This decline

suggests that simply increasing the dataset size did not benefit

GPT-4's performance and may have revealed or exacerbated

existing limitations within the model. These findings indicate

that while GPT-3 showed a positive correlation between

dataset size and performance, GPT-4's effectiveness was

negatively impacted by the additional data.

D. The most suitable version? (RQ3)

Based on the results obtained from our experimentation,

GPT-3 is the most suitable model for our use case, particularly

when additional data is available during the training phase. The

data demonstrate that GPT-3 consistently outperforms GPT-4

in terms of EM accuracy across various prompt types and

dataset sizes. With a larger dataset, GPT-3's performance

improved significantly, showcasing its ability to leverage

additional data effectively to enhance accuracy. In contrast,

GPT-4's performance declined with increased dataset size,

indicating that it may have limitations in handling larger

datasets or may require further optimization to achieve

comparable results.

Given these observations, GPT-3's superior performance

and its positive response to increased data make it a better fit

for scenarios where extensive training data can be utilized.

GPT-4, while initially promising, did not demonstrate the

same level of robustness or improvement with additional data,

making GPT-3 the preferred choice for our specific use case.

VI. THREATS OF VALIDITY

A. Version of ChatGPT

The results presented in this paper are based on

experiments conducted with two specific versions of ChatGPT.

Given that ChatGPT is an actively evolving platform, it is
important to acknowledge that the findings and conclusions

drawn here are limited to the performance characteristics of

these particular versions. As OpenAI continues to update and

refine ChatGPT, subsequent versions may exhibit different

behaviors, capabilities, or performance metrics. Therefore, the

conclusions drawn from this study might not be applicable to

future iterations of the model or to older versions that were not

assessed in our experiments.

Updates to the model may include improvements in

architecture, training techniques, or data handling, which could

significantly alter performance outcomes. Consequently,

findings relevant to the versions tested in this study may

become outdated or inaccurate as newer versions are released.

Similarly, insights derived from the tested versions might not

fully account for changes that could affect the model’s

effectiveness in different contexts or applications.

B. Different Solidity parser library

Another significant threat to the validity of this study arises

from the reliance on a specific Solidity parser library for

analyzing smart contracts. The choice of parser can

substantially influence the accuracy and completeness of the
contract analysis due to variations in the implementation and

features of different parser libraries.

In this study, we used a particular Solidity parser library

called “solidity-ast-0.4.52” to process and analyze the smart

contracts. However, there are several other available Solidity

parser libraries, each with its own methodologies for parsing

and interpreting Solidity code. These libraries may differ in

their handling of syntax, support for various Solidity versions,

and the extent of features they offer. Consequently, the results

obtained using one parser might not be directly comparable to

those obtained with another.

C. Vulnerability Types

A notable threat to the validity of our results is the limited

focus on only five specific types of vulnerabilities, chosen

randomly. While these types provided valuable insights into

ChatGPT's performance, the model's effectiveness might vary

with different vulnerabilities. Given the diverse nature of smart

contract vulnerabilities, including reentrancy attacks, integer

overflows, and other issues, ChatGPT's performance could

differ significantly when applied to other types not covered in

this study. The model may show better results with

vulnerabilities that align more closely with its training data or

prompt design. Conversely, novel or complex vulnerabilities
could present challenges not captured by our selected types.

Therefore, while our findings are informative, future research

should explore ChatGPT's performance with a broader range

of vulnerabilities to assess its robustness and adaptability

across different types.

VII. CONCLUSION

LLMs with advanced capabilities have made substantial

impacts across various domains. This paper investigates the

effectiveness of prompt-enhanced ChatGPT for detecting

vulnerabilities in smart contracts, a crucial aspect for ensuring

blockchain security and fostering trust. We developed several
specialized prompts for vulnerability detection, incorporating

additional contextual information, and focused on five types of

vulnerabilities that, to our knowledge, had not been previously

explored in the scientific literature. These vulnerabilities were

selected randomly to minimize bias, and a dataset was

constructed for both training and testing the model.

Our findings indicate that the trained model achieves a high

accuracy rate of 91.1% in exact match scenarios when

provided with sufficient information. However, the results also

reveal that GPT-4 is less effective for our specific use case

compared to GPT-3, with GPT-4 showing reduced accuracy in

generating detection rules, even with an increased dataset.

Journal of Metaverse
 Zaazaa & El Bakkali

This work is licensed under a Creative Commons Attribution 4.0 International License.

135

While the results are promising and demonstrate the

potential of LLMs and in-context training for vulnerability

detection, further improvements are necessary. The current

model's generated rules are not fully automated in the

framework and still require some expert intervention. Future

research will aim to explore additional types of vulnerabilities

to further evaluate and enhance the model's effectiveness in

diverse contexts.

ACKNOWLEDGEMENT

None.

FUNDING

This research did not receive any outside funding or

support. The authors report no involvement in the research by

the sponsor that could have influenced the outcome of this

work.

AUTHORS` CONTRIBUTIONS

All authors have participated in drafting the manuscript. All

authors read and approved the final version of the manuscript.

All authors contributed equally to the manuscript and read and

approved the final version of the manuscript.

CONFLICT OF INTEREST

The authors certify that there is no conflict of interest with

any financial organization regarding the material discussed in

the manuscript.

DATA AVAILABILITY

The data supporting the findings of this study are available

upon request from the authors.

REFERENCES

[1] Shabani Baghani, A., Rahimpour, S., & Khabbazian, M. (2022). The

DAO Induction Attack: Analysis and Countermeasure. IEEE Internet of

Things Journal, 9(7), 4875–4887. IEEE Internet of Things Journal.

https://doi.org/10.1109/JIOT.2021.3108154

[2] Fatima Samreen, N., & Alalfi, M. H. (2020). Reentrancy Vulnerability

Identification in Ethereum Smart Contracts. 2020 IEEE International

Workshop on Blockchain Oriented Software Engineering (IWBOSE) , 22–

29. https://doi.org/10.1109/IWBOSE50093.2020.9050260

[3] Zaazaa, O., & Bakkali, H. E. (n.d.). Unveiling the Landscape of Smart

Contract Vulnerabilities: A Detailed Examination and Codification of

Vulnerabilities in Prominent Blockchains.

[4] Matulevicius, N., & Cordeiro, L. C. (2021). Verifying Security

Vulnerabilities for Blockchain-based Smart Contracts. 2021 XI Brazilian

Symposium on Computing Systems Engineering (SBESC), 1–8.

https://doi.org/10.1109/SBESC53686.2021.9628229

[5] etherscan.io. (n.d.). Ethereum Daily Deployed Contracts Chart |

Etherscan. Ethereum (ETH) Blockchain Explorer. Retrieved July 22,

2024, from https://etherscan.io/chart/deployed-contracts

[6] Singh, N., Meherhomji, V., & Chandavarkar, B. R. (2020). Automated

versus Manual Approach of Web Application Penetration Testing. 2020

11th International Conference on Computing, Communication and

Networking Technologies (ICCCNT), 1–6.

[7] OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S.,

Avila, R., Babuschkin, I., Balaji, S., Balcom, V., Baltescu, P., Bao, H.,

Bavarian, M., Belgum, J., … Zoph, B. (2023). GPT-4 Technical Report

(arXiv:2303.08774). arXiv.

[8] Cao, J., Li, M., Wen, M., & Cheung, S. (2023). A study on Prompt

Design, Advantages and Limitations of ChatGPT for Deep Learning

Program Repair. Association for Computing Machinery, 1(1).

[9] Sobania, D., Briesch, M., Hanna, C., & Petke, J. (2023). An Analysis of

the Automatic Bug Fixing Performance of ChatGPT. 2023 IEEE/ACM

International Workshop on Automated Program Repair (APR) , 23–30.

https://doi.org/10.1109/APR59189.2023.00012

[10] OpenAI Platform. (n.d.). Retrieved June 11, 2024, from

https://platform.openai.com

[11] Austin, A., Holmgreen, C., & Williams, L. (2013). A comparison of the

efficiency and effectiveness of vulnerability discovery techniques.

Information and Software Technology, 55(7), 1279–1288.

https://doi.org/10.1016/j.infsof.2012.11.007

[12] Schneidewind, C., Grishchenko, I., Scherer, M., & Maffei, M. (2020).

eThor: Practical and Provably Sound Static Analysis of Ethereum Smart

Contracts. Proceedings of the 2020 ACM SIGSAC Conference on

Computer and Communications Security, 621–640.

https://doi.org/10.1145/3372297.3417250

[13] Nguyen, T. D., Pham, L. H., & Sun, J. (2021). SGUARD: Towards

Fixing Vulnerable Smart Contracts Automatically. 2021 IEEE

Symposium on Security and Privacy (SP), 1215–1229.

https://doi.org/10.1109/SP40001.2021.00057

[14] Wang, D., Jiang, B., & Chan, W. K. (2020). WANA: Symbolic Execution

of Wasm Bytecode for Cross-Platform Smart Contract Vulnerability

Detection*#. CoRR, abs/2007.15510, 12.

https://doi.org/10.48550/arXiv.2007.15510

[15] Hao, X., Ren, W., Zheng, W., & Zhu, T. (2020). SCScan: A SVM-Based

Scanning System for Vulnerabilities in Blockchain Smart Contracts.

2020 IEEE 19th International Conference on Trust, Security and Privacy

in Computing and Communications (TrustCom), 1598–1605.

https://doi.org/10.1109/TrustCom50675.2020.00221

[16] Ye, J., Ma, M., Lin, Y., Sui, Y., & Xue, Y. (2020). Clairvoyance: Cross-

contract static analysis for detecting practical reentrancy vulnerabilities

in smart contracts. Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering: Companion Proceedings, 274–

275. https://doi.org/10.1145/3377812.3390908

[17] Feist, J., Grieco, G., & Groce, A. (2019). Slither: A Static Analysis

Framework for Smart Contracts. 2019 IEEE/ACM 2nd International

Workshop on Emerging Trends in Software Engineering for Blockchain

(WETSEB), 8–15. https://doi.org/10.1109/WETSEB.2019.00008

[18] Tang, Y., Li, Z., & Bai, Y. (2021). Rethinking of Reentrancy on the

Ethereum. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure

Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf

on Cloud and Big Data Computing, Intl Conf on Cyber Science and

Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 68–75.

https://doi.org/10.1109/DASC-PICom-CBDCom-

CyberSciTech52372.2021.00025

[19] Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., & Smaragdakis,

Y. (2018). MadMax: Surviving out-of-gas conditions in Ethereum smart

contracts. Proceedings of the ACM on Programming Languages,

2(OOPSLA), 1–27. https://doi.org/10.1145/3276486

[20] Nguyen, T. D., Pham, L. H., Sun, J., Lin, Y., & Minh, Q. T. (2020).

sFuzz: An efficient adaptive fuzzer for solidity smart contracts.

Proceedings of the ACM/IEEE 42nd International Conference on

Software Engineering, 778–788.

https://doi.org/10.1145/3377811.3380334

[21] Ren, M., Ma, F., Yin, Z., Li, H., Fu, Y., Chen, T., & Jiang, Y. (2021).

SCStudio: A secure and efficient integrated development environment

for smart contracts. Proceedings of the 30th ACM SIGSOFT

International Symposium on Software Testing and Analysis, 666–669.

https://doi.org/10.1145/3460319.3469078

[22] Gao, Z., Jayasundara, V., Jiang, L., Xia, X., Lo, D., & Grundy, J. (2019).

SmartEmbed: A Tool for Clone and Bug Detection in Smart Contracts

through Structural Code Embedding. 2019 IEEE International

Conference on Software Maintenance and Evolution (ICSME), 394–397.

https://doi.org/10.1109/ICSME.2019.00067

Journal of Metaverse
Zaazaa & El Bakkali

This work is licensed under a Creative Commons Attribution 4.0 International License.

136

[23] Yu, X., Zhao, H., Hou, B., Ying, Z., & Wu, B. (2021). DeeSCVHunter:

A Deep Learning-Based Framework for Smart Contract Vulnerability

Detection. 2021 International Joint Conference on Neural Networks

(IJCNN), 1–8. https://doi.org/10.1109/IJCNN52387.2021.9534324

[24] Wu, H., Zhang, Z., Wang, S., Lei, Y., Lin, B., Qin, Y., Zhang, H., & Mao,

X. (2021). Peculiar: Smart Contract Vulnerability Detection Based on

Crucial Data Flow Graph and Pre-training Techniques. 2021 IEEE 32nd

International Symposium on Software Reliability Engineering (ISSRE),

378–389. https://doi.org/10.1109/ISSRE52982.2021.00047

[25] Ashizawa, N., Yanai, N., Cruz, J. P., & Okamura, S. (2021). Eth2Vec:

Learning Contract-Wide Code Representations for Vulnerability

Detection on Ethereum Smart Contracts. Proceedings of the 3rd ACM

International Symposium on Blockchain and Secure Critical

Infrastructure, 47–59. https://doi.org/10.1145/3457337.3457841

[26] Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx,

S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson,

E., Buch, S., Card, D., Castellon, R., Chatterji, N., Chen, A., Creel, K.,

Davis, J. Q., Demszky, D., … Liang, P. (2021). On the Opportunities and

Risks of Foundation Models. CoRR, abs/2108.07258.

[27] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal,

P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,

Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A.,

Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language

Models are Few-Shot Learners. In Proceedings of the 34th International

Conference on Neural Information Processing Systems (p. 25).

[28] Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid, A., Fisch,

A., Brown, A. R., Santoro, A., Gupta, A., Garriga-Alonso, A., Kluska,

A., Lewkowycz, A., Agarwal, A., Power, A., Ray, A., Warstadt, A.,

Kocurek, A. W., Safaya, A., Tazarv, A., … Wu, Z. (2022). Beyond the

Imitation Game: Quantifying and extrapolating the capabilities of

language models. In ArXiv preprint arXiv:2206.04615.

http://arxiv.org/abs/2206.04615

[29] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y.,

Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z.,

Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., … Wen, J.-R. (2023). A

Survey of Large Language Models. ArXiv Preprint ArXiv:2303.18223.

[30] GPT-4 | OpenAI. (n.d.). Retrieved June 12, 2024, from

https://openai.com/index/gpt-4/

[31] Gemini Team, Reid, M., Savinov, N., Teplyashin, D., Dmitry, Lepikhin,

Lillicrap, T., Alayrac, J., Soricut, R., Lazaridou, A., Firat, O.,

Schrittwieser, J., Antonoglou, I., Anil, R., Borgeaud, S., Dai, A.,

Millican, K., Dyer, E., Glaese, M., … Vinyals, O. (2024). Gemini 1.5:

Unlocking multimodal understanding across millions of tokens of

context. ArXiv Preprint ArXiv:2403.05530.

[32] Kevian, D., Syed, U., Guo, X., Havens, A., Dullerud, G., Seiler, P., Qin,

L., & Hu, B. (2024). Capabilities of Large Language Models in Control

Engineering: A Benchmark Study on GPT-4, Claude 3 Opus, and Gemini

1.0 Ultra (arXiv:2404.03647). arXiv.

[33] Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C., Ma, J., Lin,

Q., & Jiang, D. (2023). WizardCoder: Empowering Code Large

Language Models with Evol-Instruct. ArXiv Preprint ArXiv:2306.08568.

[34] Hu, S., Huang, T., İlhan, F., Tekin, S. F., & Liu, L. (2023). Large

Language Model-Powered Smart Contract Vulnerability Detection: New

Perspectives. 2023 5th IEEE International Conference on Trust, Privacy

and Security in Intelligent Systems and Applications (TPS-ISA), 297–

306. https://doi.org/10.1109/TPS-ISA58951.2023.00044

[35] Sun, Y., Wu, D., Xue, Y., Liu, H., Ma, W., Zhang, L., Shi, M., & Liu, Y.

(2024). LLM4Vuln: A Unified Evaluation Framework for Decoupling

and Enhancing LLMs’ Vulnerability Reasoning. ArXiv.

[36] Zaazaa, O., & El Bakkali, H. (2022). Automatic Static Vulnerability

Detection Approaches and Tools: State of the Art (pp. 449–459).

https://doi.org/10.1007/978-3-030-91738-8_41

[37] Zhang, Y., Feng, S., & Tan, C. (2022). Active Example Selection for In-

Context Learning. ArXiv Preprint ArXiv:2211.04486.

https://doi.org/10.48550/arXiv.2211.04486

[38] Pan, J., Gao, T., Chen, H., & Chen, D. (2023). What In-Context Learning

“Learns” In-Context: Disentangling Task Recognition and Task

Learning. Princeton University.

[39] Wang, Y.-X., Ramanan, D., & Hebert, M. (2017). Growing a Brain: Fine-

Tuning by Increasing Model Capacity. 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 3029–3038.

[40] Church, K. W., Chen, Z., & Ma, Y. (2021). Emerging trends: A gentle

introduction to fine-tuning. Natural Language Engineering, 27(6), 763–

778. https://doi.org/10.1017/S1351324921000322

[41] Chen, J., Liu, Z., Huang, X., Wu, C., Liu, Q., Jiang, G., Pu, Y., Lei, Y.,

Chen, X., Wang, X., Zheng, K., Lian, D., & Chen, E. (2024). When large

language models meet personalization: Perspectives of challenges and

opportunities. World Wide Web, 27(4), 42.

https://doi.org/10.1007/s11280-024-01276-1

[42] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023).

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting

Methods in Natural Language Processing. ACM Computing Surveys,

55(9), 1–35. https://doi.org/10.1145/3560815

[43] Pitis, S., Zhang, M. R., Wang, A., & Ba, J. (2023). Boosted Prompt

Ensembles for Large Language Models. ArXiv Preprint

ArXiv:2304.05970.

[44] Zhao, Z., Wallace, E., Feng, S., Klein, D., & Singh, S. (2021). Calibrate

Before Use: Improving Few-shot Performance of Language Models.

Proceedings of the 38th International Conference on Machine Learning,

12697–12706. https://proceedings.mlr.press/v139/zhao21c.html

[45] Gao, T., Fisch, A., & Chen, D. (2021). Making Pre-trained Language

Models Better Few-shot Learners. In C. Zong, F. Xia, W. Li, & R.

Navigli (Eds.), Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and the 11th International

Joint Conference on Natural Language Processing (Volume 1: Long

Papers) (pp. 3816–3830). Association for Computational Linguistics.

https://doi.org/10.18653/v1/2021.acl-long.295

[46] Jiang, Z., Xu, F. F., Araki, J., & Neubig, G. (2020). How Can We Know

What Language Models Know? Transactions of the Association for

Computational Linguistics, 8, 423–438.

https://doi.org/10.1162/tacl_a_00324

[47] Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., & Chen, W. (2022).

What Makes Good In-Context Examples for GPT-3? Proceedings of

Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on

Knowledge Extraction and Integration for Deep Learning Architectures,

100–114. https://doi.org/10.18653/v1/2022.deelio-1.10

[48] Gu, Y., Han, X., Liu, Z., & Huang, M. (2022). PPT: Pre-trained Prompt

Tuning for Few-shot Learning. Proceedings of the 60th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long

Papers), 8410--8423. https://doi.org/10.18653/v1/2022.acl-long.576

[49] Lester, B., Al-Rfou, R., & Constant, N. (2021). The Power of Scale for

Parameter-Efficient Prompt Tuning. Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Processing, 3045--3059.

https://doi.org/10.18653/v1/2021.emnlp-main.243

[50] Li, X. L., & Liang, P. (2021). Prefix-Tuning: Optimizing Continuous

Prompts for Generation. In C. Zong, F. Xia, W. Li, & R. Navigli (Eds.),

Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International Joint Conference

on Natural Language Processing (Volume 1: Long Papers) (pp. 4582–

4597). Association for Computational Linguistics.

https://doi.org/10.18653/v1/2021.acl-long.353

[51] Liu, V., & Chilton, L. B. (2022). Design Guidelines for Prompt

Engineering Text-to-Image Generative Models. CHI Conference on

Human Factors in Computing Systems, 1–23.

https://doi.org/10.1145/3491102.3501825

[52] Maddigan, P., & Susnjak, T. (2023). Chat2VIS: Generating Data

Visualizations via Natural Language Using ChatGPT, Codex and GPT-3

Large Language Models. IEEE Access, 11, 45181–45193. IEEE Access.

https://doi.org/10.1109/ACCESS.2023.3274199

Journal of Metaverse
 Zaazaa & El Bakkali

This work is licensed under a Creative Commons Attribution 4.0 International License.

137

[53] Liu, C., Bao, X., Zhang, H., Zhang, N., Hu, H., Zhang, X., & Yan, M.

(2023). Improving ChatGPT Prompt for Code Generation. ArXiv

Preprint ArXiv:2305.08360.

[54] White, J., Hays, S., Fu, Q., Spencer-Smith, J., & Schmidt, D. C. (2023).

ChatGPT Prompt Patterns for Improving Code Quality, Refactoring,

Requirements Elicitation, and Software Design. Generative AI for

Effective Software Development, 71--108. https://doi.org/10.1007/978-3-

031-55642-5_4

[55] Demir, M., Alalfi, M., Turetken, O., & Ferworn, A. (2019). Security

Smells in Smart Contracts. 2019 IEEE 19th International Conference on

Software Quality, Reliability and Security Companion (QRS-C), 442–

449. https://doi.org/10.1109/QRS-C.2019.00086

[56] EIP-1884: Repricing for trie-size-dependent opcodes. (n.d.). Ethereum

Improvement Proposals. Retrieved August 12, 2024, from

https://eips.ethereum.org/EIPS/eip-1884

[57] How Ethereum’s Istanbul Network Upgrade Affects DeFi. (2021, July

14). Defi Pulse Blog. https://defipulse.com/blog/how-ethereums-

istanbul-network-upgrade-affects-defi/

[58] Staderini, M., Palli, C., & Bondavalli, A. (2020). Classification of

Ethereum Vulnerabilities and their Propagations. 2020 Second

International Conference on Blockchain Computing and Applications

(BCCA), 44–51. https://doi.org/10.1109/BCCA50787.2020.9274458

[59] ERC 721—OpenZeppelin Docs. (2024, August 12).

https://docs.openzeppelin.com/contracts/2.x/api/token/ERC721

[60] Publications/reviews/2023-07-arcade-securityreview.pdf at master ·

trailofbits/publications. (n.d.). GitHub. Retrieved August 12, 2024, from

https://github.com/trailofbits/publications/blob/master/reviews/2023-07-

arcade-securityreview.pdf

[61] Sending Ether (transfer, send, call) | Solidity by Example | 0.8.24. (n.d.).

Retrieved August 12, 2024, from https://solidity-by-

example.org/sending-ether/

[62] PublicReports/Solidity Smart Contract

Audits/Persistence_StkBNB_Smart_Contract_Security_Audit_Report_H

alborn_Final.pdf at master · HalbornSecurity/PublicReports. (n.d.).

GitHub. Retrieved August 12, 2024, from

https://github.com/HalbornSecurity/PublicReports/blob/master/Solidity

%20Smart%20Contract%20Audits/Persistence_StkBNB_Smart_Contra

ct_Security_Audit_Report_Halborn_Final.pdf

[63] PublicReports/Solidity Smart Contract

Audits/Cere_Bridge_Smart_Contract_Security_Audit_Solidity_Report_

Halborn_Final.pdf at master · HalbornSecurity/PublicReports. (n.d.).

GitHub. Retrieved August 12, 2024, from

https://github.com/HalbornSecurity/PublicReports/blob/master/Solidity

%20Smart%20Contract%20Audits/Cere_Bridge_Smart_Contract_Secu

rity_Audit_Solidity_Report_Halborn_Final.pdf

[64] Hou, W., & Ji, Z. (2024). A systematic evaluation of large language

models for generating programming code. ArXiv Preprint

ArXiv:2403.00894.

