Volume 54 (1) (2025), 291318

(7 Hacettepe Journal of Hacet. J. Math. Stat.
Mathematics & Statistics DOI : 10.15672/hujms.1489598

RESEARCH ARTICLE

On the estimation of the stress-strength
parameter for the inverse Lindley distribution
based on lower record values

Bahareh Etemad Golestani'(®, Ehsan Ormoz*'(2, S.M.T.K. MirMostafaee?

! Department of Mathematics and Statistics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

2 Department of Statistics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

Abstract

In this article, we consider the estimation of the stress-strength reliability parameter for
the inverse Lindley distribution based on lower record values. The maximum likelihood es-
timator and its asymptotic distribution are obtained. An approximate classical confidence
interval, as well as two bootstrap-type confidence intervals for the reliability parameter
are derived. The Bayesian inference for the parameter has been considered using Tier-
ney and Kadane’s approximation method, as well as two Monte Carlo methods, namely
the Metropolis-Hastings and importance sampling techniques under both symmetric and
asymmetric loss functions. Besides, the Chen and Shao shortest width credible intervals
are constructed for the stress-strength parameter. A simulation study and a real data
example are conducted to explore and compare the performances of the presented results.
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1. Introduction

Lower record values and upper record values deal with identifying the lowest and the
highest values observed in a data set, respectively. These concepts are commonly used in
statistical analysis to understand the extremes of a data set and can provide insights into
the variability and distribution of the data. Applications of lower and upper record statis-
tics can be found in various fields such as reliability, meteorology, sports science, finance,
industrial stress testing, mortality studies, medicine and quality control. In sports sci-
ence, these statistics are commonly used to track athletes’ personal bests and performance
records, see for example [55]. In mortality studies, lower record values can provide insights
into extreme cases of mortality, identify vulnerable populations and help researchers find
factors contributing to mortality rates. Lower record statistics can also be used in financial
analysis to determine the lowest values of stock prices, interest rates, or other financial
indicators, which can help investors and financial analysts understand the risks associated
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with investing in certain assets or markets. Moreover, lower record statistics are crucial in
monitoring environmental conditions such as temperature, rainfall, pollution levels, etc.
By tracking the lowest values in these parameters, researchers can discover trends, anom-
alies and potential environmental hazards. Let {X;, j > 1} be a sequence of independent
identically distributed (iid) continuous random variables and Xp,,,,) = min{ X, ..., X5, },
m > 1, then an observation Xj is a lower record value of { Xy, m > 1} if it becomes
less than all its preceding observations. Equivalently, we can say that X; < X; for all
values ¢ that are less than j and we have

L(l) =1, L(m) = mln{j’j > L(m - 1)?Xj < XL(m—l)}'

The sequence {L(m), m > 1} is called the record times. See [4] for more details on the
theory and applications of record values.

The inverse Lindley distribution was introduced by [53]. Let Y be a Lindley distributed
random variable with parameter § whose density can be expressed as follows

2
f(y;0) = 150

(14+ye ™, y>0, 6>0.

1
Then, the random variable X = v is said to have the inverse Lindley distribution and its

probability density function (PDF) is then given by
0> 1+mz\ _o
f(x,9)21+6( = )e =, x>0, 6>0. (1.1)

We write X ~ ILD(6) if the PDF of X can be written as (1.1). The corresponding
cumulative distribution function (CDF) is also given by
[

0 _e

Moreover, the hazard rate function of X is given by
02(1 + x)e
_e7’
(1+6)z3 [1 - (1 + ﬁ)e ]

F(z;0) = (1+

h(z;0) = x>0, 6>0.
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Figure 1. PDFs and HRFs of the inverse Lindley distribution for selected values
of 6.

Figure 1 presents the PDFs and HRFs of the inverse Lindley model for selected values
of 6. As it can be seen from Figure 1, the HRF of the inverse Lindley distribution involves
an upside-down bathtub (UBT) shape. The UBT-shaped distributions may be applied to
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many real-life situations and experiments, see for example [24]. Langlands et al. [35] ana-
lyzed the breast carcinoma data and found out that the mortality rates peaked at a time
and then exhibited a gradual decline. Bennett [13] studied lung cancer trial data which
revealed the failure rates followed a UBT-shaped pattern. Joo and Mi [30] emphasized
that the HRF of a series system formed by the two components could be UBT-shaped.
The inverse Lindley distribution with a UBT-shaped HRF, also enjoys the advantage of
possessing simple forms for its PDF and CDF with only one parameter. This feature was
also highlighted by Alotaibi et al. [3] who underlined that this admirable characteristic
smoothes out the mathematical difficulties and then focused on the inference for the in-
verse Lindley distribution based on adaptive Type II progressively censored data. Many
other researchers also worked on the inferential problems related to the inverse Lindley
distribution, see for example [11,12,17,25,28,37] and [27]. Recently, Asgharzadeh et al.
[5] addressed the problem of estimating the PDF and CDF of the inverse Lindley model
based on different methods of estimation.

A system or a component works in a reliability stress-strength model, provided that the
stress does not become bigger than the strength. Let X denote the strength and Y denote
the stress, where X and Y are statistically independent, then the probability that the
system or the component works becomes R = P(Y < X). In addition, parameter R may
be employed as a measure of comparison of two independent populations. For example,
if we are interested in studying monthly rainfall related to two cities, say city A and city
B, then we may be curious to know the probability that city A receives more rainfall
amount than city B. In medicine, when the random variables X and Y are the number
of cancer patients treated with two different chemotherapy methods, R can be used as
a measure to identify the more effective treatment, see [44]. The parameter R is called
the stress-strength parameter or the reliability parameter, which has many applications
in many fields like life testing, reliability, military, medical sciences, economics, social
sciences, psychology and engineering.

The term stress-strength was first used by [20], who worked on the estimation of R for
normal variates. Since then, many studies on the estimation of R for various distributions
have been accomplished by many authors, see [21, 31,44, 48, 55] for examples of recent
studies on this parameter. In recent years, the subject of estimating the stress-strength
parameter based on record statistics has absorbed many scientists, see for example [8]
and [62] for the generalized exponential distribution, [7,9] and [10] for the two-parameter
exponential distribution, [43] for the Kumaraswamy distribution, [39] for the Lomax dis-
tribution, [56] and [1] for the Chen distribution, [57] for the Burr Type X distribution,
[6] for the two-parameter generalized exponential distribution, [34] and [19] for the Burr
Type XII distribution, [32] for the Parero distribution, [59] for the Gompertz distribution,
and [55] for the exponential power distribution.

Let X and Y be two independent random variables, where X follows an inverse Lindley
distribution with parameter #; and Y follows an inverse Lindley model with parameter
02, then the reliability parameter R = P(Y < X) may be obtained as follows:

R=R(01,6) — /OOO P(Y < X|X = 2)fx(z)dz

9%92 /OO 1 _91+92d 9%(14—292) /OO 1 61+69
0 0

. = — z  d
A+600+6) Jo 71° T AT o460 Jo B g

9% >~ 1 01+02
_ 7Td
+ 1+ 91 /0 3326 .

_ 03{20> + (14 205) (01 + 02) + (1 + 62) (61 + 02)°} _ C6%
(14 601)(1 + 62)(61 + 62)3 A3’
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where

Agje = (1+01)"(1 + 62)7 (61 + 6)F, (1.4)
C =20 + (1 + 262)Aoo1 + Ao12-

Sharma et al. [53] and Hassan et al. [28] discussed the problem of estimation of R for
the inverse Lindley distribution based on simple random samples and based on ranked
set samples, respectively. This paper aims to estimate the stress-strength parameter R =
P[Y < X] when the strength X and the stress Y are two independent random variables
from the inverse Lindley distribution based on lower record values.

The outline of this paper is organized as follows: The maximum likelihood (ML) esti-
mation of R is discussed in Section 2. In Section 3, the asymptotic confidence interval and
the bootstrap confidence intervals of R are obtained. Section 4 is devoted to the Bayesian
point and interval estimation of R. The Bayesian point estimates of R are found under
one symmetric and two asymmetric loss functions. However, as it seems that the related
integrals cannot be expressed in closed forms, three well-known methods are utilized to
approximate the Bayes estimates. A simulation study is also conducted in Section 5 to
check the performances of the proposed classical and approximate Bayes estimators. A
real data example in Section 6 is presented for the purpose of illustration. Finally, several
remarks end the paper in Section 7.

2. Maximum likelihood estimation

Let R = (Ry,---,R;,) be the first n lower record values extracted from an inverse
Lindley distribution with parameter 6; and S = (Sy,---,Sy,) be the first m lower record
values extracted from an inverse Lindley distribution with parameter 6. Suppose that
r = (ry,...,r,) is the observed set of R and s = (s1,...,Sy) is the observed set of S.
Suppose further that R and S are statistically independent. Due to the independence of
R and S, the likelihood function of 6 = (01, 62) given r and s, can be written as

L(9|’I°, S) = L1(91|T‘)L2(92|S),

where
nfl T
Li(01]7) = f(rn; 61) H i3
and
Lo(6a]) = g(sm: 0 ni‘[ 9(s;302)
2(02|8) = g(sm; 02) ] 53,02)

in which f(-;61) and F(-;61) are the PDF and CDF of ILD(6,), respectively, and g(-; 62)
and G(-;62) are the PDF and CDF of ILD(6s), respectively. Thus, from (1.1) and (1.2),
we have

7]
02 e 14 —1
Li(01|r) = —— . ! 01(1+7; i 2.1
ol = g S I L@ ™ (2.1)
]
P2m oI M1 4. Mot .
Lo(05]8) = —2— . J O5(1 + s; ) 2.2
2(02|s) 1+6;, s ]1;[1 53 j:1(2( +$J)+SJ) (2.2)
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Therefore, the log-likelihood function of @ given r and s denoted by ¢(61, 02|r, s) is given
by

n—1

0(01,03]r,s) =2nlnb; —In(1+60;) — % _ > In (61(1473) + i) +2mIn6s
no o
—In(1+63) — —= — Y In(62(1 + s5) + 5;5) + A(r) + B(s),
where
A(r) = Zln(l +r) —Inr, —2 Zlnm,
i=1 i=1
and

m m
= Zln(l +55) —Ins,, — QZlnsj.
; s

The ML estimates of #; and 62 based on the observed lower records may be obtained by
solving the following nonlinear equations

dU(01,05]r,s)  2n 1 1= 14
_2n _ Lt T, 2.3
061 O 14+61 m ; 01(1+7i) +mi (23)
dl(01,0q|r,8)  2m 1 1 14
_m SR N E— 2.4
0 O 1462 sp szl O2(1 + s5) + s, 24

From (2.3) and (2.4), the ML estimates of #; and 63 can be obtained as the fixed point
solutions of hy(61) = 01 and ha(f2) = 62, respectively, where

ha(61) = 2n(~— f i)_l, (2.5)

1+91 — O (L+7m) + 7
and
1 el 1+ s; -1
ho(63) = 2 e — . 2.6
2(02) = 2m (- + ZQQHSJ,)Hj) (2.6)

Since the ML estimate of 6, is a fixed point solution of the nonlinear equation (2.5) and
the ML estimate of 5 is a fixed point solution of the equation (2.6), therefore they can
be obtained by using a simple iterative scheme. For the proof of the uniqueness of the
resulting ML estimates, see [27].

Let §1 and 52 be the ML estimators of 61 and 6, respectively. Then, by the invariance
property of ML estimation, the ML estimator of R based on lower record values, denoted
by ]?2, is given by

7 02{20 + (14 205)(B1 +82) + (14 02) (01 + 62)°) 27
(14601)(1 + 62)(61 + 62)3

3. Classical confidence intervals for R

In this section, we present a modified asymptotic confidence interval, as well as two
bootstrap-type approximate confidence intervals for R.
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3.1. Asymptotic confidence interval for R

In this subsection, first, we obtain the asymptotic joint distribution of 0; and 0, and
then we focus on the asymptotic distribution of R. Then, a modified asymptotic confidence
interval for R based on the asymptotic distribution of R is constructed.

The expected Fisher information matrix of R and S about the parameter vector 0 is

given by Ir s(0:1,62) = (21 gz) , where Is;1 = I1o = 0 due to the independency of R

and S and

IH - _F 82 In th...7Rn7517.“75m<R1, e ,Rn, 51, cee ,Sm)
06? !
Iy = _E 0? In fR, - Ru,S1, S (B1s -, Ry, S1,0 0+, Sm)
002 !
in which fr, .. R..S1, . 8m (715 s Tny 81,7+, Sm) is the joint distribution of Ry, , Ry,
S1,++ ,Sm, provided that the above expectations exist. One can estimate I1; and s

using the ML estimators of 8, and 65 as follows
_82 In le,--- JRp,S1, ,Sm(Rlv T aan Sla e 7Sm)

-/[\11 - 7] PR
007 (01,02)=(61.,02)
2 1 .y 1+ R; 2
U N S S 1)
(9% <1+91>2 i—1 Hl(l—i-Ri)—i-Ri
T o 821nfR1,--~,Rn,Sh“-,Sm(Rl:"' aR'rwSla"' 7Sm)
I, = - 502 R
2 (01,02)=(61,02)
2 1 =l 1+S; 2
= 23 (= R )" (3.2)
05 (L4+62)2 5 V0a(1+S5) + S
Next, we define a vector n = (11,72), where (note that R = R(61,62))
mo o= 8?(91,62) _ 91(20 + GlB) B H%C(A()lg + 314112) (3 3)
061 Aq13 A3, ’ ’
OR(01,00) 02D  62C(Ao3 + 3A112)
n = = - 5 ; (3.4)
00, A1 Afq
in which A;;, and C are given in (1.4) and (1.5), respectively and
B=1+205+ 2A011, (35)
D =3+ 2605 + Agoz + 24001 (2 + 02). (3.6)

It is clear that 7 and 72 are functions of 6 and 62, so we can write n; = g1(61,602) and
N2 = g2(61,602). Thus, using the invariance property of ML estimators, the ML estimators
of 1 and 79 are given by 7; = 91(51, é\g) and 72 = g2 (9\1, 52), respectively.

Now, we can use the delta method (see for example [52]) and state that as n — oo,
m — oo and 7 — p, where p is a constant, then the asymptotic distribution of R is
normal with the mean R and the variance §, where

§ =" Igls(01,02)n,
in which I5's(61,62) is the inverse matrix of Ig s(61,602). So we have
5 — i% + L%’
L Iz
where 1, and 72 are defined in (3.3) and (3.4), respectively.
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As § involves unknown parameters #; and 02, we may estimate § using (3.1), (3.2) and
the ML estimators of 1 and 0. Therefore, an estimator for the asymptotic variance of R
is given by

6= 17;% + 17;%,
It I

where I;; and Iz are given in (3.1) and (3.2), respectively and 7; and 72 are the ML
estimators of n; and 79, respectively.
Therefore, a 100(1 — v)% asymptotic confidence interval for R is given by

(E—Z%\/E,E—i—,z%\/%),

where z, is the 100y-th upper quantile of N(0,1). As R € [0, 1], we propose the following
100(1 — )% modified asymptotic confidence interval (MACI) for R

(max{o,ﬁ— zg\[g} ,min {R—i—z;\/g, 1}) .

3.2. Bootstrap confidence intervals for R

In this subsection, two confidence intervals using parametric bootstrap techniques are
suggested. The first confidence interval is the bootstrap percentile confidence interval
(Boot-P CI) which is based on [26]. The second confidence interval, is the Normal boot-
strap confidence interval (Norm-Boot CI) which is based on [61]. The following algorithm
is used to generate parametric bootstrap samples.

Algorithm 1

Step 1 . Compute the ML estimates of 81, 82 and R, denoted by él, 65 and ]:2, respectively,

from the two originally observed samples of lower records (r1, -+ ,7r,) and (s1,- - , $m).
Step 2 . Generate a bootstrap lower record sample {r,r3,--- ,r}} from I LD(él) and a
second bootstrap lower record sample {s},--- s’ } from I LD(ég).
Step 3 . Compute the bootstrap estimates, say 5*, 55‘ and R* based on {ri,ry,---,m}
and {s},---, sk }.

Note: R* can be computed using equation (2.7).

Step 4 . Repeat Steps 2 and 3, B times to obtain the bootstrap sample {}TZT, e ,E*B},
where B is a large number.

To construct the bootstrap confidence interval for R, the bootstrap sample generated
by the aforementioned algorithm is used and two different bootstrap confidence intervals
are obtained as follows:

(i) Bootstrap percentile method
An approximate 100(1 — )% Boot-P CI for R is given by (see for example [23],
page 203)

(Risn3y Riina-30)-
where Ry is the ¢g-th ordered value of the bootstrap sample {E’{, N A"é}.

(ii) Normal bootstrap method
An approximate 100(1 — a)% confidence interval of R is given by (see, for example

[61], page 110)
(R — zg \var(R*), R + z%\/var(]i;*) )
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where \/var(RA*) is the bootstrap estimate of the standard error and R is the ML
estimate of R.

4. Bayesian estimation of R

In this section, the Bayesian estimation of R will be discussed under the assumption
that the parameters 61 and 6 are independent gamma random variables, namely we have
01 ~ T'(a1,P1) and 02 ~ I'(ag, B2). Thus, the prior densities of §; and 0 are given by
5?i9?i—1efﬁi9i

F(O&i) ’
where a1, b1, ao and by are positive hyperparameters that can be determined based on the
prior knowledge of the researcher(s).

Due to the independency of 6 and 05, the joint prior density of #; and #2 becomes

(01, 02) = w(01) - w(62). (4.1)

From (2.1), (2.2) and (4.1), the joint posterior density of #; and 6 given r and s is given
by

7(6:) 0, >0&i=1,2

Ll (91 ‘T)LQ(@Q ’8)71'(91, 92)

7T(01702’T,S) - f(;)ofoooL1(91’T‘)L2(02|8)7‘((01,(92)d(91d92

- %G%nwl_l@gmmrlﬁ(ﬁ91)52(8792)
xexp(—ﬂl(%%—ﬁﬂ —92(5i +ﬂ2)>7 (4.2)
where
n—1 -
a0r0) = {040 []@0+r) )}
i .
&(s,00) = {(1+02) [T (2(1455)+55)}
j=1
and

K* :/0 /0 prrrai—lg2miaz=le (1 g )e) (s, 0y) exp(— 91(7 + B1) — 02(5— + 52))0191(192_
Due to the independency of #; and 62 and independency of R and S, one can see that

(01, 02|r, 8) = 71 (1) - w3 (0a]s),

where
* 1 2n+a1—1 1
i (01fr) = =6 0 exp (— 61— + 1)), (4.3)
1 n
and
* 1 2m—+ao—1 1
75(02]s) = Wez §2(s,02) exp ( - 92(? + Bg)), (4.4)
2 m
in which - )
Ky = / 671 e (r, 61) exp ( — 0 (—+ 51))(191,
0 Tn
and

* omtas— 1
K;:/() 9% oz 152(8,92)8)([)(—Hg(;—i—ﬁg))deg.

For point Bayesian estimation of R, we consider three loss functions. The first function
is the squared error loss (SEL) function, which is a symmetric function, namely, it gives
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the same weights to the underestimation and overestimation. However, in many appli-
cations, the underestimation and overestimation do not have the same consequences, so
using asymmetric loss functions seems logical in such situations. Here, we use two asym-
metric loss functions, which are the linear-exponential loss (LEL) function and the general
entropy loss (GEL) function. The LEL and GEL functions were proposed by [60] and [14],

~

respectively. Let € be an estimator of 6, then the LEL and GEL functions are defined as
£1(0,0) = b (exp{e(0— 0} —c(@-0)—1), b>0, c#0, (4.5)

and

~\ ¢ ~
Lg(é\, 9) X (g) - qln <Z> - 17 q 7& 07 (46)

respectively.

Without loss of generality, one can take b = 1 in (4.5). The parameters ¢ in (4.5) and
q in (4.6) should be determined carefully, as the sign and magnitude of these parameters
are important and affect the loss. A positive value of ¢ in the LEL function will make the
overestimation more serious than the underestimation and vice versa; see [63]. Similarly,
a positive value of ¢ in the GEL function causes the overestimation to be more serious
than the underestimation and vice versa, see [14,15].

From (1.3), the Bayes estimate of R under the SEL function is obtained from the
following relation

RS:/ / R(b1,62) (61, 62|r, s)d01db2, (4.7)
o Jo

provided that the above integral exists.
In addition, the Bayes point estimates of R under the LEL and GEL functions are given
by

=R 1 0o oo
L (/ / exp{—cR(61,02)} 7 (61, b|r, s)d91d92) , (4.8)
0 0
and

R = (/OOO /Om[sz(el,@)]—q 7r*(91,02]r,s)d91d92) , (4.9)

|-

respectively, provided that the integrals given in (4.8) and (4.9) exist.

It seems that the integrals given in (4.7), (4.8) and (4.9) cannot be obtained analyti-
cally. Therefore, three different approaches are used to obtain the approximate Bayesian
estimates of R, namely Tierney and Kadane’s approximation, importance sampling (IS)
and Metropolis-Hastings (M-H) methods.

4.1. Tierney and Kadane’s approximation

In this subsection, we present Tierney and Kadane’s (TK) method for approximating
the required posterior means under the SEL, LEL and GEL functions. This method,
introduced by [58], employs Laplace’s formula to compute approximate posterior moments.
Moreover, [58] demonstrated the superior accuracy of the proposed approach compared to
Lindley’s approximation method. Let 6(61,02|r,s) = In7*(01, 62|r, s) be the log-posterior
of (61,02), g(61,02) = %6(61,062|r,s), where N = n +m and g*(61,62) = g(61,602) +
+ InU(61,6). Then, the posterior moment of any function of @ = (61, 62) such as U (61, 62)
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may be approximated as follows

01,0 6(01,05|r, s))dh,do
(U(91,92)|r S) fo fo U(bh, 2)9Xp( (01, 62|r 3)) 1402
Joo Jo~ exp (6(61, 027, s))dO1d02
_ Jo° J57 exp (Ng* (61, 02))d61db
Jo° Jo7 exp (Ng(61,62))d6,d0

= (i(jt((zg*)) )% exp (N (g*(65,03) — 9(01,62)) ). (4.10)

where (61, 62) represents the posterior mode of g(8y,602), (67,05) maximizes g*(01,0:) and
¥* and ¥ denote the negative inverse Hessian matrice of g*(01,62) and ¢(61, 62), respec-
tively, evaluated at (6%,03) and (61,605), respectively. Note that (6y,60) and (6%, 63) will
be obtained from normal equations. In our case, we have

0
g(61,05) = (2n +a; — 1) In(6;) — In(1 + 6;) — 71 — A6

n

n—1
0
— > (01 (1 + 1) +15) + (2m + a2 — 1) In(62) — In(1 + 62) — .?2
=1 m
m—1
— Bl — > In(62(1 + s5) + 55) — In(K*).
j=1

The maximizer arguments of g(f1,6s), namely (81, 85), will be obtained from solving the
following equations

2n+a; —1 1 n-l 147

69(01,92)_ 1 .
06, _N[ 6, 1+6, r, 291 1+7;) +7J_0’
dg(61,0 1r2m+as—1 1 ml 1+s;
9(8; Q)ZN{ 02 - - By Z j }:
B D +92 Sm (92 +Sj)+8j

Using the second-order derivatives of g(61,62), the determinant of the negative inverse

Hessian of g(61,62) at (61, 05) is given by det(X) = — (911922 — 9%2)_1

, Where
(01,02)=(01,02)

1 dan—1 1 = (14m)?
me N[ 01 " (1+61) i ; (01 (1 +7s) +7“i)2]
1 2mtaz—1 1 (14 s5)?

m =y B U102 A Bl i) ) 2]

and gi2 = g21 = 0.
Now, for computing the Bayes estimates of R based on SEL, LEL and GEL functions, we
follow the following scenarios:

i) SEL
In this case, U(01,02) = R(01,602), so (07,65) can be computed by maximizing
g*(@l, 92) = 9(91, 92) + % In fR(Hl, 92) Therefore

9 (01, 05) = %[2 I(61) + In (205 + (1 + 202)(01 + 02) + (1 + 62)(61 + 02)?)
— ln(l + 91) — ln(l + 92) — 3111(91 + 92)] + 9(91, 92).

In Appendix, the first-order ¢g*(61, 62) with respect to (w.r.t.) #; and 02 are com-
puted. Setting the first-order derivatives of g*(61,62) equal to zero, we can obtain
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(07,0%) and then we have det(X*) = — (gﬁ‘g%ék — 9%52) ' , where gi},
(61,62)=(67,05)
g35 and gi3 are given in Appendix. To approximate the posterior mean of R under
the SEL function, it is sufficient to substitute the above-mentioned elements in
(4.10).
i) LEL
In this case, we consider U(01,602) = e~ eR(01,02) Consequently, the function
g**(01,02) assumes the following form:

—c 163 (202 + (14 262) (01 + 02) + (1 4 62)(0; + 62)?)
W[ (14 61)(1 + 62)(01 + 62)3

The values of (0,03) are determined by equating the derivatives of g**(61,6s)
w.r.t. #1 and 0y with zero. Then, we can find

2\ —1
det(3) = — (193 — ofs”)

g% (61,02) =

| +9(61,65).

)
(01,02)=(07,05)
where ¢%7, g2 and ¢%5 are derived in Appendix.
Subsequently, the approximate Bayes estimate of R under the LEL function takes
the following form:

Ao == { (G

iii) GEL
In this scenario, we consider U(61,62) = (R(61,02)) ? and to obtain (8},603), the

function g®* (6, 02) needs to be considered, where

> (01,07) = [2 In(01) + In (202 + (1 + 262) (61 + 02) + (1 4 62) (61 + 62)?)

) exp (N (62 07,05) — 9(01,)) }.

_4q
N
— ln(l + 91) — 111(1 + 92) — 3111((91 + 92)} + 9(91, 02)

Additionally, by calculating the second-order derivatives of g3*(0y,0s) at (6%,63),
we derive the elements of —Y*, where the second-order derivatives of g3*(6y,6-)
are given in Appendix.

As a result, the approximate Bayes estimate of R under the GEL function is as
follows

Roen = {(S20) exp (N (4" 07.05) - a(01.62)))} "

4.2. Markov chain Monte Carlo (MCMC) method

The MCMC approach is essentially an iterative sampling algorithm, drawing values from
the posterior distributions of the parameters of the concerned model. In this subsection,
we consider an MCMC method to generate samples from the joint posterior distribution
(4.2) and then compute the approximate Bayes estimates of R under SEL, LEL and GEL
functions based on the observed lower record values from the inverse Lindley distributions.
An important subclass of MCMC methods involves Metropolis-Hastings (M-H) algorithm
(see [29,42]). The M-H algorithm can be used to generate samples from any complex
distribution that is known up to a normalizing constant. For more details about MCMC
methods and the related methodologies, one can refer to [50]. Since the posterior density
of @ = (01,02) in (4.2) is not known, we may use the M-H method with positive trun-
cated normal proposal distributions to generate samples from this distribution. The M-H
algorithm is described as follows.
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Algorithm 2

Step 1. Start with an initial guess () = (9%0),950)) = (1,0), where 6, and 0y are the
ML estimates of 61 and 6, respectively.
Step 2. Given 9?71), generate 07 from the positive truncated normal distribution,

N(9§H), U%)I{91>0}. Then th) = 6] with probability

m:m%wwmm%Nm %

w plt—1 IR N

w61 Vi 65167 )
where 7} (-|r) is given in (4.3) and qi(x|b) is the density of N (b, 0%)I(g, 0}, otherwise

(t) _ gt=1)

set 077 =60, .

Step 3. Given Gétfl), generate 65 from the positive truncated normal distribution,
N0, 02)I1g,50y- Then 605 = 03 with probability

m_mm{@@mwﬁ“m>ﬂ}

w305 Is)ax(63105 ")
where 73 (+|s) is given in (4.4) and g2(x|b) is the density of N (b, U%)I{QQ>0}, otherwise
set Gét) = 95571).

Step 4. Compute R® from (1.3) using the generated values of 0&” and 99.

Step 5. Set t = t + 1 and repeat Steps 2, 3 and 4, T times where T is a large number.
Thus, the set {RM), R®) ... R} is the generated sample.

In this paper, we take the parameters of the proposal distributions % and o3 to be the

1 - ~
observed values of = and A respectively, where I1; and I3 are given in (3.1) and (3.2),
11 22
respectively.

We may discard the first K generated values of the sample { R, R(?) ... | R(T)}, where
K is the burn-in period.

So we use the sample {Ry,---, Ry} = {RE+TD RE+2) ... RN where N =T — K.
Now, the approximate Bayes estimate of R under the SEL function is given by

_ 1 XN
RS = NZR“
=1

Moreover, the approximate Bayes estimates of R under the LEL and GEL functions are
given by

_ _ = il —cR;
Ry = Cln(N;e ¢ ),
and
_ 1 XN _1
o= (gL R) "
i=1
respectively.

4.3. Importance sampling technique

The importance sampling (IS) technique is another method of approximating Bayes
point estimates and constructing credible intervals for the parameter of interest, (see [2],
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Section 5.9). The joint posterior density of 6, and 2 given r and s, that is given in (4.2),
can be rewritten as follows

7 (01, 02|7, 5) = g1(61[r) - g2(02]s) - h(61, 0257, 5),
where ¢;(61|7) is the density of the gamma distribution with parameters 2n 4+ a; and

— + 1, g2(02]s) is the density of the gamma distribution with parameters 2m + ag and
-

n

1
— + B2 and
Sm
L'(2n 4+ ay)T'(2m + o)
h(61,02;7,8) = -h*(01,09;7,8),
( 1,02 ) K*(%‘i‘,@l)Qn—’—al(i +62)2m+a2 ( 1,72 )
in which

_ _ m—1 _
h* (91,9277“ S { 1+91 H 91 1—1—7"1 —i—?"z)} ! { 1—1—92 H 92 1+SJ +8])} 1. (4.11)
_ j=1

Now, we use the following algorithm.

Algorithm 3

Step 1 . Generate 611 from g1(01|7).

Step 2 . Generate 021 from go(62]s).

Step 3 . Compute R; from (1.3) using the generated values of 611 and 6o;.

Step 4 . Repeat Steps 1, 2 and 3, N times, where N is a large number, to obtain the
samples {(611,6021), -+, (01n,02n)} and {Ry,--- , Ry}

Now, the approximate Bayes estimates of R under the SEL, LEL and GEL functions
are given by

B _ YNy Rih* (014, 627, 5)

Ry )
SN (644, 0247, )

R; = —lln [ Nle I (B Ol 8)1 )
c Z’:1 h* (011,92i|7’,8)

and

1
o [ 21 Bi " (O, Bl s)] q
“ N B (61, 0: |7, 8) 7
respectively, where h*(01,02; 7, s) is defined in (4.11).

4.4. Bayesian credible intervals for R

In this subsection, due to the results of [18], the Chen and Shao shortest width credible
intervals (CSSW Crls) for R are discussed, based on the generated samples using the
M-H and IS methods. First, we discuss the CSSW CrlI based on the set {R1,--- ,Ryn} =
{R(K‘H), RE+2) ... ,R(T)} generated by an M-H technique. In this regard, we shall use
the following algorithm.
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Algorithm 4

Step 1 . Generate an MCMC sample {R;;i = 1,2, -+, N} using Algorithm 2.

Step 2 . Sort {R;;i = 1,2,---, N} in order of magnitude. Let {R(), R2), -+, R} be
the sorted set of {R;;i=1,2,--+, N} namely Ry < Rig) < -+ < Ryy.

Step 3 . Set K; = (R(j),R(jJr[(l,,y)N])) forj=1,2,--- ,N — [(1 — ’Y)N}

Step 4 . Set Lj = R(j+[(l—'y)N]) - R(]) for j = 1,2, ce ,N - [(1 - ’y)N]

Step 5 . Select j* such that Ljx = min{L;:j=1,2,--- N —[(1 —~)N]}.

Step 6 . Report K« as the 100(1 — v)% CSSW Crl for R.

Note that K;’s in Step 3 of Algorithm 4 are 100(1 — )% credible intervals for R.

Next, we discuss the CSSW Crl based on the sets {(611,621), -, (0in,02n)} and
{Ri1, - ,RN} generated by an IS method. In this regard, we shall use the following
algorithm.

Algorithm 5

Step 1 . Generate samples {(61;,02);i = 1,2,--- N} and {R;;i = 1,2,--- , N} using
Algorithm 3. Set

h* (014, 02:|7, 8)

Sl h*(61), 09507, 8)°
where h*(61,02;7, s) is defined in (4.11).

Step 2 . Sort {R;;i = 1,2,---, N} in order of magnitude. Let {R(), R),---, Rn)} be
the sorted set of {R;;i = 1,2,---, N} namely Ry < Rg) < -+ < R(y). Let further
{way, we), -+ wn)} be the corresponding values of the set {w;;i =1,2,---, N} such
that w;) corresponds to R;) for i = 1,2,---,N. Note that w(; does not imply an
ordered value of w;. A

Step 3 . Set K; = (RY), RUFTII=1IND) for j = 1,2,--- | N —[(1 —4)N], where R() = R
if i wg) <7 S Thawg)

Step 4 . Set L; = RUHI=IND — RU) for j =1,2,--- N — [(1 —4)N].

Step 5 . Select j* such that Lj» = min{L;:j=1,2,--- ,N —[(1 —~)N]}.

Step 6 . Report K- as the 100(1 — v)% CSSW Crl for R.

w; = i=1,---,N,

5. A simulation study

In this section, we evaluate the behavior of the various estimators of the stress-strength
parameter with the help of a simulation study. The numbers of records are taken to be
n = 3,4,5 and m = 3,4,5 such that n < m. The exact values of the parameter R are
chosen to be R = 0.12,0.28,0.50 and 0.87 that correspond to (01,62) = (0.5,2),(1,2),(1,1)
and (2,0.5), respectively. In the Bayesian part, the hyperparameters are considered to be
(a1, b1,a2,b2) = (0.01,0.01,0.01,0.01) as an approximate noninformative joint prior. The
number of replications is N* = 1000. In each replication, we generate n records from
ILD(6,) and m records from ILD(f2) and then we obtain the point estimates of R,
such as the ML estimate and approximate Bayes estimates under the SEL, LEL (with
¢ =—0.2 and 0.2) and GEL (with ¢ = —0.2 and 0.2) functions using the M-H, IS and TK
methods. Besides, we construct the 95% MACI, Boot-P CI and Norm-Boot CI, as well
as the 95% CSSW Crls using the generated samples that are obtained from the M-H and
IS approaches. For bootstrap intervals, we use B = 999 bootstrap samples. Let R be an
estimator of R and R; be the corresponding estimate obtained in the ith iteration. Then,
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the estimated bias (bias for short), the estimated mean squared error (EMSE) and the
estimated risks (ERs) of R under the LEL and GEL functions are given by

and

respectively.

We have computed the EMSEs of all kinds of the considered estimators and the results
are given in Table 1. Note that the EMSE is equivalent to the estimated risk under the
SEL function. We have also calculated the ERs of the approximate Bayes estimators under
the LEL and GEL functions, according to their own corresponding loss functions, whereas
for the ML estimators, we have obtained both FR;s and FRgs and the related results
are reported in Table 2.

Table 3 is devoted to the computed biases for all kinds of the considered estimators.

Moreover, the calculated average widths (AWs) and estimated coverage probabilities
(CPs for short) of the 95% intervals are tabulated in Table 4.

From Tables 14, we extract the following conclusions:

The approximate Bayes estimators under the SEL function possess smaller EMSEs
than the ML estimators for the cases of R = 0.28, and 0.50, but the reverse is true
for the cases of R = 0.12 and 0.87.

Among the approximate Bayes estimators, the EMSEs of those under the SEL
function are either the smallest or close to the smallest values in most cases, as
expected.

Among the Bayesian approximation methods, for the cases of R = 0.12,0.28 and
0.50, the best and worst performances in terms of EMSE are observed with the TK
and IS methods, respectively, in most cases. In contrast, for the case of R = 0.87,
the M-H and TK strategies produce the smallest and largest EMSEs, respectively,
in most cases.

The ERps and FRgs are decreasing w.r.t. the number of records in most cases.
However, the biases do not have a special behavior w.r.t. the number of records.
The approximate Bayes estimators under the GEL function perform the best
among all kinds of the considered estimators in terms of bias when R = 0.12
and 0.28, whereas the ML estimators demonstrate the best performance in this
respect for the case of R = 0.87.

The computed biases for all kinds of the considered estimators are negative when
R =10.87.

The AWs have the biggest values for the case of R = 0.5. As the number of
records increases, the AWs decrease in most cases.

The Boot-P interval estimators outperform all other kinds of interval estimators in
the sense of CP (one exception exists), whereas the smallest values of CP belong
to the MACIs in most cases.
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e The CSSW Crls based on the IS method possess the smallest AWs in most cases
except for the case of R = 0.87. For the case of R = 0.87, the MACIs are the
shortest intervals on average (one exception exists).
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Table 1. Computed EMSEs of the point estimators of R.
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Table 2. Computed FRys and ERgs of the ML estimators and the approximate

Bayes estimators of R.
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Table 3. The estimated biases of the point estimators of R.
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Table 4. The AWs and CPs of the 95% interval estimators of R.
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6. Application

In this section, as an example, we consider two independent record data to illustrate
the inferential procedures developed in the paper. Crowder [22] considered data sets
reflecting the lifetimes of steel specimens (in units of 1000 cycles) subjected to different
stress amplitudes, see also [33,38]. The specimens were tested at 14 distinct stress levels:
32.0,32.5,33.0,...,38.0,38.5. Tanis et al. [55] analyzed the data for 33.0 and 32.0 stress
levels. In this analysis, we focus on the data for stress amplitudes of 32.0 (Data Set I) and
32.5 (Data Set II), which are divided by 1000. These data can also be found in [36] (page
574). Data Set I and Data Set II are reported in Tables 5 and 6, respectively.

Table 5. Data Set I: (The level stress: 32.0).

1.144 0.231 0.523 0.474 4.510 3.107 0.815 6.297
1.580 0.605 1.786 0.206 1.943 0.935 0.283 1.336
0.727 0.370 1.056 0.413 0.619 2.214 1.826 0.597

Table 6. Data Set II: (The level of stress: 32.5).

4.257 0.879 0.799 1.388 0.271 0.308 2.073 0.227
0.347 0.669 1.154 0.393 0.250 0.196 0.548 0.475
1.705 2.211 0975 2.925

According to [55], Data Set I and Data Set II are independent. The inverse Lindley
distribution is fitted to the above data sets separately using the Kolmogorov-Smirnov (K-
S) test. Note that the old version of the K-S test is not suitable here as the parameter
estimates are obtained from the same data sets, see [51,54]. So we use a bootstrapped
version of the K-S test, described in detail in [16]. For Data Set I, the K-S test statistic
and its corresponding bootstrapped p-value with 6; = 0.9892 are given by D = 0.0917 and
p = 0.9286, respectively and for Data Set II, the K-S test statistic and its corresponding
bootstrapped p-value with 6, = 0.8089 become D = 0.0862 and p = 0.9864, respectively.
Therefore, the inverse Lindley model fits both data sets quite well.

We have extracted the first three lower records from Data Set I as follows:

1.144, 0.231, 0.206.
Besides, we extracted the first six lower records from Data Set II as follows:
4.257, 0.879, 0.799, 0.271, 0.227, 0.196.

Here, we calculated the point and 95% interval estimates under the same settings of the
simulation study (stated in Section 5) and the results are reported in Table 7. Since the
point estimates are less than 0.5, we may conclude that the probability that the lifetime
under stress 32.0 becomes more than the lifetime under stress 32.5 is not high.

7. Concluding remarks

The parameter R = P(Y < X) is one of the important measures to compare two
populations. Besides, this parameter can be applied to stress strength models and that is
why it is called the stress-strength parameter and can be used in reliability experiments
and life testing. In this paper, we assume that the populations under study possess the
inverse Lindley distribution with parameters 8, and #5. As the inverse Lindley distribution
possesses a UTB-shaped hazard function, this model can play a key role in many real-
life experiments. We worked on the point and interval estimation of R through classical
and Bayesian procedures. A simulation study was performed to assess the estimators



312 B. Etemad Golestani, E. Ormoz, S.M.T.K. MirMostaface

Table 7. The numerical results of the example.

point estimates 95% interval estimates

ML 0.3210 | MACI (0.0000 , 0.6600)
SEL 0.3269
LEL, ¢c=—-0.2 0.3370 | Boot-P CI (0.1059 , 0.7236)

TK LEL,c=+0.2 0.3423
GEL, ¢ = —0.2 0.2738
GEL, ¢ = +0.2  0.2928
SEL 0.3424
LEL, c=—0.2 0.3396
M-H LEL, ¢c=+0.2 0.3453 | M-H CSSW CrI  (0.0637 , 0.6846)
GEL, g = —0.2 0.2832
GEL, ¢ = +0.2 0.3048
SEL 0.3397
LEL, c = —0.2 0.3374
IS  LEL,c=+0.2 0.3421|IS CSSW CrI  (0.0875 , 0.5816)
GEL, ¢ = —0.2 0.2941
GEL, ¢ = +0.2 0.3101

Norm-Boot CI (0.0000 , 0.6528)

developed in the paper. From the simulation study, we deduce that among the Bayesian
approximation methods, the TK procedure outperforms the IS and M-H methods in most
cases in terms of the EMSE and estimated risk, when R is small. In the context of interval
estimation, despite the fact that the Boot-P Cls do not possess the smallest AWs among
the other considered intervals in the simulation, we recommend using the Boot-P Cls as
their CPs are large enough to be near the nominal value 0.95 which is the considered
confidence level of interval estimators.

We also presented a real data example, that involved two real data sets of lifetimes
of steel specimens subjected to two distinct stress amplitudes. Here, the parameter R
can help us compare the lifetimes under different stress levels. Suppose that a researcher
is interested in knowing the probability that a lifetime under a specified level exceeds a
lifetime under another stress level, so we see that the measure R plays a key role in this
regard. Furthermore, suppose the researcher has only access to the observed lower records.
Here, from Table 7, we may conclude that R is approximately, for example, 0.33 as most
point estimates are close to this value and the interval estimates also contain this value.
For further analysis, we can use hypothesis testing to determine whether R equals this
number or not. So, assuming that the true value of R coincides with 0.33, the researcher
may expect that a specimen under stress level 32.0 fails sooner than another specimen
under stress level 32.5.

One can also work on other types of estimators of R for the inverse Lindley distribu-
tion, such as the preliminary test estimator, Bayesian shrinkage estimator, E-Bayesian
estimator, empirical Bayes estimator, Bayesian hierarchical estimator and so on. More-
over, the problem of estimation of R based on other types of information samples, such as
progressively Type I and Type II censored data, hybrid censored data and other different
types of censored data, record ranked set samples, k-record values, upper records and
inter-record times and so on. Besides, we can focus on the estimation of R for the newly
introduced extensions of the inverse Lindley distribution, like the weighted inverse Lindley
distribution [49]. Working on the above-suggested topics may become under progress by
the authors. All the computations were done using the statistical software R [47] and the
packages coda [45,46], LindleyR [40] and truncnorm [41] therein.
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where B, C' and D are given in (3.5), (1.5), (3.6), respectively.
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where Aj;jj, is given in (1.4).
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