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Graphical/Tabular Abstract (Grafik Özet) 

This study evaluates the performance of several supervised ML models with hyperparameter 

optimization for predicting multiple diseases such as diabetes, heart disease, Parkinson's disease, 

and breast cancer. The results show that the performance increase provided by pre-processing and 

HPO is unfortunately not directly applicable to all datasets. / Bu çalışma, diyabet, kalp hastalığı, 

Parkinson hastalığı ve meme kanseri gibi birden fazla hastalığı tahmin etmek için hiperparametre 

optimizasyonlu çeşitli denetimli ML modellerinin performansını değerlendirmektedir. Sonuçlar, ön 

işleme ve HPO tarafından sağlanan performans artışının ne yazık ki tüm veri kümelerine doğrudan 

uygulanamayacağını göstermektedir. 

 

Figure A: Architecture design of the system / Şekil A:Sistemin mimari tasarımı  

Highlights (Önemli noktalar)  

➢ User-friendly web Application for multi-disease prediction / Çoklu hastalık tahmini için 

kullanıcı dostu web uygulaması 

➢ Importance of HPO and preprocessing in machine learning / Makine öğrenmesinde HPO 

ve önişlemenin önemi 

➢ Explaratory data analysis / Keşifçi veri analizi 

Aim (Amaç): The aim of this study is to investigate the use of ML methods in the diagnosis of 

diabetes, heart disease, breast cancer and Parkinson's disease and the effect of HPO on model 

performance. / Bu çalışmanın amacı diyabet, kalp hastalığı, meme kanseri ve Parkinson 

hastalığının teşhisinde MÖ yöntemlerinin kullanımı ve HPO’nun model performansına etkisinin 

araştırılmasıdır. 

Originality (Özgünlük): In this study, the success of exploratory data analysis and preprocessing 

and hyperparameter optimization on different health data sets was evaluated. It was revealed that 

there is no successful method that can be applied to all data sets. / Bu çalışmada keşifçi veri analizi 

ve önişleme ile hiperparametre optimizasyonunun farklı sağlık veri setlerindeki başarısı 

değerlendirilmiştir. Tüm veri setlerine uygulanabilir, başarılı bir yöntem olmadığı ortaya 

koyulmuştur. 

Results (Bulgular): Each dataset should be specifically processed with its data types, missing and 

outlier values and optimized to produce a robust model. / Her veri seti veri türleri, eksik ve aykırı 

değerleri ile özel olarak işlenmeli gürbüz model ortaya koymak için optimize edilmelidir. 

Conclusion (Sonuç): Four different diseases were classified with six different ML methods, and the 

performances before and after HPO were compared and it was found that the optimized methods 

were more successful. / Dört farklı hastalık altı farklı ML yöntemiyle sınıflandırılmış, HPO öncesi 

ve sonrası performansları kıyaslanarak optimize yöntemlerin daha başarılı olduğu bulunmuştur. 
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Abstract 

This study evaluates the performance of supervised machine learning (ML) models with 

hyperparameter optimization (HPO) for predicting multiple diseases, including diabetes, heart 

disease, Parkinson’s disease, and breast cancer. Six algorithms—Logistic Regression (LR), 

Gradient Boosting (GB), k-Nearest Neighbors (K-NN), Extreme Gradient Boosting (XGB), 

Support Vector Machines (SVM), and Random Forests (RF) were trained and tested on specific 

disease datasets. Model performance was assessed using accuracy, precision, recall, and F1-score, 

with GridSearch-based HPO applied to enhance predictive accuracy. Significant improvements 

were observed across datasets. For heart disease, accuracy increased from 85.43% to 99.49% 

after HPO, with similar gains in other metrics. In diabetes prediction, KNN accuracy improved 

from 82.10% to 86.32%, while precision and F1-score also rose. Breast cancer models, except 

XGBoost, consistently achieved over 97.0% accuracy. For Parkinson’s disease, SVM achieved 

91.17% accuracy, a 4.83% improvement with HPO, with approximately 5% increases across all 

metrics. All results were validated using 5-fold cross-validation. A user-friendly web application 

was developed to allow users to select a disease, input relevant data, and receive predictions based 

on the chosen model. This study highlights the impact of pre-processing and HPO on model 

performance, addressing computational complexity, demonstrating generalizability in multi-

disease prediction, and improving accessibility. However, the results also indicate that the 

performance gains from pre-processing and HPO are not uniformly applicable across all datasets, 

providing valuable insights for future research. 
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Öz 

Bu çalışma, diyabet, kalp hastalığı, Parkinson hastalığı ve meme kanseri dahil olmak üzere birden 

fazla hastalığı tahmin etmek için hiperparametre optimizasyonu (HPO) ile denetlenen makine 

öğrenimi (MÖ) modellerinin performansını değerlendirir. Altı algoritma - Lojistik Regresyon 

(LR), Gradient Boosting (GB), k-En Yakın Komşular (K-NN), Extreme Gradient Boosting 

(XGB), Support Vector Machines (SVM) ve Random Forests (RF) - belirli hastalık veri kümeleri 

üzerinde eğitildi ve test edildi. Model performansı, tahmin doğruluğunu artırmak için GridSearch 

tabanlı HPO uygulanarak doğruluk, kesinlik, geri çağırma ve F1 puanı kullanılarak 

değerlendirildi. Veri kümeleri arasında önemli iyileştirmeler gözlemlendi. Kalp hastalığı için 

doğruluk, HPO'dan sonra %85,43'ten %99,49'a yükselirken, diğer metriklerde de benzer 

kazanımlar elde edildi. Diyabet tahmininde, KNN doğruluğu %82,10'dan %86,32'ye yükselirken, 

kesinlik ve F1 puanı da arttı. XGBoost hariç meme kanseri modelleri sürekli olarak %97,0'ın 

üzerinde doğruluk elde etti. Parkinson hastalığı için SVM, HPO ile %4,83'lük bir iyileştirme olan 

%91,17 doğruluk elde etti ve tüm metriklerde yaklaşık %5 artış oldu. Tüm sonuçlar 5 katlı çapraz 

doğrulama kullanılarak doğrulandı. Kullanıcıların bir hastalık seçmesine, ilgili verileri girmesine 

ve seçilen modele dayalı tahminler almasına olanak tanıyan kullanıcı dostu bir web uygulaması 

geliştirildi. Bu çalışma, ön işleme ve HPO'nun model performansı üzerindeki etkisini, hesaplama 

karmaşıklığını ele almayı, çoklu hastalık tahmininde genelleştirilebilirliği göstermeyi ve 

erişilebilirliği iyileştirmeyi vurgulamaktadır. Ancak sonuçlar ayrıca ön işleme ve HPO'dan elde 

edilen performans kazanımlarının tüm veri kümelerinde tekdüze olarak uygulanabilir olmadığını 

ve gelecekteki araştırmalar için değerli içgörüler sağladığını göstermektedir. 
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1. INTRODUCTION (GİRİŞ) 

In a world where the diversity of complex diseases 

is increasing day by day, accurate diagnoses have 

underscored the need for advanced healthcare 

technologies. This is vital both for patients to access 

treatment quickly and for healthcare professionals 

to reduce their workload. In addition to these, the 

increasing risk of people making mistakes under 

work intensity and intense stress increases the 

importance of using Artificial Intelligence (AI) in 

health.  

Medical data analysis is increasingly used in 

modern healthcare to improve diagnosis, treatment, 

and prognosis processes. ML, as a subfield of AI, 

has the potential to be an effective tool for various 

fields [1–4]. Unlike conventional methods, ML 

leverages patterns in data for early detection and 

risk prediction. Previous studies have shown the 

success of ML in diagnosing diseases such as 

Alzheimer’s, diabetes, heart disease, Parkinson’s, 

and various cancers [5–14]. ML algorithms offer 

powerful tools to extract meaningful information 

from such data. However, the performance of these 

algorithms is highly dependent on the correct tuning 

of hyperparameters [15]. Hyperparameter 

optimization is the process of finding the most 

appropriate values of the parameters determined by 

the user during the training process of the model and 

guiding the learning process of the model. This 

process is of critical importance especially in 

complex and sensitive datasets such as medical data 

[16,17]. 

The application of ML improves the diagnostic 

process by facilitating early detection, precise 

disease classification, and personalized treatment 

recommendations, thereby significantly improving 

patient care and prognosis. The difficulties inherent 

in medical data, such as high dimensionality, 

unbalanced class distributions, and missing data, 

make hyperparameter optimization even more 

complex [18]. Therefore, in addition to traditional 

optimization methods, it is recommended to use 

more advanced methods such as Bayesian 

optimization, grid search, and random search [19]. 

In addition, measures to improve model 

performance on medical data (e.g., data 

preprocessing, feature selection, and class balancing 

techniques for imbalanced data sets) need to be 

carefully examined [20]. Recent studies have 

emphasized ensemble models and HPO to achieve 

improved diagnostic accuracy and address 

overfitting concerns [21].  

In this study, we investigate the diagnosis of 

diseases such as diabetes, heart disease, breast 

cancer and Parkinson's disease using ML methods 

and the effect of HPO on models’ performances. 

The performance of six models for each disease on 

four different datasets is analyzed and presented. In 

addition, a synthesis of existing studies in the 

literature will be presented and suggestions for 

future research in this area will be made. While prior 

studies have focused on individual disease 

prediction, such as [22] achieving respectively 

85.04% and 84.4% accuracy with LR and RF for 

heart disease, our work uniquely evaluates multiple 

diseases, including heart disease, diabetes, breast 

cancer, and Parkinson’s, under a unified framework. 

Additionally, the integration of HPO across all 

models usually enhances their robustness compared 

to studies like [23], which primarily relied on 

default configurations. 

With the web-based user-friendly application 

developed in the study, it has become possible to 

predict the probability of an individual developing a 

disease. This application has been developed to 

bridge the gap between technical innovation and 

practical usability, providing accessible predictions 

for clinical and general users. 

2. RELATED WORKS (İLGİLİ ÇALIŞMALAR) 

In our study, we considered literature in two 

dimensions: 1- The effect of machine learning 

methods and hyperparameter optimization, 2- 

Disease classification using machine learning 

methods. 

2.1. Hyperparameter Optimization (Hiperparametre 

Optimizasyonu) 

Hyperparameter optimization is an important 

process to increase the performance of a model. At 

the end of this process, the aim is to find the most 

appropriate values of the parameters of the 

algorithms used. Generally, each algorithm has its 

own parameters, and adjusting these parameters 

appropriately affects the results according to the 

performance metrics used to measure the 

generalization ability and success of the model 

[15,19,24–29]. 

In this study, Logistic Regression (LR), Random 

Forest (RF), Support Vector Machines (SVM), K-

Nearest Neighbor (KNN), Extreme Gradient 

Boosting (XGBoost) and Gradient Boosting (GB) 

algorithms were used. 
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Although LR is generally considered as a simple 

model, adjusting the regularization term (C) 

prevents the model from overfitting or undefitting, 

contributing to the increase in generalization ability. 

In addition, the selection of different optimization 

algorithms called solvers is another parameter that 

affects the training time and accuracy [30–35]. 

In the random forest algorithm, adjusting 

hyperparameters such as the number of trees 

(n_estimators), maximum depth (max_depth) and 

minimum sample number (min_samples_split) can 

significantly increase performance. Generally, more 

trees provide increased performance, but it 

increases computational cost. While it becomes 

possible to solve more complex problems with 

maximum depth, it causes overfitting and the 

training process to take longer. The minimum 

sample number determines the number of samples 

required to split a node, and as this value increases, 

the generalization ability of the model can be 

increased. Model accuracy can be increased with the 

most appropriate choices. In addition, by preventing 

overfitting or underfitting situations, the 

generalization ability and stability of the model can 

be increased and provided. In addition, similar or 

better results can be obtained by reducing 

computational complexity. As a result of the 

research, the hyperparameter optimization process 

is seen as an important step in random forest 

applications [24,36–40]. 

In SVM, optimization of hyperparameters such as 

kernel function, C parameter and gamma parameter 

can increase the classification success of the model. 

Kernel function determines how the data will be 

separated. Linear, polynomial and Radial Basis 

Function (RBF) are commonly used. C parameter 

controls the error tolerance. While low values 

tolerate more errors, high values create more 

complex models with less errors. Gamma parameter 

determines how effective the data will be when RBF 

kernel is used. While low gamma values provide a 

wider domain, high values create a narrower 

domain. Research shows that correct adjustment of 

these parameters has a significant effect on the 

overall performance of the model. For example, the 

overall success of the model can be increased with 

appropriate C and gamma values. The selection of 

the kernel function and optimization of 

hyperparameters can directly affect the shape and 

location of the decision boundaries and therefore the 

classification performance. In addition, it is possible 

to improve the computational efficiency and the 

training process [41–43]. 

 

There are several critical hyperparameters of the 

KNN algorithm. The number of neighbors (k) can 

improve the accuracy of the model, especially 

depending on the size of the dataset. While low k 

values increase the sensitivity of the model to noise, 

high k values can increase the generalization ability 

of the model. The distance criterion used to 

determine the neighbors can affect the classification 

results. In addition, the weighting method is used to 

determine the effects of the neighbors. HPO 

provides accuracy, minimizing over- or under-

fitting, and computational efficiency as in other 

algorithms. The number of neighbors and the 

distance criterion are important in determining the 

decision boundaries, and their total effect can 

directly affect the classification performance 

[15,24,44–46]. 

XGBoost and GB algorithms are algorithms that use 

decision trees. XGBoost is an optimized and faster 

version of the traditional GB algorithm. Both add 

new trees that correct the weak points of the current 

model to reduce the error at each iteration. XGboost 

offers more advantages over GB with parallel 

processing, pruning mechanism used to prune 

excess trees, special target functions and a wide 

range of loss functions. The prominent 

hyperparameters to be optimized are the number of 

trees to be created (n_estimators), learning rate 

(eta), maximum depth (max_depth), sample rate 

(subsample). As the number of ‘n_estimators’ 

increases, the results generally improve, while the 

risk of overfitting also increases. ‘eta’ controls the 

contribution of each tree. Lower ‘eta’ values can 

help increase generalization ability by providing 

slower and better learning. ‘subsample’ determines 

the ratio of samples to be used for each tree. Lower 

values can reduce overfitting. HPO can provide 

performance increase as in other methods 

[19,27,37,47–50]. 

2.2. Disease Classification Using ML Methods 
(MÖ Yöntemleri Kullanarak Hastalık Sınıflandırma) 

Recent advances in machine learning (ML) have 

reshaped disease prediction, yet critical challenges 

in generalizability, interpretability, and clinical 

integration remain unresolved. Previous studies 

have highlighted the effectiveness of ML in disease 

prediction. For example, in study [21] various ML 

algorithms were used to train models for predicting 

141 diseases across different medical specialties, 

including diabetes, bronchial asthma, and Covid-19. 

The research introduced a valuable dataset for 

healthcare-oriented ML research and demonstrated 

the potential of these algorithms for multi-disease 

prediction with high accuracies. By creating a 
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comprehensive dataset and applying diverse ML 

algorithms, including SVM, Naïve Bayes, and 

Random Forest, the study addressed the challenges 

of multi-disease prediction. The achieved accuracy 

of 99.33% suggests the potential of ML for this task. 

However, more investigation is necessary to ensure 

the generalizability and robustness of such models 

across different healthcare settings. While this study 

focuses on the use of large-scale symptom datasets, 

their reliance on association rules and homogeneous 

data sources raises concerns about robustness in 

real-world clinical settings, a limitation that our 

work addresses through rigorous hyperparameter 

optimization (HPO) and validation across 

heterogeneous datasets. 

According to [51] an improved healthcare 

efficiency by predicting ICD codes for chronic 

diseases, achieving a prediction accuracy between 

80-90% across 11 diseases, with even higher 

accuracy for cancer and stroke. This work 

demonstrated ML's potential to speed up diagnosis 

through automated code prediction. Similarly, [52] 

evaluated whether ML can increase the accuracy of 

cardiovascular risk estimation using regular clinical 

data from a prospective cohort of 378,256 patients 

registered dataset. Four ML algorithms (RF, LR, 

GBM, ANN) were compared to an existing 

algorithm based on American College of 

Cardiology guidelines. The findings showed that 

ML algorithms significantly improved 

cardiovascular risk estimation. In particular, the 

neural networks algorithm showed the best 

improvement in accuracy, with a 3.6% increase over 

traditional methods, demonstrating ML's ability to 

outperform existing risk assessment models. 

However, early ML studies focused narrowly on 

single diseases or homogeneous datasets, 

overlooking the need for generalizable frameworks 

applicable to diverse clinical contexts. 

Other research focused on comparing specific ML 

models for chronic diseases. Study [53] compared 

LR with various ML models for predicting chronic 

diseases like diabetes, cardiovascular disease, 

hypertension, and chronic kidney disease. The 

results demonstrated that LR achieved competitive 

performance, particularly for diseases with well-

established risk factors. In study [54], the 

researchers aimed to develop a framework that 

could accurately distinguish between Parkinson 

patients and healthy individuals at an early stage. 

They employed various ML algorithms to analyze 

data and identify patterns indicative of the disease. 

Preprocessing, standardization, and ensemble 

techniques were utilized to enhance model 

performance. The resulting DL models 

demonstrated promising outcomes in discriminating 

Parkinson patients from healthy individuals, as 

evaluated using accuracy, precision, sensitivity, F1 

score, specificity, and area under the ROC curve. It 

is emphasized that since the study used a limited 

dataset, the real performance of the DL method can 

be demonstrated with larger datasets. 

Hyperparameter optimization (HPO) is another key 

process for improving ML model efficacy. In [55], 

the hyperparameters of the LR, KNN, SVM, RF, 

and Decision Tree (DT) classification models were 

tuned using the grid search method, resulting in an 

accuracy range of 81.97% to 90.16% for LR, KNN, 

DT, and SVM, and an accuracy range of 85.25% to 

91.80% for RF. Similarly, in [23], the efficacy of 

heart disease prediction was evaluated using HPO 

techniques. The success rate, which typically ranges 

between 80 and 90% in the literature, was found to 

be 97.52% in the Cleveland dataset, particularly 

when the RF model was employed. This indicates a 

notable improvement in performance using HPO. 

In addition, [56] proposed a study that concerns 

cardiac disease diagnosis. The study emphasizes the 

use of pre-processing and feature engineering 

techniques before employing the ML algorithms. 

These techniques aim to clean and refine the data by 

handling outliers, missing values, potentially 

irrelevant features and improve the performance of 

ML models.  

In [57], authors proposed a DL model for multi-

classification of infectious diseases utilizing 

unstructured electronic medical records to aid in 

clinical decision-making regarding infectious 

diseases. This research highlights the capability of 

deep learning to manage complex, unstructured data 

such as electronic medical records, enhancing the 

classification of diseases. The presented model 

achieved a significantly higher accuracy (99.44%) 

compared to traditional ML algorithms like 

XGBoost (96.19%), DT (90.13%), Bayesian 

methods (85.19%), and LR (91.26%). The model 

demonstrates the potential of DL in analyzing 

complex, unstructured data like EMRs, offering a 

more comprehensive approach to disease 

classification compared to traditional methods. 

However, existing HPO studies focus 

disproportionately on single-disease applications or 

computationally heavy DL models, neglecting 

lightweight, interpretable frameworks for multi-

disease systems. 
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3. MATERIALS AND METHODS (MATERYAL 

VE METOD) 

3.1. Datasets (Veri Setleri) 

To examine the effectiveness of ML with and 

without HPO in the healthcare field, we have 

applied different ML methodologies on 4 different 

medical datasets. These datasets are Diabetes 

dataset, heart dataset, Breast Cancer dataset and 

Parkinson dataset. These data are all available on 

Kaggle data collection platform and lastly accessed 

on September 6, 2024 for our study. 

For the diabetes dataset 

(https://www.kaggle.com/datasets/mathchi/diabete

s-data-set), specific criteria were applied during 

data selection. This subset focuses on female 

patients over 20 years old with a specific heritage. 

It contains 768 entries with eight characteristics, 

including blood pressure, glucose levels, and a 

target variable for prediction.  

The heart disease dataset 

(https://www.kaggle.com/datasets/johnsmith88/hea

rt-disease-dataset) combines data from multiple 

sources. This dataset consists of 303 records with 14 

characteristics encompassing demographics, 

medical history, and test results. Additionally, a 

target variable indicates the presence or absence of 

heart disease.  

The breast cancer dataset 

(https://www.kaggle.com/datasets/yasserh/breast-

cancer-dataset) provides data from 1988 related to 

breast tissue samples. It includes 569 records, each 

representing a cell nucleus with 31 characteristics 

and a target variable indicating malignancy. These 

characteristics describe various properties extracted 

from digitized images. 

The Parkinson's disease dataset 

(https://www.kaggle.com/datasets/vikasukani/parki

nsons-disease-data-set) contributes significantly to 

developing ML models for automated disease 

detection through voice analysis. This dataset 

comprises information on 195 individuals, aiming 

to differentiate between those with Parkinson's 

disease and those who are healthy. 

3.2. Exploratory Data Analysis and Variable 

Analysis (Keşifçi Veri Analizi ve Değiken Analizi) 

The target distribution of the diabetes dataset in the 

first row of Table 1 shows that the person who are 

not diabetic are more than the person who have 

diabetes. Around 500 are non-diabetics and 268 

people are affected by diabetes. 

The target variable distribution in the second row of 

Table 1 indicates a slightly higher proportion of 

individuals classified as "affected" compared to 

those classified as "non-affected". The total number 

of people affected by heart disease is 526 and the 

total number of the persons not affected is 499. 

The target variable distribution in the third row of 

Table 1 shows a significantly higher proportion of 

individuals classified as "affected" compared to 

those classified as "non-affected". The total number 

of people affected by heart disease is 147 and the 

total number of the persons not affected is 48. 

Looking at the output of the target variable of the 

breast cancer dataset int the last row of Table 1, the 

total number of persons that are Benign (not 

affected) is 357 and the total number of those who 

are Malignant (affected by breast cancer) is 212. 

Table 1. The target distribution of datasets (Veri setlerinin hedef dağılımları) 
 

Healthy Number of People Diseased Number of People 
Diabetes 500 268 
Heart Disease 499 526 
Parkinson 48 147 
Breast Cancer 357 212 

3.3. Outlier Removal and Standardization (Aykırı 

Değerlerin Giderilmesi ve Standardizasyon) 

Although ML algorithms are powerful, some of 

their limitations cannot be ignored. Unfortunately, 

mechanisms that perform exploratory data analysis 

and train the most optimal model as a result have 

not yet been developed. The data preprocessing step 

involved identifying and removing outliers present 

in each dataset. Outliers are significantly differing 

from most of the data. Their presence can negatively 

impact model training and lead to inaccurate 

predictions. We used Interquartile Range (IRQ) to 

detect and remove outliers from each dataset. 

Then, all features were standardized with the Z-

score method known as standardscaler in the 

Sklearn library. Since these were not always 
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sufficient, additional operations had to be 

performed on a dataset-specific basis.  

The IQR (Interquartile Range) method is a widely 

used statistical technique for identifying outliers. 

This method is based on the distribution of the data 

set and uses the interquartile range to detect outliers. 

Here are the steps of the IQR method: 

1. Sorting the Data: 

The dataset is sorted from smallest to 

largest. 

 

2. Calculating the Quartiles: 

Q1 (First Quartile): Represents the lower 

25% of the dataset. 

Q3 (Third Quartile): Represents the upper 

25% of the dataset. 

Median (Q2): The median value of the data 

set. 

 

3. IQR Calculation: 

IQR is the difference between Q3 and Q1: 

 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (1) 

4. Determining Outlier Boundaries: 

 

Lower Boundary: 

Lower Boundary = 𝑄1 − 1.5 × 𝐼𝑄𝑅 (2) 

 

Upper Boundary: 

Upper Boundary = 𝑄3 + 1.5 × 𝐼𝑄𝑅 (3) 

 

5. Detecting Outliers: 

Values smaller than the lower boundary are 

considered lower outliers. 

Values larger than the upper boundary are 

considered upper outliers. 

 

 

The IQR method is a simple and fast method that is 

based on dataset distribution and objectively 

determines outliers. It is especially useful for 

detecting outliers in small and medium-sized 

datasets. Since it is designed according to the 

principle that the dataset should be close to a normal 

distribution, it does not always succeed in providing 

the same advantage [58]. 

Following outlier management, we standardized the 

remaining data. Standardization is a crucial step that 

scales the features within each dataset to a common 

range. This method standardizes the data so that the 

mean is 0 and the standard deviation is 1. This is 

especially important for improving the performance 

of machine learning algorithms because it ensures 

that features at different scales are given equal 

weight. It speeds up the training process, especially 

for gradient descent-based algorithms (e.g., SVM, 

logistic regression, neural networks), and 

standardized data can be more easily interpreted in 

statistical analyses [59]. 

𝑧 =
(𝑥 − µ)

𝜎
 

(4) 

Here: 𝑥: Original value, 𝜇: Mean of the feature, 𝜎: 

Standard deviation of the feature, 𝑧: Standardized 

value. 

 

3.4. Data Splitting and Balancing (Veri Bölme ve 

Dengeleme) 

k-fold cross-validation evaluates the performance of 

the model on the entire dataset, providing more 

reliable results compared to a single training-test 

split. Since the entire dataset is used for both 

training and testing, the risk of overfitting the model 

to the entire dataset is reduced and data waste is 

prevented. The k value was selected as 5 in the study 

[60]. 

SMOTE improves the performance of classification 

models by increasing the number of samples from 

the minority class. In addition, since no samples are 

removed from the dataset (undersampling is not 

performed), there is no loss of information. Since it 

creates synthetic samples instead of random 

oversampling, it reduces the risk of overfitting. 

Thus, it increases the number of samples from the 

minority class to solve the class imbalance problem 

and improves the generalization ability of the model 

[61]. 

3.5. Logistic Regression (Lojistik Regresyon) 

LR is a supervised learning algorithm that estimates 

the likelihood of an event (classification) based on 

a set of input variables (data points). It excels at 

providing clear explanations for each variable's 

impact on the predicted classification outcome. This 

interpretability is valuable in healthcare settings, as 

it allows us to understand which factors are most 

influential in predicting each condition. 

3.6. k-Nearest Neighbour (k-En Yakın Komşu) 

This is a versatile technique used for exploring 

relationships within data. It operates on the principle 

of similarity, where a new data point is classified 

based on the majority class or average value of its 

closest neighbors. The key aspect of KNN is finding 

the optimal number of neighbors (k) that minimizes 
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errors. Selecting the appropriate k value is crucial, 

as a small k can be sensitive to noise, while a large 

k might result in an overly smooth decision 

boundary that misses local patterns. 

3.7. Ensemble Techniques (Topluluk Teknikleri) 

Ensemble techniques were used to potentially 

improve the accuracy and robustness of the 

classifications. Random Forest Classifier combines 

multiple decision trees, each trained on a random 

subset of the data, to arrive at a final classification 

through a majority vote. Extreme Gradient Boosting 

(XGBoost) creates and combines multiple decision 

trees, each focusing on correcting the errors of the 

previous trees, to achieve a more accurate final 

classification. Gradient Boosting builds an 

ensemble of decision trees sequentially, where each 

subsequent tree learns from the errors of the 

previous trees. This allows the final model to 

capture complex relationships within the data. 

3.8. Support Vector Machine (Destek Vektör 

Makinesi) 

This technique excels in data with a high number of 

variables. SVM seeks to identify the optimal 

dividing line that separates different classifications 

within the data. The positioning of this line 

prioritizes maximizing the separation between 

classes. 

3.9. Hyperparameter Optimization (Hiperparametre 

Optimizasyonu) 

HPO is a crucial step in ML that involves adjusting 

the model's internal configurations to optimize its 

performance. Different hyperparameter settings can 

significantly impact the model's ability to learn from 

the data and generalize to unseen data. We used 

Grid SearchCV which is a common technique that 

systematically evaluates a predefined set of 

hyperparameter values to identify the combination 

that yields the best performance on a validation set 

[59]. 

3.10. Model Evaluation (Model Değerlendirmesi) 

When using k-fold cross-validation in the scikit-

learn library, the performance metrics of the model 

are calculated for each fold and the final result is 

usually obtained by averaging these values. 

K-Fold Cross-Validation Process: 

1. The dataset is divided into k parts (folds). 

2. In each iteration, 1 fold is used as the test set 

and the rest as the training set. 

3. The model is trained and tested k times. 

4. Metrics (accuracy, precision, recall, F1-score, 

etc.) are calculated for each fold. 

5. The final performance is determined by 

averaging the results. 

Since we used k-fold cross validation, in each 

iteration performance metrics are calculated k times 

and final values were calculated by averaging. In 

addition, we compared results without HPO and 

with HPO, whole process were operated twice. 

The performance metrics of ML models have been 

calculated and evaluated in terms of accuracy, 

precision, recall and F1 score with the help of the 

confusion matrix. Accuracy is the ratio of correctly 

classified observations to the total number of 

observations. Precision is performed by taking the 

ratio of correctly classified positive samples to the 

total predicted positive samples. The recall is 

calculated by taking the ratio of truly classified 

positive samples to all samples in actual class. F1 

score is performed by taking the weighted average 

of precision and recall. The mathematical 

expressions of accuracy, precision, recall, and F1 

score are shown in the equations from 5 to 8 

respectively.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (8) 

 

Where, TP, FN, FP, and TN represented True 

Positive, False Negative, False Positive, and True 

Negative, respectively. 

4. APPLICATION (UYGULAMA) 

We used python with pandas to read and manage 

structured datasets for each disease. Visualization 

libraries like Matplotlib and Seaborn facilitated data 

exploration. Each dataset was analyzed 

independently to understand its characteristics. To 

address imbalanced datasets, we employed the 

SMOTE technique. SMOTE generates synthetic 

data points for the minority class, mitigating bias 

and improving model performance. A Technique 

like StandardScaler helped us to standardize the 
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data, ensuring a mean of 0 and a standard deviation 

of 1 for all features. 

4.1. Data Preprocessing (Veri Önişleme) 

We evaluated various ML techniques on the 

preprocessed data. These included LR, SVM, KNN, 

RF, XGBoost and GB. HPO was performed using 

Grid Search method to identify the best 

configuration for each model, significantly 

enhancing their performance. k-fold cross-

validation strategy ensured good evaluation by 

providing more reliable performance results.  

With the data preprocessing, performing some 

additional operations for each dataset made 

significant contributions to the model performance. 

Since the values of 'trestbps', 'chol', 'thalach', 'slope', 

'thal' used as features in the heart disease dataset are 

naturally not possible to be 0, the relevant records 

were cleaned from the dataset. Later, by applying 

other preprocessing methods, high classification 

success was achieved by preventing overfitting of 

the models both without HPO and with HPO. 

In the diabetes dataset, it is not possible for the 

'Glucose', 'BloodPressure', 'SkinThickness', 

'Insulin', 'BMI' features to be 0. For this reason, the 

relevant records were cleaned before other data 

preprocessing steps. In the experiments conducted 

with different scenarios, it was observed that the 

highest performance metrics were obtained in this 

way. 

In the breast cancer dataset, the 'id' column, which 

has nothing to do with diagnosis, has been deleted. 

In addition, the features 'radius_mean', 

'texture_mean', 'perimeter_mean', 'area_mean', 

'concave points_mean', 'radius_se', 'area_se', 

'perimeter_worst', 'area_worst', which have high 

correlations with the target value and each other, 

have not been included in the training for the 

purpose of reducing dimensionality. In this way, it 

has been observed in experimental studies that the 

models are both faster and give optimum 

performance. 

In the Parkinson's disease dataset, attributes were 

extracted from voice recordings taken from 31 

volunteers. Therefore, outlier detection and removal 

were applied directly. No other process was done 

beforehand. 

4.2. Model Deployment and Web Application 

Development (Model Kurulumu ve Web Uygulaması 

Geliştirme) 

The web application was developed using Streamlit, 

a Python library for building web applications. This 

application integrates serialized models, enabling 

users to interact with the system. The architecture of 

the system is given in Figure 1 and sample interface 

is given in Figure 2. 

 
Figure 1. Architecture desing of multi-disease prediction system (Çoklu hastalık tahmin sistemi mimari tasarımı) 
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Figure 2. Multi-Disease prediction system user interface (Çoklu hastalık tahmin sistemi kullanıcı arayüzü) 

The developed application was tested for usability 

with simulated clinical and general user inputs. The 

interface provides a streamlined workflow: disease 

selection, data input, and instant predictions. 

Feedback indicated ease of use and potential for 

integration into clinical workflows, particularly for 

early screening and risk assessment. Predictions 

generated by the application matched the model 

outputs, confirming its reliability. The intuitive 

interface allows non-technical users to navigate 

seamlessly, select diseases, input parameters, and 

interpret results effectively. 

5. EXPERIMENTAL RESULTS (Deneysel 

Sonuçlar) 

5.1. Heart Disease (Kalp Hastalığı) 

We built and evaluated six ML models for heart 

disease prediction: LR, RF, SVM, KNN, XGBoost 

and GB. When we look at the results shown in Table 

2, we see that HPO has a significant impact on the 

performance of the models except RF. KNN showed 

the most significant improvement (14%), 

suggesting its initial configuration was suboptimal. 

This highlights how tuning can help identify better 

configurations even for simpler models. The chosen 

hyperparameters (high C value, increased 

iterations) indicate the model benefits from 

regularization and more training data. 5-fold cross-

validation was used in all training. Cross-validation 

reduces the chance factor as it allows training and 

testing with different parts of the dataset. It shows 

that the model performs well on the entire dataset, 

not just on a specific subset of the data. However, 

the increase in KNN brings overfitting to mind. 

However, since the dataset is balanced before model 

training, the probability of overfitting decreases due 

to the difference between training and test scores 

being around 1%. 

Although a small increase is observed in Logistic 

Regression, it can be expected that the accuracy 

limits will not change much due to the nature of this 

model. The best parameters include 'C': 0.1 and 

'penalty': 'l1', which shows that the model gives 

better results with L1 (Lasso) regularization. A 

striking improvement is seen in KNN. When we 

look at the best parameters, the settings 'metric': 

'manhattan', 'n_neighbors': 11' and 'weights': 

'distance' attract attention. Optimizing these 

parameters seems to have provided the model with 

significantly better generalization. 

 

Table 2. Comparison of accuracy results on heart disease with and without HPO. (HPO'lu ve HPO'suz kalp 

hastalıklarında doğruluk sonuçlarının karşılaştırılması.) 

Model Before HPO After HPO Best Parameters 

LR 83.63% 84.91% 'C': 0.1, 'penalty': 'l1', 'solver': 'liblinear' 

KNN 85.43% 99.49% 'metric': 'manhattan', 'n_neighbors': 11, 

'weights': 'distance' 

RF  99.23% 99.23% 'bootstrap': True, 'max_depth': 70, 

'min_samples_leaf': 1, 'min_samples_split': 2, 

'n_estimators': 200 

SVM 92.07% 97.31% 'C': 10, 'kernel': 'rbf' 

XG_Boost 99.11% 99.23% 'learning_rate': 0.2, 'max_depth': 7, 

'n_estimators': 50 

GB 97.44% 98.59% 'learning_rate': 0.2, 'max_depth': 5 
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Interestingly, the accuracy did not change after 

hyperparameter optimization in RF (99.23%). This 

shows that the model is already working very close 

to the optimal values and HPO does not provide any 

additional improvement. The best parameters 

determined are depth 70 and number of trees 200, 

which provides the model to learn strongly. There is 

a significant increase from 92.07% to 97.31% in 

SVM. Among the best parameters, 'C': 10 and 

'kernel': 'rbf' were selected, meaning the model 

generalized better with a higher penalty parameter 

and RBF kernel. The accuracy was already high in 

the XGBoost and GB algorithms. In both 

algorithms, the model was optimized with 

'learning_rate': 0.2 and 'max_depth' as 7 and 5, 

respectively. 

5.2. Diabetes (Diyabet) 

While all models achieved good accuracy after 

tuning, the results in Table 3 provide insights into 

model-specific behavior. The KNN model showed 

the most significant improvement, with test 

accuracy increasing from 82.1% to 86.3%, a gain of 

4.2 percentage points. The Logistic Regression 

(LR) model saw a slight improvement, whereas the 

Random Forest (RF) model experienced a minor 

decline, with accuracy dropping from 83.7% to 

83.5%. Surprisingly, the XGBoost model 

deteriorated, with test accuracy decreasing from 

84.2% to 82.3%. The SVM model remained 

unchanged, and the Gradient Boosting (GB) model 

showed a slight decline in performance. 

 

Table 3. Comparison of HPO results on diabetes. (HPO'lu ve HPO'suz diyabette doğruluk sonuçlarının 

karşılaştırılması.) 

Model Before HPO After HPO Best Parameters 

LR 79.47% 80.26% 'C': 0.1, 'penalty': 'l2', 'solver': 'liblinear' 

KNN 82.10% 86.32% 'metric': 'manhattan', 'n_neighbors': 2, 'weights': 

'distance' 

RF 83.68% 83.53% 'bootstrap': False, 'max_depth': 60, 

'min_samples_leaf': 1, 'min_samples_split': 2, 

'n_estimators': 200 

SVM 83.16% 83.16% 'C': 1, 'kernel': 'rbf' 

XGBoost 84.21% 82.26% max_ 'learning_rate': 0.2, 'max_depth': 3, 

'n_estimators': 100 

GBM 85.26% 85.00% 'learning_rate': 0.1, 'max_depth': 3 

 

Although the LR model improved, its performance 

gain was not as strong as in other models. The KNN 

model was successfully optimized, achieving better 

performance after HPO. However, the choice of a 

small value (n_neighbors=2) may increase the risk 

of overfitting, so it should be validated on larger 

datasets. XGBoost and RF unexpectedly performed 

worse after HPO. The learning rate was increased in 

XGBoost (learning_rate=0.2), yet its performance 

declined. Similarly, the RF model's performance 

slightly worsened, likely due to excessive model 

complexity for the dataset. The SVM model 

remained unchanged, suggesting that its parameters 

might have already been optimal. 

5.3. Breast Cancer (Meme Kanseri) 

HPO demonstrated the performance of six models 

for breast cancer classification (Table 4). HPO 

provided performance increase in all models except 

RF model. It is possible to obtain higher scores by 

expanding the parameter space of RF model. 

However, since the same parameter pool was used 

for all models in the study, the result remained low. 

Although XGBoost and Gradient Boosting work 

with similar parameters, XGBoost gave slightly 

better results. As a result, the model that achieved 

the highest accuracy appears to be KNN with 

98.42%. 

The best parameters for KNN are seen to be 

"manhattan" distance metric, 6 neighbors and 

weighted calculation (distance weighting). The 

effect of HPO on KNN was quite positive (97.37% 

→ 98.42%). For LR, especially the 'C' value of 10 

and the selection of 'liblinear' solver may be 

effective. Using linear kernel and 'C' = 1 in SVM 

provided stable development. For XGBoost, 

'learning_rate = 0.2', 'max_depth= 3' and 

'n_estimators=200' trees provided better results. A 

slight decrease is seen in the RF model after HPO. 

This situation can be explained by the fact that too 

much depth (max_depth = 60) or other parameters 

used reduce the generalization ability of the model.
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Table 4. Comparison of HPO results on diabetes. (HPO'lu ve HPO'suz meme kanseri doğruluk sonuçlarının 

karşılaştırılması.) 

Model Before HPO After HPO Best Parameters 

LR 96.49% 97.54% 'C': 10, 'penalty': 'l2', 'solver': 'liblinear' 

KNN 97.37% 98.42% 'metric': 'manhattan', 'n_neighbors': 6, 'weights': 

'distance' 

RF 97.72% 97.19% 'bootstrap': False, 'max_depth': 60, 'min_samples_leaf': 

1, 'min_samples_split': 2, 'n_estimators': 100 

SVM 97.37% 97.54% 'C': 1, 'kernel': 'linear' 

XGBoost 96.67% 97.10% 'learning_rate': 0.2, 'max_depth': 3, 'n_estimators': 200 

GB 96.84% 97.02% 'learning_rate': 0.2, 'max_depth': 3 

 

A small improvement was seen in the GB model. 

Similar to the XGBoost model, 'max_depth = 3' and 

'learning_rate = 0.2' were used, but XGBoost 

performed slightly better. This suggests that 

XGBoost may be a more powerful model compared 

to GB in terms of optimization. 

5.4. Parkinson Disease (Parkinson Hastalığı) 

HPO results for Parkinson’s disease varied 

significantly between models (Table 5). The 

accuracy of SVM after HPO increased by 4.83%. C 

value (10) and RBF kernel may have created more 

complex distinction surfaces. The accuracy of KNN 

increased from 88.46% to 90.48% with Manhattan 

distance, 'n_neighbors= 2' and weighted distance 

method. The number of small neighbors may have 

adapted to the data more precisely. 

LR was optimized with 'C = 0.1', 'penalty = l2' 

parameters and solver method 'lbfgs'. 'max_depth= 

70', and 'n_estimators= 1000' are aggressive 

parameters for RF. Although more trees provide 

better generalization, it can increase the risk of 

overfitting. Typical powerful settings such as 

‘learning_rate = 0.1', 'max_depth = 5',  

'n_estimators = 600' are used in the XGboost. There 

was no change in GB (87.03%); 'learning_rate = 0.1' 

and 'max_depth = 3' can already be optimal. 

Since the whole process is performed with 5-fold 

cross validation, the results can be considered 

reliable. Models such as SVM and KNN seem to 

have a significant increase in test accuracy. 

Table 5. Comparison of HPO results on Parkinson. (HPO'lu ve HPO'suz Parkinson doğruluk sonuçlarının 

karşılaştırılması.) 

Model Accuracy 

Before HPO 

Accuracy After 

HPO (%) 

Best Parameters 

LR 81.54% 82.92% 'C': 0.1, 'penalty': 'l2', 'solver': 'lbfgs' 

KNN 88.46% 90.48% 'metric': 'manhattan', 'n_neighbors': 2, 

'weights': 'distance' 

RF 86.96% 87.68% 'bootstrap': True, 'max_depth': 70, 

'min_samples_leaf': 1, 'min_samples_split': 2, 

'n_estimators': 1000 

SVM 86.34% 91.17% 'C': 10, 'kernel': 'rbf' 

XGBoost 85.63% 86.32% 'learning_rate': 0.1, 'max_depth': 5, 

'n_estimators': 600 

GB 87.03% 87.03% 'learning_rate': 0.1, 'max_depth': 3 

 

6. RESULTS AND DISCUSSIONS (BULGULAR 

VE TARTIŞMA) 

This study evaluated how hyperparameter 

optimization affects the performance of different 

machine learning algorithms for the classification of 

heart disease, diabetes, breast cancer and 

Parkinson's disease. The models used were LR, 

KNN, RF, SVM, XGBoost and Gradient Boosting 

algorithms. Models were trained using 5-fold cross-

validation (k-fold cross-validation) and 

hyperparameter optimization (HPO) was performed 

with GridSearch method. 
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Table 6. Comparison of performance impact of HPO on all datasets. (HPO’nun tüm veri setlerindeki performans 

karşılaştırması.) 

    Accuracy Precision Recall F1-Score 

  Model 

Before 

HPO 

After 

HPO 

Before 

HPO 

After 

HPO 

Before 

HPO 

After 

HPO 

Before 

HPO 

After 

HPO 
H

ea
rt

 D
is

e
a

se
 LR 83.63 84.91 83.73 85.11 83.63 84.91 83.62 84.89 

KNN 85.43 99.49 85.81 99.50 85.43 99.49 85.38 99.49 

RF 99.23 99.23 99.25 99.24 99.23 99.23 99.23 99.23 

SVM 92.07 97.32 92.21 97.39 92.07 97.32 92.07 97.32 

XGBoost 99.11 99.23 99.11 99.24 99.11 99.23 99.11 99.23 

GB 97.44 98.59 97.48 98.61 97.44 98.59 97.44 98.59 

D
ia

b
et

es
 

LR 79.47 80.26 80.16 80.82 79.47 80.26 79.35 80.16 

KNN 82.11 86.32 82.70 87.76 82.11 86.32 82.02 86.16 

RF 83.68 85.53 84.36 86.19 83.68 85.53 83.60 85.47 

SVM 83.16 83.16 83.47 83.47 83.16 83.16 83.11 83.11 

XGBoost 84.21 85.26 84.67 85.73 84.21 85.26 84.15 85.21 

GB 85.26 85.00 85.82 85.56 85.26 85.00 85.21 84.94 

B
re

a
st

 C
a
n

ce
r 

LR 97.54 97.37 98.57 98.22 96.49 96.49 97.51 97.35 

KNN 96.32 97.02 97.19 95.92 95.44 98.25 96.26 97.05 

RF 97.54 97.02 97.91 97.25 97.19 96.84 97.54 97.02 

SVM 96.67 1.83 2.83 3.83 4.83 5.83 6.83 7.83 

XGBoost 96.84 96.84 96.53 96.86 97.19 96.84 96.85 96.84 

GB 96.84 97.02 97.20 97.57 96.49 96.49 96.82 97.00 

P
a
rk

in
so

n
 

LR 81.54 82.92 82.27 83.67 81.54 82.92 81.41 82.80 

KNN 88.46 90.48 88.63 90.70 88.46 90.48 88.44 90.47 

RF 86.97 87.68 87.26 87.76 86.97 87.68 86.94 87.68 

SVM 86.34 91.17 86.64 91.29 86.34 91.17 86.31 91.17 

XGBoost 85.63 86.32 86.45 86.94 85.63 86.32 85.47 86.17 

GB 87.03 87.03 87.57 87.57 87.03 87.03 86.95 86.95 

 

The findings of this study have revealed the 

effectiveness of disease classification models. 

However, the generalizability of the study can be 

increased by using larger and more balanced data 

sets. In the future, model performance can be further 

improved by applying different feature selection 

methods. In addition, deep learning approaches can 

be effective in classifying complex and 

observational data, especially Parkinson's. General 

models can be developed for different diseases 

using transfer learning methods. Finally, before 

moving on to clinical applications, the modeled 

systems should be tested with real hospital data and 

their real-time performance should be analyzed. 
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