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Abstract
In this article, we consider the estimation of the stress-strength reliability parameter for
the inverse Lindley distribution based on lower record values. The maximum likelihood es-
timator and its asymptotic distribution are obtained. An approximate classical confidence
interval, as well as two bootstrap-type confidence intervals for the reliability parameter
are derived. The Bayesian inference for the parameter has been considered using Tier-
ney and Kadane’s approximation method, as well as two Monte Carlo methods, namely
the Metropolis-Hastings and importance sampling techniques under both symmetric and
asymmetric loss functions. Besides, the Chen and Shao shortest width credible intervals
are constructed for the stress-strength parameter. A simulation study and a real data
example are conducted to explore and compare the performances of the presented results.
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1. Introduction
Lower record values and upper record values deal with identifying the lowest and the

highest values observed in a data set, respectively. These concepts are commonly used in
statistical analysis to understand the extremes of a data set and can provide insights into
the variability and distribution of the data. Applications of lower and upper record statis-
tics can be found in various fields such as reliability, meteorology, sports science, finance,
industrial stress testing, mortality studies, medicine and quality control. In sports sci-
ence, these statistics are commonly used to track athletes’ personal bests and performance
records, see for example [55]. In mortality studies, lower record values can provide insights
into extreme cases of mortality, identify vulnerable populations and help researchers find
factors contributing to mortality rates. Lower record statistics can also be used in financial
analysis to determine the lowest values of stock prices, interest rates, or other financial
indicators, which can help investors and financial analysts understand the risks associated
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with investing in certain assets or markets. Moreover, lower record statistics are crucial in
monitoring environmental conditions such as temperature, rainfall, pollution levels, etc.
By tracking the lowest values in these parameters, researchers can discover trends, anom-
alies and potential environmental hazards. Let {Xj , j ≥ 1} be a sequence of independent
identically distributed (iid) continuous random variables and XL(m) = min{X1, . . . , Xm},
m ≥ 1, then an observation Xj is a lower record value of {XL(m), m ≥ 1} if it becomes
less than all its preceding observations. Equivalently, we can say that Xj < Xi for all
values i that are less than j and we have

L(1) = 1, L(m) = min{j|j > L(m − 1), Xj < XL(m−1)}.

The sequence {L(m), m ≥ 1} is called the record times. See [4] for more details on the
theory and applications of record values.

The inverse Lindley distribution was introduced by [53]. Let Y be a Lindley distributed
random variable with parameter θ whose density can be expressed as follows

f(y; θ) = θ2

1 + θ
(1 + y)e−θy, y > 0, θ > 0.

Then, the random variable X = 1
Y

is said to have the inverse Lindley distribution and its
probability density function (PDF) is then given by

f(x; θ) = θ2

1 + θ

(1 + x

x3

)
e− θ

x , x > 0, θ > 0. (1.1)

We write X ∼ ILD(θ) if the PDF of X can be written as (1.1). The corresponding
cumulative distribution function (CDF) is also given by

F (x; θ) =
(
1 + θ

(1 + θ)x
)
e− θ

x , x > 0, θ > 0. (1.2)

Moreover, the hazard rate function of X is given by

h(x; θ) = θ2(1 + x)e− θ
x

(1 + θ)x3
[
1 −

(
1 + θ

(1+θ)x

)
e− θ

x

] , x > 0, θ > 0.
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Figure 1. PDFs and HRFs of the inverse Lindley distribution for selected values
of θ.

Figure 1 presents the PDFs and HRFs of the inverse Lindley model for selected values
of θ. As it can be seen from Figure 1, the HRF of the inverse Lindley distribution involves
an upside-down bathtub (UBT) shape. The UBT-shaped distributions may be applied to
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many real-life situations and experiments, see for example [24]. Langlands et al. [35] ana-
lyzed the breast carcinoma data and found out that the mortality rates peaked at a time
and then exhibited a gradual decline. Bennett [13] studied lung cancer trial data which
revealed the failure rates followed a UBT-shaped pattern. Joo and Mi [30] emphasized
that the HRF of a series system formed by the two components could be UBT-shaped.
The inverse Lindley distribution with a UBT-shaped HRF, also enjoys the advantage of
possessing simple forms for its PDF and CDF with only one parameter. This feature was
also highlighted by Alotaibi et al. [3] who underlined that this admirable characteristic
smoothes out the mathematical difficulties and then focused on the inference for the in-
verse Lindley distribution based on adaptive Type II progressively censored data. Many
other researchers also worked on the inferential problems related to the inverse Lindley
distribution, see for example [11, 12, 17, 25, 28, 37] and [27]. Recently, Asgharzadeh et al.
[5] addressed the problem of estimating the PDF and CDF of the inverse Lindley model
based on different methods of estimation.

A system or a component works in a reliability stress-strength model, provided that the
stress does not become bigger than the strength. Let X denote the strength and Y denote
the stress, where X and Y are statistically independent, then the probability that the
system or the component works becomes R = P (Y < X). In addition, parameter R may
be employed as a measure of comparison of two independent populations. For example,
if we are interested in studying monthly rainfall related to two cities, say city A and city
B, then we may be curious to know the probability that city A receives more rainfall
amount than city B. In medicine, when the random variables X and Y are the number
of cancer patients treated with two different chemotherapy methods, R can be used as
a measure to identify the more effective treatment, see [44]. The parameter R is called
the stress-strength parameter or the reliability parameter, which has many applications
in many fields like life testing, reliability, military, medical sciences, economics, social
sciences, psychology and engineering.

The term stress-strength was first used by [20], who worked on the estimation of R for
normal variates. Since then, many studies on the estimation of R for various distributions
have been accomplished by many authors, see [21, 31, 44, 48, 55] for examples of recent
studies on this parameter. In recent years, the subject of estimating the stress-strength
parameter based on record statistics has absorbed many scientists, see for example [8]
and [62] for the generalized exponential distribution, [7,9] and [10] for the two-parameter
exponential distribution, [43] for the Kumaraswamy distribution, [39] for the Lomax dis-
tribution, [56] and [1] for the Chen distribution, [57] for the Burr Type X distribution,
[6] for the two-parameter generalized exponential distribution, [34] and [19] for the Burr
Type XII distribution, [32] for the Parero distribution, [59] for the Gompertz distribution,
and [55] for the exponential power distribution.

Let X and Y be two independent random variables, where X follows an inverse Lindley
distribution with parameter θ1 and Y follows an inverse Lindley model with parameter
θ2, then the reliability parameter R = P (Y < X) may be obtained as follows:

R = R(θ1, θ2) =
∫ ∞

0
P (Y < X|X = x)fX(x)dx

= θ2
1θ2

(1 + θ1)(1 + θ2)

∫ ∞

0

1
x4 e− θ1+θ2

x dx + θ2
1(1 + 2θ2)

(1 + θ1)(1 + θ2)

∫ ∞

0

1
x3 e− θ1+θ2

x dx

+ θ2
1

1 + θ1

∫ ∞

0

1
x2 e− θ1+θ2

x dx

= θ2
1{2θ2 + (1 + 2θ2)(θ1 + θ2) + (1 + θ2)(θ1 + θ2)2}

(1 + θ1)(1 + θ2)(θ1 + θ2)3 = Cθ2
1

A113
, (1.3)
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where

Aijk = (1 + θ1)i(1 + θ2)j(θ1 + θ2)k, (1.4)
C = 2θ2 + (1 + 2θ2)A001 + A012. (1.5)

Sharma et al. [53] and Hassan et al. [28] discussed the problem of estimation of R for
the inverse Lindley distribution based on simple random samples and based on ranked
set samples, respectively. This paper aims to estimate the stress-strength parameter R =
P [Y < X] when the strength X and the stress Y are two independent random variables
from the inverse Lindley distribution based on lower record values.

The outline of this paper is organized as follows: The maximum likelihood (ML) esti-
mation of R is discussed in Section 2. In Section 3, the asymptotic confidence interval and
the bootstrap confidence intervals of R are obtained. Section 4 is devoted to the Bayesian
point and interval estimation of R. The Bayesian point estimates of R are found under
one symmetric and two asymmetric loss functions. However, as it seems that the related
integrals cannot be expressed in closed forms, three well-known methods are utilized to
approximate the Bayes estimates. A simulation study is also conducted in Section 5 to
check the performances of the proposed classical and approximate Bayes estimators. A
real data example in Section 6 is presented for the purpose of illustration. Finally, several
remarks end the paper in Section 7.

2. Maximum likelihood estimation
Let R = (R1, · · · , Rn) be the first n lower record values extracted from an inverse

Lindley distribution with parameter θ1 and S = (S1, · · · , Sm) be the first m lower record
values extracted from an inverse Lindley distribution with parameter θ2. Suppose that
r = (r1, . . . , rn) is the observed set of R and s = (s1, . . . , sm) is the observed set of S.
Suppose further that R and S are statistically independent. Due to the independence of
R and S, the likelihood function of θ = (θ1, θ2) given r and s, can be written as

L(θ|r, s) = L1(θ1|r)L2(θ2|s),

where

L1(θ1|r) = f(rn; θ1)
n−1∏
i=1

f(ri; θ1)
F (ri; θ1) ,

and

L2(θ2|s) = g(sm; θ2)
m−1∏
j=1

g(sj ; θ2)
G(sj ; θ2) ,

in which f(·; θ1) and F (·; θ1) are the PDF and CDF of ILD(θ1), respectively, and g(·; θ2)
and G(·; θ2) are the PDF and CDF of ILD(θ2), respectively. Thus, from (1.1) and (1.2),
we have

L1(θ1|r) = θ2n
1

1 + θ1
· e− θ1

rn

rn

n∏
i=1

1 + ri

r2
i

n−1∏
i=1

(
θ1(1 + ri) + ri

)−1
, (2.1)

L2(θ2|s) = θ2m
2

1 + θ2
· e− θ2

sm

sm

m∏
j=1

1 + sj

s2
j

m−1∏
j=1

(
θ2(1 + sj) + sj

)−1
. (2.2)
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Therefore, the log-likelihood function of θ given r and s denoted by `(θ1, θ2|r, s) is given
by

`(θ1, θ2|r, s) = 2n ln θ1 − ln(1 + θ1) − θ1
rn

−
n−1∑
i=1

ln
(
θ1(1 + ri) + ri

)
+ 2m ln θ2

− ln(1 + θ2) − θ2
sm

−
m−1∑
j=1

ln
(
θ2(1 + sj) + sj

)
+ A(r) + B(s),

where

A(r) =
n∑

i=1
ln(1 + ri) − ln rn − 2

n∑
i=1

ln ri,

and

B(s) =
m∑

j=1
ln(1 + sj) − ln sm − 2

m∑
j=1

ln sj .

The ML estimates of θ1 and θ2 based on the observed lower records may be obtained by
solving the following nonlinear equations

∂`(θ1, θ2|r, s)
∂θ1

= 2n

θ1
− 1

1 + θ1
− 1

rn
−

n−1∑
i=1

1 + ri

θ1(1 + ri) + ri
= 0, (2.3)

∂`(θ1, θ2|r, s)
θ2

= 2m

θ2
− 1

1 + θ2
− 1

sm
−

m−1∑
j=1

1 + sj

θ2(1 + sj) + sj
= 0. (2.4)

From (2.3) and (2.4), the ML estimates of θ1 and θ2 can be obtained as the fixed point
solutions of h1(θ1) = θ1 and h2(θ2) = θ2, respectively, where

h1(θ1) = 2n
( 1

1 + θ1
+ 1

rn
+

n−1∑
i=1

1 + ri

θ1(1 + ri) + ri

)−1
, (2.5)

and

h2(θ2) = 2m
( 1

1 + θ2
+ 1

sm
+

m−1∑
j=1

1 + sj

θ2(1 + sj) + sj

)−1
. (2.6)

Since the ML estimate of θ1 is a fixed point solution of the nonlinear equation (2.5) and
the ML estimate of θ2 is a fixed point solution of the equation (2.6), therefore they can
be obtained by using a simple iterative scheme. For the proof of the uniqueness of the
resulting ML estimates, see [27].

Let θ̂1 and θ̂2 be the ML estimators of θ1 and θ2, respectively. Then, by the invariance
property of ML estimation, the ML estimator of R based on lower record values, denoted
by R̂, is given by

R̂ = θ̂2
1{2θ̂2 + (1 + 2θ̂2)(θ̂1 + θ̂2) + (1 + θ̂2)(θ̂1 + θ̂2)2}

(1 + θ̂1)(1 + θ̂2)(θ̂1 + θ̂2)3
. (2.7)

3. Classical confidence intervals for R

In this section, we present a modified asymptotic confidence interval, as well as two
bootstrap-type approximate confidence intervals for R.
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3.1. Asymptotic confidence interval for R

In this subsection, first, we obtain the asymptotic joint distribution of θ̂1 and θ̂2 and
then we focus on the asymptotic distribution of R̂. Then, a modified asymptotic confidence
interval for R based on the asymptotic distribution of R̂ is constructed.

The expected Fisher information matrix of R and S about the parameter vector θ is

given by IR,S(θ1, θ2) =
(

I11 I12
I21 I22

)
, where I21 = I12 = 0 due to the independency of R

and S and

I11 = −E

(
∂2 ln fR1,··· ,Rn,S1,··· ,Sm(R1, · · · , Rn, S1, · · · , Sm)

∂θ2
1

)
,

I22 = −E

(
∂2 ln fR1,··· ,Rn,S1,··· ,Sm(R1, · · · , Rn, S1, · · · , Sm)

∂θ2
2

)
,

in which fR1,··· ,Rn,S1,··· ,Sm(r1, · · · , rn, s1, · · · , sm) is the joint distribution of R1, · · · , Rn,
S1, · · · , Sm, provided that the above expectations exist. One can estimate I11 and I22
using the ML estimators of θ1 and θ2 as follows

Î11 = −∂2 ln fR1,··· ,Rn,S1,··· ,Sm(R1, · · · , Rn, S1, · · · , Sm)
∂θ2

1

∣∣∣∣
(θ1,θ2)=(θ̂1,θ̂2)

= 2n

θ̂2
1

− 1
(1 + θ̂1)2

−
n−1∑
i=1

( 1 + Ri

θ̂1(1 + Ri) + Ri

)2
, (3.1)

Î22 = −∂2 ln fR1,··· ,Rn,S1,··· ,Sm(R1, · · · , Rn, S1, · · · , Sm)
∂θ2

2

∣∣∣∣
(θ1,θ2)=(θ̂1,θ̂2)

= 2m

θ̂2
2

− 1
(1 + θ̂2)2

−
m−1∑
j=1

( 1 + Sj

θ̂2(1 + Sj) + Sj

)2
. (3.2)

Next, we define a vector ηT = (η1, η2), where (note that R = R(θ1, θ2))

η1 = ∂ R(θ1, θ2)
∂θ1

= θ1(2C + θ1B)
A113

− θ2
1C(A013 + 3A112)

A2
113

, (3.3)

η2 = ∂ R(θ1, θ2)
∂θ2

= θ2
1D

A113
− θ2

1C(A103 + 3A112)
A2

113
, (3.4)

in which Aijk and C are given in (1.4) and (1.5), respectively and
B = 1 + 2θ2 + 2A011, (3.5)
D = 3 + 2θ2 + A002 + 2A001(2 + θ2). (3.6)

It is clear that η1 and η2 are functions of θ1 and θ2, so we can write η1 = g1(θ1, θ2) and
η2 = g2(θ1, θ2). Thus, using the invariance property of ML estimators, the ML estimators
of η1 and η2 are given by η̂1 = g1(θ̂1, θ̂2) and η̂2 = g2(θ̂1, θ̂2), respectively.

Now, we can use the delta method (see for example [52]) and state that as n → ∞,
m → ∞ and m

n → p, where p is a constant, then the asymptotic distribution of R̂ is
normal with the mean R and the variance δ, where

δ = ηT I−1
R,S(θ1, θ2)η,

in which I−1
R,S(θ1, θ2) is the inverse matrix of IR,S(θ1, θ2). So we have

δ = η2
1

I11
+ η2

2
I22

,

where η1 and η2 are defined in (3.3) and (3.4), respectively.



Estimation of the stress-strength parameter for the IL distribution based on records 297

As δ involves unknown parameters θ1 and θ2, we may estimate δ using (3.1), (3.2) and
the ML estimators of θ1 and θ2. Therefore, an estimator for the asymptotic variance of R̂
is given by

δ̂ = η̂2
1

Î11
+ η̂2

2
Î22

,

where Î11 and Î22 are given in (3.1) and (3.2), respectively and η̂1 and η̂2 are the ML
estimators of η1 and η2, respectively.

Therefore, a 100(1 − γ)% asymptotic confidence interval for R is given by(
R̂ − z γ

2

√
δ̂, R̂ + z γ

2

√
δ̂
)
,

where zγ is the 100γ-th upper quantile of N(0, 1). As R ∈ [0, 1], we propose the following
100(1 − γ)% modified asymptotic confidence interval (MACI) for R(

max
{

0, R̂ − z γ
2

√
δ̂

}
, min

{
R̂ + z γ

2

√
δ̂, 1
})

.

3.2. Bootstrap confidence intervals for R

In this subsection, two confidence intervals using parametric bootstrap techniques are
suggested. The first confidence interval is the bootstrap percentile confidence interval
(Boot-P CI) which is based on [26]. The second confidence interval, is the Normal boot-
strap confidence interval (Norm-Boot CI) which is based on [61]. The following algorithm
is used to generate parametric bootstrap samples.

Algorithm 1

Step 1 . Compute the ML estimates of θ1, θ2 and R, denoted by θ̂1, θ̂2 and R̂, respectively,
from the two originally observed samples of lower records (r1, · · · , rn) and (s1, · · · , sm).

Step 2 . Generate a bootstrap lower record sample {r∗
1, r∗

2, · · · , r∗
n} from ILD(θ̂1) and a

second bootstrap lower record sample {s∗
1, · · · , s∗

m} from ILD(θ̂2).
Step 3 . Compute the bootstrap estimates, say θ̂∗

1, θ̂∗
2 and R̂∗ based on {r∗

1, r∗
2, · · · , r∗

n}
and {s∗

1, · · · , s∗
m}.

Note: R̂∗ can be computed using equation (2.7).
Step 4 . Repeat Steps 2 and 3, B times to obtain the bootstrap sample {R̂∗

1, · · · , R̂∗
B},

where B is a large number.

To construct the bootstrap confidence interval for R, the bootstrap sample generated
by the aforementioned algorithm is used and two different bootstrap confidence intervals
are obtained as follows:

(i) Bootstrap percentile method
An approximate 100(1 − γ)% Boot-P CI for R is given by (see for example [23],
page 203) (

R∗
((B+1) γ

2 ), R∗
((B+1)(1− γ

2 ))

)
,

where R∗
q is the q-th ordered value of the bootstrap sample {R̂∗

1, · · · , R̂∗
B}.

(ii) Normal bootstrap method
An approximate 100(1−α)% confidence interval of R is given by (see, for example
[61], page 110) (

R̂ − z α
2

√
var(R̂∗), R̂ + z α

2

√
var(R̂∗)

)
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where
√

var(R̂∗) is the bootstrap estimate of the standard error and R̂ is the ML
estimate of R.

4. Bayesian estimation of R

In this section, the Bayesian estimation of R will be discussed under the assumption
that the parameters θ1 and θ2 are independent gamma random variables, namely we have
θ1 ∼ Γ(α1, β1) and θ2 ∼ Γ(α2, β2). Thus, the prior densities of θ1 and θ2 are given by

π(θi) = βαi
i θαi−1

i e−βiθi

Γ(αi)
, θi > 0 & i = 1, 2,

where a1, b1, a2 and b2 are positive hyperparameters that can be determined based on the
prior knowledge of the researcher(s).

Due to the independency of θ1 and θ2, the joint prior density of θ1 and θ2 becomes
π(θ1, θ2) = π(θ1) · π(θ2). (4.1)

From (2.1), (2.2) and (4.1), the joint posterior density of θ1 and θ2 given r and s is given
by

π∗(θ1, θ2|r, s) = L1(θ1|r)L2(θ2|s)π(θ1, θ2)∫∞
0
∫∞

0 L1(θ1|r)L2(θ2|s)π(θ1, θ2)dθ1dθ2

= 1
K∗ θ2n+α1−1

1 θ2m+α2−1
2 ξ1(r, θ1)ξ2(s, θ2)

× exp
(

− θ1
( 1
rn

+ β1
)

− θ2
( 1
sm

+ β2
))

, (4.2)

where

ξ1(r, θ1) =
{

(1 + θ1)
n−1∏
i=1

(
θ1(1 + ri) + ri

)}−1
,

ξ2(s, θ2) =
{

(1 + θ2)
m−1∏
j=1

(
θ2(1 + sj) + sj

)}−1
,

and

K∗ =
∫ ∞

0

∫ ∞

0
θ2n+α1−1

1 θ2m+α2−1
2 ξ1(r, θ1)ξ2(s, θ2) exp

(
− θ1

( 1
rn

+ β1
)

− θ2
( 1
sm

+ β2
))

dθ1dθ2.

Due to the independency of θ1 and θ2 and independency of R and S, one can see that
π∗(θ1, θ2|r, s) = π∗

1(θ1|r) · π∗
2(θ2|s),

where

π∗
1(θ1|r) = 1

K∗
1

θ2n+α1−1
1 ξ1(r, θ1) exp

(
− θ1

( 1
rn

+ β1
))

, (4.3)

and

π∗
2(θ2|s) = 1

K∗
2

θ2m+α2−1
2 ξ2(s, θ2) exp

(
− θ2

( 1
sm

+ β2
))

, (4.4)

in which
K∗

1 =
∫ ∞

0
θ2n+α1−1

1 ξ1(r, θ1) exp
(

− θ1
( 1
rn

+ β1
))

dθ1,

and
K∗

2 =
∫ ∞

0
θ2m+α2−1

2 ξ2(s, θ2) exp
(

− θ2
( 1
sm

+ β2
))

dθ2.

For point Bayesian estimation of R, we consider three loss functions. The first function
is the squared error loss (SEL) function, which is a symmetric function, namely, it gives
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the same weights to the underestimation and overestimation. However, in many appli-
cations, the underestimation and overestimation do not have the same consequences, so
using asymmetric loss functions seems logical in such situations. Here, we use two asym-
metric loss functions, which are the linear-exponential loss (LEL) function and the general
entropy loss (GEL) function. The LEL and GEL functions were proposed by [60] and [14],
respectively. Let θ̂ be an estimator of θ, then the LEL and GEL functions are defined as

L1(θ̂, θ) = b
(
exp{c(θ̂ − θ} − c(θ̂ − θ) − 1

)
, b > 0, c 6= 0, (4.5)

and

L2(θ̂, θ) ∝
(

θ̂

θ

)q

− q ln
(

θ̂

θ

)
− 1, q 6= 0, (4.6)

respectively.
Without loss of generality, one can take b = 1 in (4.5). The parameters c in (4.5) and

q in (4.6) should be determined carefully, as the sign and magnitude of these parameters
are important and affect the loss. A positive value of c in the LEL function will make the
overestimation more serious than the underestimation and vice versa; see [63]. Similarly,
a positive value of q in the GEL function causes the overestimation to be more serious
than the underestimation and vice versa, see [14,15].

From (1.3), the Bayes estimate of R under the SEL function is obtained from the
following relation

R̂S =
∫ ∞

0

∫ ∞

0
R(θ1, θ2) π∗(θ1, θ2|r, s)dθ1dθ2, (4.7)

provided that the above integral exists.
In addition, the Bayes point estimates of R under the LEL and GEL functions are given

by

R̂L = −1
c

ln
(∫ ∞

0

∫ ∞

0
exp{−cR(θ1, θ2)} π∗(θ1, θ2|r, s)dθ1dθ2

)
, (4.8)

and

R̂G =
(∫ ∞

0

∫ ∞

0
[R(θ1, θ2)]−q π∗(θ1, θ2|r, s)dθ1dθ2

)−
1
q , (4.9)

respectively, provided that the integrals given in (4.8) and (4.9) exist.
It seems that the integrals given in (4.7), (4.8) and (4.9) cannot be obtained analyti-

cally. Therefore, three different approaches are used to obtain the approximate Bayesian
estimates of R, namely Tierney and Kadane’s approximation, importance sampling (IS)
and Metropolis-Hastings (M-H) methods.

4.1. Tierney and Kadane’s approximation
In this subsection, we present Tierney and Kadane’s (TK) method for approximating

the required posterior means under the SEL, LEL and GEL functions. This method,
introduced by [58], employs Laplace’s formula to compute approximate posterior moments.
Moreover, [58] demonstrated the superior accuracy of the proposed approach compared to
Lindley’s approximation method. Let δ(θ1, θ2|r, s) = ln π∗(θ1, θ2|r, s) be the log-posterior
of (θ1, θ2), g(θ1, θ2) = 1

N δ(θ1, θ2|r, s), where N = n + m and g∗(θ1, θ2) = g(θ1, θ2) +
1
N ln U(θ1, θ2). Then, the posterior moment of any function of θθθ = (θ1, θ2) such as U(θ1, θ2)
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may be approximated as follows

E
(
U(θ1, θ2)|r, s

)
=
∫∞

0
∫∞

0 U(θ1, θ2) exp
(
δ(θ1, θ2|r, s)

)
dθ1dθ2∫∞

0
∫∞

0 exp
(
δ(θ1, θ2|r, s)

)
dθ1dθ2

=
∫∞

0
∫∞

0 exp
(
Ng∗(θ1, θ2)

)
dθ1dθ2∫∞

0
∫∞

0 exp
(
Ng(θ1, θ2)

)
dθ1dθ2

'
(det(Σ∗)

det(Σ)
) 1

2 exp
(
N
(
g∗(θ∗

1, θ∗
2) − g(θ̃1, θ̃2)

))
, (4.10)

where (θ̃1, θ̃2) represents the posterior mode of g(θ1, θ2), (θ∗
1, θ∗

2) maximizes g∗(θ1, θ2) and
Σ∗ and Σ denote the negative inverse Hessian matrice of g∗(θ1, θ2) and g(θ1, θ2), respec-
tively, evaluated at (θ∗

1, θ∗
2) and (θ̃1, θ̃2), respectively. Note that (θ̃1, θ̃2) and (θ∗

1, θ∗
2) will

be obtained from normal equations. In our case, we have

N · g(θ1, θ2) = (2n + α1 − 1) ln(θ1) − ln(1 + θ1) − θ1
rn

− β1θ1

−
n−1∑
i=1

ln
(
θ1(1 + ri) + ri

)
+ (2m + α2 − 1) ln(θ2) − ln(1 + θ2) − θ2

sm

− β2θ2 −
m−1∑
j=1

ln
(
θ2(1 + sj) + sj

)
− ln(K∗).

The maximizer arguments of g(θ1, θ2), namely (θ̃1, θ̃2), will be obtained from solving the
following equations

∂g(θ1, θ2)
∂θ1

= 1
N

[2n + α1 − 1
θ1

− 1
1 + θ1

− 1
rn

− β1 −
n−1∑
i=1

1 + ri

θ1(1 + ri) + ri

]
= 0,

∂g(θ1, θ2)
∂θ2

= 1
N

[2m + α2 − 1
θ2

− 1
1 + θ2

− 1
sm

− β2 −
m−1∑
i=1

1 + sj

θ2(1 + sj) + sj

]
= 0.

Using the second-order derivatives of g(θ1, θ2), the determinant of the negative inverse

Hessian of g(θ1, θ2) at (θ̃1, θ̃2) is given by det(Σ) = −
(
g11g22 − g2

12
)−1

∣∣∣∣
(θ1,θ2)=(θ̃1,θ̃2)

, where

g11 = 1
N

[
− 2n + α1 − 1

θ2
1

+ 1
(1 + θ1)2 +

n−1∑
i=1

(1 + ri)2

(θ1(1 + ri) + ri)2

]
,

g22 = 1
N

[
− 2m + α2 − 1

θ2
2

+ 1
(1 + θ2)2 +

m−1∑
j=1

(1 + sj)2

(θ2(1 + sj) + sj)2

]
,

and g12 = g21 = 0.
Now, for computing the Bayes estimates of R based on SEL, LEL and GEL functions, we
follow the following scenarios:

i) SEL
In this case, U(θ1, θ2) = R(θ1, θ2), so (θ∗

1, θ∗
2) can be computed by maximizing

g∗(θ1, θ2) = g(θ1, θ2) + 1
N lnR(θ1, θ2). Therefore

g1∗(θ1, θ2) = 1
N

[
2 ln(θ1) + ln

(
2θ2 + (1 + 2θ2)(θ1 + θ2) + (1 + θ2)(θ1 + θ2)2)

− ln(1 + θ1) − ln(1 + θ2) − 3 ln(θ1 + θ2)
]

+ g(θ1, θ2).

In Appendix, the first-order g∗(θ1, θ2) with respect to (w.r.t.) θ1 and θ2 are com-
puted. Setting the first-order derivatives of g∗(θ1, θ2) equal to zero, we can obtain
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(θ∗
1, θ∗

2) and then we have det(Σ∗) = −
(
g1∗

11g1∗
22 − g1∗

12
2)−1

∣∣∣∣
(θ1,θ2)=(θ∗

1 ,θ∗
2)

, where g1∗
11,

g1∗
22 and g1∗

12 are given in Appendix. To approximate the posterior mean of R under
the SEL function, it is sufficient to substitute the above-mentioned elements in
(4.10).

ii) LEL
In this case, we consider U(θ1, θ2) = e−cR(θ1,θ2). Consequently, the function
g2∗(θ1, θ2) assumes the following form:

g2∗(θ1, θ2) = −c

N

[θ2
1
(
2θ2 + (1 + 2θ2)(θ1 + θ2) + (1 + θ2)(θ1 + θ2)2)

(1 + θ1)(1 + θ2)(θ1 + θ2)3

]
+ g(θ1, θ2).

The values of (θ∗
1, θ∗

2) are determined by equating the derivatives of g2∗(θ1, θ2)
w.r.t. θ1 and θ2 with zero. Then, we can find

det(Σ∗) = −
(
g2∗

11g2∗
22 − g2∗

12
2)−1

∣∣∣∣
(θ1,θ2)=(θ∗

1 ,θ∗
2)

,

where g2∗
11, g2∗

22 and g2∗
12 are derived in Appendix.

Subsequently, the approximate Bayes estimate of R under the LEL function takes
the following form:

R̂LEL = −1
c

ln
{(det Σ∗

det Σ
) 1

2 exp
(
N
(
g2∗(θ∗

1, θ∗
2) − g(θ̃1, θ̃2)

))}
.

iii) GEL
In this scenario, we consider U(θ1, θ2) =

(
R(θ1, θ2)

)−q and to obtain (θ∗
1, θ∗

2), the
function g3∗(θ1, θ2) needs to be considered, where

g3∗(θ1, θ2) = − q

N

[
2 ln(θ1) + ln

(
2θ2 + (1 + 2θ2)(θ1 + θ2) + (1 + θ2)(θ1 + θ2)2)

− ln(1 + θ1) − ln(1 + θ2) − 3 ln(θ1 + θ2)
]

+ g(θ1, θ2).

Additionally, by calculating the second-order derivatives of g3∗(θ1, θ2) at (θ∗
1, θ∗

2),
we derive the elements of −Σ∗, where the second-order derivatives of g3∗(θ1, θ2)
are given in Appendix.
As a result, the approximate Bayes estimate of R under the GEL function is as
follows

R̂GEL =
{(det Σ∗

det Σ
) 1

2 exp
(
N
(
g3∗(θ∗

1, θ∗
2) − g(θ̃1, θ̃2)

))}− 1
q
.

4.2. Markov chain Monte Carlo (MCMC) method
The MCMC approach is essentially an iterative sampling algorithm, drawing values from

the posterior distributions of the parameters of the concerned model. In this subsection,
we consider an MCMC method to generate samples from the joint posterior distribution
(4.2) and then compute the approximate Bayes estimates of R under SEL, LEL and GEL
functions based on the observed lower record values from the inverse Lindley distributions.
An important subclass of MCMC methods involves Metropolis-Hastings (M-H) algorithm
(see [29, 42]). The M-H algorithm can be used to generate samples from any complex
distribution that is known up to a normalizing constant. For more details about MCMC
methods and the related methodologies, one can refer to [50]. Since the posterior density
of θ = (θ1, θ2) in (4.2) is not known, we may use the M-H method with positive trun-
cated normal proposal distributions to generate samples from this distribution. The M-H
algorithm is described as follows.
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Algorithm 2

Step 1. Start with an initial guess θ(0) = (θ(0)
1 , θ

(0)
2 ) = (θ̂1, θ̂2), where θ̂1 and θ̂2 are the

ML estimates of θ1 and θ2, respectively.
Step 2. Given θ

(t−1)
1 , generate θ∗

1 from the positive truncated normal distribution,
N(θ(t−1)

1 , σ2
1)I{θ1>0}. Then θ

(t)
1 = θ∗

1 with probability

ρ1 = min
{

π∗
1(θ∗

1|rrr)q1(θ(t−1)
1 |θ∗

1)
π∗

1(θ(t−1)
1 |rrr)q1(θ∗

1|θ(t−1)
1 )

, 1
}

,

where π∗
1(·|rrr) is given in (4.3) and q1(x|b) is the density of N(b, σ2

1)I{θ1>0}, otherwise
set θ

(t)
1 = θ

(t−1)
1 .

Step 3. Given θ
(t−1)
2 , generate θ∗

2 from the positive truncated normal distribution,
N(θ(t−1)

2 , σ2
2)I{θ2>0}. Then θ

(t)
2 = θ∗

2 with probability

ρ2 = min
{

π∗
2(θ∗

2|sss)q2(θ(t−1)
2 |θ∗

2)
π∗

2(θ(t−1)
2 |sss)q2(θ∗

2|θ(t−1)
2 )

, 1
}

,

where π∗
2(·|sss) is given in (4.4) and q2(x|b) is the density of N(b, σ2

2)I{θ2>0}, otherwise
set θ

(t)
2 = θ

(t−1)
2 .

Step 4. Compute R(t) from (1.3) using the generated values of θ
(t)
1 and θ

(t)
2 .

Step 5. Set t = t + 1 and repeat Steps 2, 3 and 4, T times where T is a large number.
Thus, the set {R(1), R(2), · · · , R(T )} is the generated sample.

In this paper, we take the parameters of the proposal distributions σ2
1 and σ2

2 to be the
observed values of 1

Î11
and 1

Î22
, respectively, where Î11 and Î22 are given in (3.1) and (3.2),

respectively.
We may discard the first K generated values of the sample {R(1), R(2), · · · , R(T )}, where

K is the burn-in period.
So we use the sample {R1, · · · , RN } = {R(K+1), R(K+2), · · · , R(T )}, where N = T − K.

Now, the approximate Bayes estimate of R under the SEL function is given by

R̃S = 1
N

N∑
i=1

Ri,

Moreover, the approximate Bayes estimates of R under the LEL and GEL functions are
given by

R̃L = −1
c

ln
( 1

N

N∑
i=1

e−cRi

)
,

and

R̃G =
( 1

N

N∑
i=1

R−q
i

)− 1
q
,

respectively.

4.3. Importance sampling technique
The importance sampling (IS) technique is another method of approximating Bayes

point estimates and constructing credible intervals for the parameter of interest, (see [2],
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Section 5.9). The joint posterior density of θ1 and θ2 given r and s, that is given in (4.2),
can be rewritten as follows

π∗(θ1, θ2|r, s) = g1(θ1|r) · g2(θ2|s) · h(θ1, θ2; r, s),
where g1(θ1|r) is the density of the gamma distribution with parameters 2n + α1 and
1
rn

+ β1, g2(θ2|s) is the density of the gamma distribution with parameters 2m + α2 and
1

sm
+ β2 and

h(θ1, θ2; r, s) = Γ(2n + α1)Γ(2m + α2)
K∗( 1

rn
+ β1)2n+α1( 1

sm
+ β2)2m+α2

· h∗(θ1, θ2; r, s),

in which

h∗(θ1, θ2; r, s) =
{

(1+θ1)
n−1∏
i=1

(
θ1(1+ri)+ri

)}−1
·
{

(1+θ2)
m−1∏
j=1

(
θ2(1+sj)+sj

)}−1
. (4.11)

Now, we use the following algorithm.

Algorithm 3
Step 1 . Generate θ11 from g1(θ1|r).
Step 2 . Generate θ21 from g2(θ2|s).
Step 3 . Compute R1 from (1.3) using the generated values of θ11 and θ21.
Step 4 . Repeat Steps 1, 2 and 3, N times, where N is a large number, to obtain the

samples {(θ11, θ21), · · · , (θ1N , θ2N )} and {R1, · · · , RN }.

Now, the approximate Bayes estimates of R under the SEL, LEL and GEL functions
are given by

R̃∗
S =

∑N
i=1 Rih

∗(θ1i, θ2i|r, s)∑N
i=1 h∗(θ1i, θ2i|r, s)

,

R̃∗
L = −1

c
ln
[∑N

i=1 e−cRih∗(θ1i, θ2i|r, s)∑N
i=1 h∗(θ1i, θ2i|r, s)

]
,

and

R̃∗
G =

[∑N
i=1 R−q

i h∗(θ1i, θ2i|r, s)∑N
i=1 h∗(θ1i, θ2i|r, s)

]−
1
q

,

respectively, where h∗(θ1, θ2; r, s) is defined in (4.11).

4.4. Bayesian credible intervals for R

In this subsection, due to the results of [18], the Chen and Shao shortest width credible
intervals (CSSW CrIs) for R are discussed, based on the generated samples using the
M-H and IS methods. First, we discuss the CSSW CrI based on the set {R1, · · · , RN } =
{R(K+1), R(K+2), · · · , R(T )} generated by an M-H technique. In this regard, we shall use
the following algorithm.



304 B. Etemad Golestani, E. Ormoz, S.M.T.K. MirMostafaee

Algorithm 4
Step 1 . Generate an MCMC sample {Ri; i = 1, 2, · · · , N} using Algorithm 2.
Step 2 . Sort {Ri; i = 1, 2, · · · , N} in order of magnitude. Let {R(1), R(2), · · · , R(N)} be

the sorted set of {Ri; i = 1, 2, · · · , N} namely R(1) ≤ R(2) ≤ · · · ≤ R(N).
Step 3 . Set Kj = (R(j), R(j+[(1−γ)N ])) for j = 1, 2, · · · , N − [(1 − γ)N ].
Step 4 . Set Lj = R(j+[(1−γ)N ]) − R(j) for j = 1, 2, · · · , N − [(1 − γ)N ].
Step 5 . Select j∗ such that Lj∗ = min{Lj : j = 1, 2, · · · , N − [(1 − γ)N ]}.
Step 6 . Report Kj∗ as the 100(1 − γ)% CSSW Crl for R.

Note that Kj ’s in Step 3 of Algorithm 4 are 100(1 − γ)% credible intervals for R.
Next, we discuss the CSSW CrI based on the sets {(θ11, θ21), · · · , (θ1N , θ2N )} and

{R1, · · · , RN } generated by an IS method. In this regard, we shall use the following
algorithm.

Algorithm 5
Step 1 . Generate samples {(θ1i, θ2i); i = 1, 2, · · · , N} and {Ri; i = 1, 2, · · · , N} using

Algorithm 3. Set

wi = h∗(θ1i, θ2i|r, s)∑N
j=1 h∗(θ1j , θ2j |r, s)

, i = 1, · · · , N,

where h∗(θ1, θ2; r, s) is defined in (4.11).
Step 2 . Sort {Ri; i = 1, 2, · · · , N} in order of magnitude. Let {R(1), R(2), · · · , R(N)} be

the sorted set of {Ri; i = 1, 2, · · · , N} namely R(1) ≤ R(2) ≤ · · · ≤ R(N). Let further
{w(1), w(2), · · · , w(N)} be the corresponding values of the set {wi; i = 1, 2, · · · , N} such
that w(i) corresponds to R(i) for i = 1, 2, · · · , N . Note that w(i) does not imply an
ordered value of wi.

Step 3 . Set Kj = (R(j), R(j+[(1−γ)N ])) for j = 1, 2, · · · , N − [(1 − γ)N ], where R(γ) = R(i)
if
∑i−1

j=1 w(j) < γ ≤
∑i

j=1 w(j).
Step 4 . Set Lj = R(j+[(1−γ)N ]) − R(j) for j = 1, 2, · · · , N − [(1 − γ)N ].
Step 5 . Select j∗ such that Lj∗ = min{Lj : j = 1, 2, · · · , N − [(1 − γ)N ]}.
Step 6 . Report Kj∗ as the 100(1 − γ)% CSSW Crl for R.

5. A simulation study
In this section, we evaluate the behavior of the various estimators of the stress-strength

parameter with the help of a simulation study. The numbers of records are taken to be
n = 3, 4, 5 and m = 3, 4, 5 such that n ≤ m. The exact values of the parameter R are
chosen to be R = 0.12, 0.28, 0.50 and 0.87 that correspond to (θ1, θ2) = (0.5, 2), (1, 2), (1, 1)
and (2, 0.5), respectively. In the Bayesian part, the hyperparameters are considered to be
(a1, b1, a2, b2) = (0.01, 0.01, 0.01, 0.01) as an approximate noninformative joint prior. The
number of replications is N∗ = 1000. In each replication, we generate n records from
ILD(θ1) and m records from ILD(θ2) and then we obtain the point estimates of R,
such as the ML estimate and approximate Bayes estimates under the SEL, LEL (with
c = −0.2 and 0.2) and GEL (with q = −0.2 and 0.2) functions using the M-H, IS and TK
methods. Besides, we construct the 95% MACI, Boot-P CI and Norm-Boot CI, as well
as the 95% CSSW CrIs using the generated samples that are obtained from the M-H and
IS approaches. For bootstrap intervals, we use B = 999 bootstrap samples. Let R̂ be an
estimator of R and R̂i be the corresponding estimate obtained in the ith iteration. Then,
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the estimated bias (bias for short), the estimated mean squared error (EMSE) and the
estimated risks (ERs) of R̂ under the LEL and GEL functions are given by

Bias(R̂) = 1
N∗

N∗∑
i=1

(R̂i − R),

EMSE(R̂) = 1
N∗

N∗∑
i=1

(R̂i − R)2,

ERL(R̂) = 1
N∗

N∗∑
i=1

[
ec(R̂i−R) − c(R̂i − R) − 1

]
,

and

ERG(R̂) = 1
N∗

N∗∑
i=1

[(R̂i

R

)q
− q ln

(R̂i

R

)
− 1

]
,

respectively.
We have computed the EMSEs of all kinds of the considered estimators and the results

are given in Table 1. Note that the EMSE is equivalent to the estimated risk under the
SEL function. We have also calculated the ERs of the approximate Bayes estimators under
the LEL and GEL functions, according to their own corresponding loss functions, whereas
for the ML estimators, we have obtained both ERLs and ERGs and the related results
are reported in Table 2.

Table 3 is devoted to the computed biases for all kinds of the considered estimators.
Moreover, the calculated average widths (AWs) and estimated coverage probabilities

(CPs for short) of the 95% intervals are tabulated in Table 4.
From Tables 1–4, we extract the following conclusions:

• The approximate Bayes estimators under the SEL function possess smaller EMSEs
than the ML estimators for the cases of R = 0.28, and 0.50, but the reverse is true
for the cases of R = 0.12 and 0.87.

• Among the approximate Bayes estimators, the EMSEs of those under the SEL
function are either the smallest or close to the smallest values in most cases, as
expected.

• Among the Bayesian approximation methods, for the cases of R = 0.12, 0.28 and
0.50, the best and worst performances in terms of EMSE are observed with the TK
and IS methods, respectively, in most cases. In contrast, for the case of R = 0.87,
the M-H and TK strategies produce the smallest and largest EMSEs, respectively,
in most cases.

• The ERLs and ERGs are decreasing w.r.t. the number of records in most cases.
However, the biases do not have a special behavior w.r.t. the number of records.

• The approximate Bayes estimators under the GEL function perform the best
among all kinds of the considered estimators in terms of bias when R = 0.12
and 0.28, whereas the ML estimators demonstrate the best performance in this
respect for the case of R = 0.87.

• The computed biases for all kinds of the considered estimators are negative when
R = 0.87.

• The AWs have the biggest values for the case of R = 0.5. As the number of
records increases, the AWs decrease in most cases.

• The Boot-P interval estimators outperform all other kinds of interval estimators in
the sense of CP (one exception exists), whereas the smallest values of CP belong
to the MACIs in most cases.
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• The CSSW CrIs based on the IS method possess the smallest AWs in most cases
except for the case of R = 0.87. For the case of R = 0.87, the MACIs are the
shortest intervals on average (one exception exists).
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Table 1. Computed EMSEs of the point estimators of R.

Ex
ac

t
IS

M
et

ho
d

M
-H

M
et

ho
d

T
K

M
et

ho
d

va
lu

e
LE

L
G

EL
LE

L
G

EL
LE

L
G

EL
(θ

1,
θ 2

)
(n

,m
)

of
R

M
L

SE
L

c
=

−
0.

2
c

=
0.

2
q

=
−

0.
2

q
=

0.
2

SE
L

c
=

−
0.

2
c

=
0.

2
q

=
−

0.
2

q
=

0.
2

SE
L

c
=

−
0.

2
c

=
0.

2
q

=
−

0.
2

q
=

0.
2

(0
.5

,2
)

(3
,3

)

0.
12

0.
01

70
0.

01
90

0.
01

86
0.

01
95

0.
01

28
0.

01
45

0.
01

90
0.

01
85

0.
01

95
0.

01
27

0.
01

44
0.

01
75

0.
01

97
0.

02
05

0.
01

18
0.

01
34

(3
,4

)
0.

01
43

0.
01

54
0.

01
50

0.
01

57
0.

01
06

0.
01

19
0.

01
52

0.
01

48
0.

01
55

0.
01

06
0.

01
18

0.
01

45
0.

01
61

0.
01

68
0.

01
01

0.
01

13
(3

,5
)

0.
01

59
0.

01
68

0.
01

64
0.

01
72

0.
01

13
0.

01
29

0.
01

66
0.

01
63

0.
01

70
0.

01
13

0.
01

28
0.

01
61

0.
01

77
0.

01
84

0.
01

09
0.

01
24

(4
,4

)
0.

01
09

0.
01

23
0.

01
20

0.
01

25
0.

00
86

0.
00

96
0.

01
24

0.
01

21
0.

01
27

0.
00

86
0.

00
96

0.
01

18
0.

01
28

0.
01

34
0.

00
82

0.
00

92
(4

,5
)

0.
01

19
0.

01
34

0.
01

31
0.

01
36

0.
00

97
0.

01
07

0.
01

32
0.

01
29

0.
01

34
0.

00
94

0.
01

04
0.

01
26

0.
01

35
0.

01
40

0.
00

90
0.

01
00

(5
,5

)
0.

00
95

0.
01

11
0.

01
09

0.
01

13
0.

00
82

0.
00

90
0.

01
08

0.
01

06
0.

01
10

0.
00

78
0.

00
86

0.
01

04
0.

01
10

0.
01

14
0.

00
75

0.
00

83

(1
,2

)

(3
,3

)

0.
28

0.
03

13
0.

02
74

0.
02

70
0.

02
79

0.
02

56
0.

02
57

0.
02

75
0.

02
70

0.
02

80
0.

02
55

0.
02

57
0.

02
62

0.
02

62
0.

02
68

0.
02

44
0.

02
46

(3
,4

)
0.

03
17

0.
02

77
0.

02
73

0.
02

82
0.

02
54

0.
02

57
0.

02
77

0.
02

72
0.

02
82

0.
02

54
0.

02
58

0.
02

65
0.

02
69

0.
02

76
0.

02
43

0.
02

47
(3

,5
)

0.
02

84
0.

02
49

0.
02

45
0.

02
53

0.
02

31
0.

02
33

0.
02

42
0.

02
39

0.
02

46
0.

02
26

0.
02

28
0.

02
38

0.
02

42
0.

02
49

0.
02

21
0.

02
23

(4
,4

)
0.

02
49

0.
02

29
0.

02
26

0.
02

33
0.

02
14

0.
02

16
0.

02
29

0.
02

25
0.

02
32

0.
02

14
0.

02
16

0.
02

18
0.

02
18

0.
02

24
0.

02
04

0.
02

06
(4

,5
)

0.
02

52
0.

02
30

0.
02

26
0.

02
33

0.
02

14
0.

02
16

0.
02

30
0.

02
26

0.
02

33
0.

02
13

0.
02

16
0.

02
21

0.
02

22
0.

02
28

0.
02

04
0.

02
07

(5
,5

)
0.

01
88

0.
01

85
0.

01
82

0.
01

88
0.

01
70

0.
01

73
0.

01
77

0.
01

74
0.

01
80

0.
01

62
0.

01
65

0.
01

70
0.

01
71

0.
01

76
0.

01
57

0.
01

59

(1
,1

)

(3
,3

)

0.
50

0.
04

24
0.

03
38

0.
03

38
0.

03
38

0.
04

09
0.

03
78

0.
03

38
0.

03
38

0.
03

38
0.

04
08

0.
03

78
0.

03
36

0.
03

03
0.

03
04

0.
04

09
0.

03
78

(3
,4

)
0.

03
80

0.
03

08
0.

03
08

0.
03

07
0.

03
76

0.
03

46
0.

03
07

0.
03

07
0.

03
06

0.
03

75
0.

03
45

0.
03

04
0.

02
80

0.
02

80
0.

03
73

0.
03

43
(3

,5
)

0.
03

25
0.

02
67

0.
02

67
0.

02
67

0.
03

26
0.

03
00

0.
02

66
0.

02
67

0.
02

66
0.

03
24

0.
02

99
0.

02
61

0.
02

44
0.

02
44

0.
03

20
0.

02
94

(4
,4

)
0.

03
23

0.
02

69
0.

02
69

0.
02

70
0.

03
16

0.
02

96
0.

02
66

0.
02

66
0.

02
66

0.
03

13
0.

02
93

0.
02

63
0.

02
46

0.
02

46
0.

03
12

0.
02

91
(4

,5
)

0.
03

02
0.

02
58

0.
02

58
0.

02
58

0.
03

06
0.

02
85

0.
02

53
0.

02
53

0.
02

53
0.

03
01

0.
02

80
0.

02
50

0.
02

36
0.

02
36

0.
02

99
0.

02
78

(5
,5

)
0.

02
79

0.
02

39
0.

02
39

0.
02

39
0.

02
76

0.
02

60
0.

02
39

0.
02

39
0.

02
39

0.
02

76
0.

02
60

0.
02

34
0.

02
24

0.
02

23
0.

02
71

0.
02

55

(2
,0

.5
)

(3
,3

)

0.
87

0.
01

59
0.

01
80

0.
01

85
0.

01
76

0.
02

45
0.

02
19

0.
01

77
0.

01
81

0.
01

73
0.

02
40

0.
02

15
0.

01
90

0.
01

95
0.

01
87

0.
02

59
0.

02
32

(3
,4

)
0.

01
24

0.
01

48
0.

01
51

0.
01

44
0.

01
97

0.
01

78
0.

01
45

0.
01

48
0.

01
41

0.
01

92
0.

01
73

0.
01

53
0.

01
56

0.
01

49
0.

02
05

0.
01

84
(3

,5
)

0.
01

17
0.

01
43

0.
01

46
0.

01
39

0.
01

88
0.

01
70

0.
01

44
0.

01
47

0.
01

40
0.

01
89

0.
01

71
0.

01
49

0.
01

52
0.

01
45

0.
01

97
0.

01
78

(4
,4

)
0.

01
13

0.
01

30
0.

01
33

0.
01

27
0.

01
66

0.
01

52
0.

01
28

0.
01

31
0.

01
25

0.
01

63
0.

01
50

0.
01

33
0.

01
38

0.
01

32
0.

01
72

0.
01

57
(4

,5
)

0.
01

04
0.

01
25

0.
01

28
0.

01
23

0.
01

56
0.

01
45

0.
01

21
0.

01
24

0.
01

19
0.

01
52

0.
01

41
0.

01
27

0.
01

30
0.

01
25

0.
01

61
0.

01
48

(5
,5

)
0.

00
98

0.
01

14
0.

01
16

0.
01

12
0.

01
38

0.
01

29
0.

01
10

0.
01

13
0.

01
08

0.
01

35
0.

01
26

0.
01

13
0.

01
16

0.
01

12
0.

01
39

0.
01

30



308 B. Etemad Golestani, E. Ormoz, S.M.T.K. MirMostafaee

Table 2. Computed ERLs and ERGs of the ML estimators and the approximate
Bayes estimators of R.
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Table 3. The estimated biases of the point estimators of R.
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Table 4. The AWs and CPs of the 95% interval estimators of R.
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6. Application
In this section, as an example, we consider two independent record data to illustrate

the inferential procedures developed in the paper. Crowder [22] considered data sets
reflecting the lifetimes of steel specimens (in units of 1000 cycles) subjected to different
stress amplitudes, see also [33,38]. The specimens were tested at 14 distinct stress levels:
32.0, 32.5, 33.0, . . . , 38.0, 38.5. Taniş et al. [55] analyzed the data for 33.0 and 32.0 stress
levels. In this analysis, we focus on the data for stress amplitudes of 32.0 (Data Set I) and
32.5 (Data Set II), which are divided by 1000. These data can also be found in [36] (page
574). Data Set I and Data Set II are reported in Tables 5 and 6, respectively.

Table 5. Data Set I: (The level stress: 32.0).

1.144 0.231 0.523 0.474 4.510 3.107 0.815 6.297
1.580 0.605 1.786 0.206 1.943 0.935 0.283 1.336
0.727 0.370 1.056 0.413 0.619 2.214 1.826 0.597

Table 6. Data Set II: (The level of stress: 32.5).

4.257 0.879 0.799 1.388 0.271 0.308 2.073 0.227
0.347 0.669 1.154 0.393 0.250 0.196 0.548 0.475
1.705 2.211 0.975 2.925

According to [55], Data Set I and Data Set II are independent. The inverse Lindley
distribution is fitted to the above data sets separately using the Kolmogorov-Smirnov (K-
S) test. Note that the old version of the K-S test is not suitable here as the parameter
estimates are obtained from the same data sets, see [51, 54]. So we use a bootstrapped
version of the K-S test, described in detail in [16]. For Data Set I, the K-S test statistic
and its corresponding bootstrapped p-value with θ̂1 = 0.9892 are given by D = 0.0917 and
p = 0.9286, respectively and for Data Set II, the K-S test statistic and its corresponding
bootstrapped p-value with θ̂2 = 0.8089 become D = 0.0862 and p = 0.9864, respectively.
Therefore, the inverse Lindley model fits both data sets quite well.

We have extracted the first three lower records from Data Set I as follows:
1.144, 0.231, 0.206.

Besides, we extracted the first six lower records from Data Set II as follows:
4.257, 0.879, 0.799, 0.271, 0.227, 0.196.

Here, we calculated the point and 95% interval estimates under the same settings of the
simulation study (stated in Section 5) and the results are reported in Table 7. Since the
point estimates are less than 0.5, we may conclude that the probability that the lifetime
under stress 32.0 becomes more than the lifetime under stress 32.5 is not high.

7. Concluding remarks
The parameter R = P (Y < X) is one of the important measures to compare two

populations. Besides, this parameter can be applied to stress strength models and that is
why it is called the stress-strength parameter and can be used in reliability experiments
and life testing. In this paper, we assume that the populations under study possess the
inverse Lindley distribution with parameters θ1 and θ2. As the inverse Lindley distribution
possesses a UTB-shaped hazard function, this model can play a key role in many real-
life experiments. We worked on the point and interval estimation of R through classical
and Bayesian procedures. A simulation study was performed to assess the estimators
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Table 7. The numerical results of the example.

point estimates 95% interval estimates
ML 0.3210 MACI (0.0000 , 0.6600)

TK

SEL 0.3269
Boot-P CI (0.1059 , 0.7236)LEL, c = −0.2 0.3370

LEL, c = +0.2 0.3423
GEL, q = −0.2 0.2738 Norm-Boot CI (0.0000 , 0.6528)GEL, q = +0.2 0.2928

M-H

SEL 0.3424

M-H CSSW CrI (0.0637 , 0.6846)
LEL, c = −0.2 0.3396
LEL, c = +0.2 0.3453
GEL, q = −0.2 0.2832
GEL, q = +0.2 0.3048

IS

SEL 0.3397

IS CSSW CrI (0.0875 , 0.5816)
LEL, c = −0.2 0.3374
LEL, c = +0.2 0.3421
GEL, q = −0.2 0.2941
GEL, q = +0.2 0.3101

developed in the paper. From the simulation study, we deduce that among the Bayesian
approximation methods, the TK procedure outperforms the IS and M-H methods in most
cases in terms of the EMSE and estimated risk, when R is small. In the context of interval
estimation, despite the fact that the Boot-P CIs do not possess the smallest AWs among
the other considered intervals in the simulation, we recommend using the Boot-P CIs as
their CPs are large enough to be near the nominal value 0.95 which is the considered
confidence level of interval estimators.

We also presented a real data example, that involved two real data sets of lifetimes
of steel specimens subjected to two distinct stress amplitudes. Here, the parameter R
can help us compare the lifetimes under different stress levels. Suppose that a researcher
is interested in knowing the probability that a lifetime under a specified level exceeds a
lifetime under another stress level, so we see that the measure R plays a key role in this
regard. Furthermore, suppose the researcher has only access to the observed lower records.
Here, from Table 7, we may conclude that R is approximately, for example, 0.33 as most
point estimates are close to this value and the interval estimates also contain this value.
For further analysis, we can use hypothesis testing to determine whether R equals this
number or not. So, assuming that the true value of R coincides with 0.33, the researcher
may expect that a specimen under stress level 32.0 fails sooner than another specimen
under stress level 32.5.

One can also work on other types of estimators of R for the inverse Lindley distribu-
tion, such as the preliminary test estimator, Bayesian shrinkage estimator, E-Bayesian
estimator, empirical Bayes estimator, Bayesian hierarchical estimator and so on. More-
over, the problem of estimation of R based on other types of information samples, such as
progressively Type I and Type II censored data, hybrid censored data and other different
types of censored data, record ranked set samples, k-record values, upper records and
inter-record times and so on. Besides, we can focus on the estimation of R for the newly
introduced extensions of the inverse Lindley distribution, like the weighted inverse Lindley
distribution [49]. Working on the above-suggested topics may become under progress by
the authors. All the computations were done using the statistical software R [47] and the
packages coda [45, 46], LindleyR [40] and truncnorm [41] therein.
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where B, C and D are given in (3.5), (1.5), (3.6), respectively.
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