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This study evaluates the performance of several supervised ML models with hyperparameter
optimization for predicting multiple diseases such as diabetes, heart disease, Parkinson's disease,
and breast cancer. The results show that the performance increase provided by pre-processing and
HPO is unfortunately not directly applicable to all datasets. / Bu ¢alisma, diyabet, kalp hastaligt,
Parkinson hastaligi ve meme kanseri gibi birden fazla hastaligi tahmin etmek i¢in hiperparametre
optimizasyonlu ¢esitli denetimli ML modellerinin performansini degerlendirmektedir. Sonuglar, on
isleme ve HPO tarafindan saglanan performans artisinin ne yazik ki tiim veri kiimelerine dogrudan
uygulanamayacagini géstermektedir.
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Figure A: Architecture design of the system / Sekil A:Sistemin mimari tasarimi

Highlights (Onemli noktalar)
»  User-friendly web Application for multi-disease prediction / Coklu hastalik tahmini igin
kullamici dostu web uygulamasi
»  Importance of HPO and preprocessing in machine learning / Makine 6grenmesinde HPO
ve oniglemenin onemi
» Explaratory data analysis / Kesif¢i veri analizi

Aim (Amag): The aim of this study is to investigate the use of ML methods in the diagnosis of
diabetes, heart disease, breast cancer and Parkinson's disease and the effect of HPO on model
performance. /| Bu g¢alismanin amact diyabet, kalp hastaligi, meme kanseri ve Parkinson
hastaliginn teshisinde MO yontemlerinin kullanimi ve HPO nun model performansina etkisinin
arastirilmasidur.

Originality (Ozgunliik): In this study, the success of exploratory data analysis and preprocessing
and hyperparameter optimization on different health data sets was evaluated. It was revealed that
there is no successful method that can be applied to all data sets. / Bu ¢alismada kesifci veri analizi
ve onigleme ile hiperparametre optimizasyonunun farkli saglhik veri setlerindeki bagsarist
degerlendirilmistir. Tiim veri setlerine uygulanabilir, basarili bir yéntem olmadigi ortaya
koyulmusgtur.

Results (Bulgular): Each dataset should be specifically processed with its data types, missing and
outlier values and optimized to produce a robust model. / Her veri seti veri tiirleri, eksik ve aykurt
degerleri ile ozel olarak islenmeli giirbiiz model ortaya koymak igin optimize edilmelidir.

Conclusion (Sonug): Four different diseases were classified with six different ML methods, and the
performances before and after HPO were compared and it was found that the optimized methods
were more successful. / Dort farkly hastalik alt farkly ML yontemiyle siniflandiriimis, HPO dncesi
ve sonrasi performanslari kiyaslanarak optimize yontemlerin daha basarili oldugu bulunmugtur.
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This study evaluates the performance of supervised machine learning (ML) models with
hyperparameter optimization (HPO) for predicting multiple diseases, including diabetes, heart
disease, Parkinson’s disease, and breast cancer. Six algorithms—Logistic Regression (LR),
Gradient Boosting (GB), k-Nearest Neighbors (K-NN), Extreme Gradient Boosting (XGB),
Support Vector Machines (SVM), and Random Forests (RF) were trained and tested on specific
disease datasets. Model performance was assessed using accuracy, precision, recall, and F1-score,
with GridSearch-based HPO applied to enhance predictive accuracy. Significant improvements
were observed across datasets. For heart disease, accuracy increased from 85.43% to 99.49%
after HPO, with similar gains in other metrics. In diabetes prediction, KNN accuracy improved
from 82.10% to 86.32%, while precision and F1-score also rose. Breast cancer models, except
XGBoost, consistently achieved over 97.0% accuracy. For Parkinson’s disease, SVM achieved
91.17% accuracy, a 4.83% improvement with HPO, with approximately 5% increases across all
metrics. All results were validated using 5-fold cross-validation. A user-friendly web application
was developed to allow users to select a disease, input relevant data, and receive predictions based
on the chosen model. This study highlights the impact of pre-processing and HPO on model
performance, addressing computational complexity, demonstrating generalizability in multi-
disease prediction, and improving accessibility. However, the results also indicate that the
performance gains from pre-processing and HPO are not uniformly applicable across all datasets,
providing valuable insights for future research.
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Bu ¢aligsma, diyabet, kalp hastaligi, Parkinson hastalig1 ve meme kanseri dahil olmak iizere birden
fazla hastalig1 tahmin etmek i¢in hiperparametre optimizasyonu (HPO) ile denetlenen makine
ogrenimi (MO) modellerinin performansmni degerlendirir. Alt1 algoritma - Lojistik Regresyon
(LR), Gradient Boosting (GB), k-En Yakin Komsular (K-NN), Extreme Gradient Boosting
(XGB), Support Vector Machines (SVM) ve Random Forests (RF) - belirli hastalik veri kiimeleri
iizerinde egitildi ve test edildi. Model performansi, tahmin dogrulugunu artirmak i¢in GridSearch
tabanli HPO wuygulanarak dogruluk, kesinlik, geri c¢agirma ve F1 puani kullanilarak
degerlendirildi. Veri kiimeleri arasinda onemli iyilestirmeler gézlemlendi. Kalp hastaligi i¢in
dogruluk, HPO'dan sonra %85,43'ten %99,49'a yiikselirken, diger metriklerde de benzer
kazanimlar elde edildi. Diyabet tahmininde, KNN dogrulugu %82,10'dan %86,32'ye yiikselirken,
kesinlik ve F1 puani da artti. XGBoost hari¢ meme kanseri modelleri siirekli olarak %97,0'n
tizerinde dogruluk elde etti. Parkinson hastaligi i¢in SVM, HPO ile %4,83'liik bir iyilestirme olan
%091,17 dogruluk elde etti ve tiim metriklerde yaklasik %S5 artis oldu. Tiim sonuglar 5 katli gapraz
dogrulama kullanilarak dogrulandi. Kullanicilarin bir hastalik segmesine, ilgili verileri girmesine
ve segilen modele dayali tahminler almasina olanak tantyan kullanict dostu bir web uygulamasi
geligtirildi. Bu ¢alisma, 6n isleme ve HPO'nun model performansi iizerindeki etkisini, hesaplama
karmagikligin1 ele almayi, ¢oklu hastalik tahmininde genellestirilebilirligi gostermeyi ve
erisilebilirligi iyilestirmeyi vurgulamaktadir. Ancak sonuglar ayrica 6n isleme ve HPO'dan elde
edilen performans kazanimlariin tiim veri kiimelerinde tekdiize olarak uygulanabilir olmadigini
ve gelecekteki arastirmalar i¢in degerli i¢gdriiler sagladigini gostermektedir.
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1. INTRODUCTION (GIRiS)

In a world where the diversity of complex diseases
is increasing day by day, accurate diagnoses have
underscored the need for advanced healthcare
technologies. This is vital both for patients to access
treatment quickly and for healthcare professionals
to reduce their workload. In addition to these, the
increasing risk of people making mistakes under
work intensity and intense stress increases the
importance of using Artificial Intelligence (Al) in
health.

Medical data analysis is increasingly used in
modern healthcare to improve diagnosis, treatment,
and prognosis processes. ML, as a subfield of Al,
has the potential to be an effective tool for various
fields [1-4]. Unlike conventional methods, ML
leverages patterns in data for early detection and
risk prediction. Previous studies have shown the
success of ML in diagnosing diseases such as
Alzheimer’s, diabetes, heart disease, Parkinson’s,
and various cancers [5-14]. ML algorithms offer
powerful tools to extract meaningful information
from such data. However, the performance of these
algorithms is highly dependent on the correct tuning
of  hyperparameters [15].  Hyperparameter
optimization is the process of finding the most
appropriate values of the parameters determined by
the user during the training process of the model and
guiding the learning process of the model. This
process is of critical importance especially in
complex and sensitive datasets such as medical data
[16,17].

The application of ML improves the diagnostic
process by facilitating early detection, precise
disease classification, and personalized treatment
recommendations, thereby significantly improving
patient care and prognosis. The difficulties inherent
in medical data, such as high dimensionality,
unbalanced class distributions, and missing data,
make hyperparameter optimization even more
complex [18]. Therefore, in addition to traditional
optimization methods, it is recommended to use
more advanced methods such as Bayesian
optimization, grid search, and random search [19].
In addition, measures to improve model
performance on medical data (e.g., data
preprocessing, feature selection, and class balancing
techniques for imbalanced data sets) need to be
carefully examined [20]. Recent studies have
emphasized ensemble models and HPO to achieve
improved diagnostic accuracy and address
overfitting concerns [21].

In this study, we investigate the diagnosis of
diseases such as diabetes, heart disease, breast
cancer and Parkinson's disease using ML methods
and the effect of HPO on models’ performances.
The performance of six models for each disease on
four different datasets is analyzed and presented. In
addition, a synthesis of existing studies in the
literature will be presented and suggestions for
future research in this area will be made. While prior
studies have focused on individual disease
prediction, such as [22] achieving respectively
85.04% and 84.4% accuracy with LR and RF for
heart disease, our work uniquely evaluates multiple
diseases, including heart disease, diabetes, breast
cancer, and Parkinson’s, under a unified framework.
Additionally, the integration of HPO across all
models usually enhances their robustness compared
to studies like [23], which primarily relied on
default configurations.

With the web-based user-friendly application
developed in the study, it has become possible to
predict the probability of an individual developing a
disease. This application has been developed to
bridge the gap between technical innovation and
practical usability, providing accessible predictions
for clinical and general users.

2. RELATED WORKS (ILGILI CALISMALAR)

In our study, we considered literature in two
dimensions: 1- The effect of machine learning
methods and hyperparameter optimization, 2-
Disease classification using machine learning
methods.

2.1. Hyperparameter Optimization (Hiperparametre
Optimizasyonu)

Hyperparameter optimization is an important
process to increase the performance of a model. At
the end of this process, the aim is to find the most
appropriate values of the parameters of the
algorithms used. Generally, each algorithm has its
own parameters, and adjusting these parameters
appropriately affects the results according to the
performance metrics used to measure the
generalization ability and success of the model
[15,19,24-29].

In this study, Logistic Regression (LR), Random
Forest (RF), Support Vector Machines (SVM), K-
Nearest Neighbor (KNN), Extreme Gradient
Boosting (XGBoost) and Gradient Boosting (GB)
algorithms were used.
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Although LR is generally considered as a simple
model, adjusting the regularization term (C)
prevents the model from overfitting or undefitting,
contributing to the increase in generalization ability.
In addition, the selection of different optimization
algorithms called solvers is another parameter that
affects the training time and accuracy [30-35].

In the random forest algorithm, adjusting
hyperparameters such as the number of trees
(n_estimators), maximum depth (max_depth) and
minimum sample number (min_samples_split) can
significantly increase performance. Generally, more
trees provide increased performance, but it
increases computational cost. While it becomes
possible to solve more complex problems with
maximum depth, it causes overfitting and the
training process to take longer. The minimum
sample number determines the number of samples
required to split a node, and as this value increases,
the generalization ability of the model can be
increased. Model accuracy can be increased with the
most appropriate choices. In addition, by preventing
overfitting or underfitting  situations, the
generalization ability and stability of the model can
be increased and provided. In addition, similar or
better results can be obtained by reducing
computational complexity. As a result of the
research, the hyperparameter optimization process
is seen as an important step in random forest
applications [24,36-40].

In SVM, optimization of hyperparameters such as
kernel function, C parameter and gamma parameter
can increase the classification success of the model.
Kernel function determines how the data will be
separated. Linear, polynomial and Radial Basis
Function (RBF) are commonly used. C parameter
controls the error tolerance. While low values
tolerate more errors, high values create more
complex models with less errors. Gamma parameter
determines how effective the data will be when RBF
kernel is used. While low gamma values provide a
wider domain, high values create a narrower
domain. Research shows that correct adjustment of
these parameters has a significant effect on the
overall performance of the model. For example, the
overall success of the model can be increased with
appropriate C and gamma values. The selection of
the kernel function and optimization of
hyperparameters can directly affect the shape and
location of the decision boundaries and therefore the
classification performance. In addition, it is possible
to improve the computational efficiency and the
training process [41-43].

There are several critical hyperparameters of the
KNN algorithm. The number of neighbors (k) can
improve the accuracy of the model, especially
depending on the size of the dataset. While low k
values increase the sensitivity of the model to noise,
high k values can increase the generalization ability
of the model. The distance criterion used to
determine the neighbors can affect the classification
results. In addition, the weighting method is used to
determine the effects of the neighbors. HPO
provides accuracy, minimizing over- or under-
fitting, and computational efficiency as in other
algorithms. The number of neighbors and the
distance criterion are important in determining the
decision boundaries, and their total effect can
directly affect the classification performance
[15,24,44-46].

XGBoost and GB algorithms are algorithms that use
decision trees. XGBoost is an optimized and faster
version of the traditional GB algorithm. Both add
new trees that correct the weak points of the current
model to reduce the error at each iteration. XGboost
offers more advantages over GB with parallel
processing, pruning mechanism used to prune
excess trees, special target functions and a wide
range of loss functions. The prominent
hyperparameters to be optimized are the number of
trees to be created (n_estimators), learning rate
(eta), maximum depth (max_depth), sample rate
(subsample). As the number of ‘n_estimators’
increases, the results generally improve, while the
risk of overfitting also increases. ‘eta’ controls the
contribution of each tree. Lower ‘eta’ values can
help increase generalization ability by providing
slower and better learning. ‘subsample’ determines
the ratio of samples to be used for each tree. Lower
values can reduce overfitting. HPO can provide
performance increase as in other methods
[19,27,37,47-50].

2.2. Disease Classification Using ML Methods
(MO Yontemleri Kullanarak Hastalik Smiflandirma)

Recent advances in machine learning (ML) have
reshaped disease prediction, yet critical challenges
in generalizability, interpretability, and clinical
integration remain unresolved. Previous studies
have highlighted the effectiveness of ML in disease
prediction. For example, in study [21] various ML
algorithms were used to train models for predicting
141 diseases across different medical specialties,
including diabetes, bronchial asthma, and Covid-19.
The research introduced a valuable dataset for
healthcare-oriented ML research and demonstrated
the potential of these algorithms for multi-disease
prediction with high accuracies. By creating a
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comprehensive dataset and applying diverse ML
algorithms, including SVM, Naive Bayes, and
Random Forest, the study addressed the challenges
of multi-disease prediction. The achieved accuracy
of 99.33% suggests the potential of ML for this task.
However, more investigation is necessary to ensure
the generalizability and robustness of such models
across different healthcare settings. While this study
focuses on the use of large-scale symptom datasets,
their reliance on association rules and homogeneous
data sources raises concerns about robustness in
real-world clinical settings, a limitation that our
work addresses through rigorous hyperparameter

optimization (HPO) and validation across
heterogeneous datasets.
According to [51] an improved healthcare

efficiency by predicting ICD codes for chronic
diseases, achieving a prediction accuracy between
80-90% across 11 diseases, with even higher
accuracy for cancer and stroke. This work
demonstrated ML's potential to speed up diagnosis
through automated code prediction. Similarly, [52]
evaluated whether ML can increase the accuracy of
cardiovascular risk estimation using regular clinical
data from a prospective cohort of 378,256 patients
registered dataset. Four ML algorithms (RF, LR,
GBM, ANN) were compared to an existing
algorithm based on American College of
Cardiology guidelines. The findings showed that
ML algorithms significantly improved
cardiovascular risk estimation. In particular, the
neural networks algorithm showed the best
improvement in accuracy, with a 3.6% increase over
traditional methods, demonstrating ML's ability to
outperform existing risk assessment models.
However, early ML studies focused narrowly on
single diseases or homogeneous datasets,
overlooking the need for generalizable frameworks
applicable to diverse clinical contexts.

Other research focused on comparing specific ML
models for chronic diseases. Study [53] compared
LR with various ML models for predicting chronic
diseases like diabetes, cardiovascular disease,
hypertension, and chronic kidney disease. The
results demonstrated that LR achieved competitive
performance, particularly for diseases with well-
established risk factors. In study [54], the
researchers aimed to develop a framework that
could accurately distinguish between Parkinson
patients and healthy individuals at an early stage.
They employed various ML algorithms to analyze
data and identify patterns indicative of the disease.

Preprocessing, standardization, and ensemble
techniques were utilized to enhance model
performance. The resulting DL  models

demonstrated promising outcomes in discriminating
Parkinson patients from healthy individuals, as
evaluated using accuracy, precision, sensitivity, F1
score, specificity, and area under the ROC curve. It
is emphasized that since the study used a limited
dataset, the real performance of the DL method can
be demonstrated with larger datasets.

Hyperparameter optimization (HPO) is another key
process for improving ML model efficacy. In [55],
the hyperparameters of the LR, KNN, SVM, RF,
and Decision Tree (DT) classification models were
tuned using the grid search method, resulting in an
accuracy range of 81.97% to 90.16% for LR, KNN,
DT, and SVM, and an accuracy range of 85.25% to
91.80% for RF. Similarly, in [23], the efficacy of
heart disease prediction was evaluated using HPO
techniques. The success rate, which typically ranges
between 80 and 90% in the literature, was found to
be 97.52% in the Cleveland dataset, particularly
when the RF model was employed. This indicates a
notable improvement in performance using HPO.

In addition, [56] proposed a study that concerns
cardiac disease diagnosis. The study emphasizes the
use of pre-processing and feature engineering
techniques before employing the ML algorithms.
These techniques aim to clean and refine the data by
handling outliers, missing values, potentially
irrelevant features and improve the performance of
ML models.

In [57], authors proposed a DL model for multi-
classification of infectious diseases utilizing
unstructured electronic medical records to aid in
clinical decision-making regarding infectious
diseases. This research highlights the capability of
deep learning to manage complex, unstructured data
such as electronic medical records, enhancing the
classification of diseases. The presented model
achieved a significantly higher accuracy (99.44%)
compared to traditional ML algorithms like
XGBoost (96.19%), DT (90.13%), Bayesian
methods (85.19%), and LR (91.26%). The model
demonstrates the potential of DL in analyzing
complex, unstructured data like EMRSs, offering a
more comprehensive approach to disease
classification compared to traditional methods.
However, existing HPO  studies  focus
disproportionately on single-disease applications or
computationally heavy DL models, neglecting
lightweight, interpretable frameworks for multi-
disease systems.
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3. MATERIALS AND METHODS (MATERYAL
VE METOD)

3.1. Datasets (Veri Setleri)

To examine the effectiveness of ML with and
without HPO in the healthcare field, we have
applied different ML methodologies on 4 different
medical datasets. These datasets are Diabetes
dataset, heart dataset, Breast Cancer dataset and
Parkinson dataset. These data are all available on
Kaggle data collection platform and lastly accessed
on September 6, 2024 for our study.

For the diabetes dataset
(https://www.kaggle.com/datasets/mathchi/diabete
s-data-set), specific criteria were applied during
data selection. This subset focuses on female
patients over 20 years old with a specific heritage.
It contains 768 entries with eight characteristics,
including blood pressure, glucose levels, and a
target variable for prediction.

The heart disease dataset
(https://www.kaggle.com/datasets/johnsmith88/hea
rt-disease-dataset) combines data from multiple
sources. This dataset consists of 303 records with 14
characteristics ~ encompassing  demographics,
medical history, and test results. Additionally, a
target variable indicates the presence or absence of
heart disease.

The breast cancer dataset
(https://www.kaggle.com/datasets/yasserh/breast-
cancer-dataset) provides data from 1988 related to
breast tissue samples. It includes 569 records, each
representing a cell nucleus with 31 characteristics
and a target variable indicating malignancy. These
characteristics describe various properties extracted
from digitized images.

The Parkinson's disease dataset
(https:/iwww.kaggle.com/datasets/vikasukani/parki
nsons-disease-data-set) contributes significantly to
developing ML models for automated disease
detection through voice analysis. This dataset
comprises information on 195 individuals, aiming
to differentiate between those with Parkinson's
disease and those who are healthy.

3.2. Exploratory Data Analysis and Variable
Analysis (Kesifci Veri Analizi ve Degiken Analizi)

The target distribution of the diabetes dataset in the
first row of Table 1 shows that the person who are
not diabetic are more than the person who have
diabetes. Around 500 are non-diabetics and 268
people are affected by diabetes.

The target variable distribution in the second row of
Table 1 indicates a slightly higher proportion of
individuals classified as "affected" compared to
those classified as "non-affected". The total number
of people affected by heart disease is 526 and the
total number of the persons not affected is 499.

The target variable distribution in the third row of
Table 1 shows a significantly higher proportion of
individuals classified as "affected" compared to
those classified as "non-affected". The total number
of people affected by heart disease is 147 and the
total number of the persons not affected is 48.

Looking at the output of the target variable of the
breast cancer dataset int the last row of Table 1, the
total number of persons that are Benign (not
affected) is 357 and the total number of those who
are Malignant (affected by breast cancer) is 212.

Table 1. The target distribution of datasets (Veri setlerinin hedef dagilimlarr)

Healthy Number of People Diseased Number of People
Diabetes 500 268
Heart Disease 499 526
Parkinson 48 147
Breast Cancer 357 212

3.3. Outlier Removal and Standardization (Aykiri
Degerlerin Giderilmesi ve Standardizasyon)

Although ML algorithms are powerful, some of
their limitations cannot be ignored. Unfortunately,
mechanisms that perform exploratory data analysis
and train the most optimal model as a result have
not yet been developed. The data preprocessing step
involved identifying and removing outliers present

in each dataset. Outliers are significantly differing
from most of the data. Their presence can negatively
impact model training and lead to inaccurate
predictions. We used Interquartile Range (IRQ) to
detect and remove outliers from each dataset.

Then, all features were standardized with the Z-
score method known as standardscaler in the
Sklearn library. Since these were not always
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sufficient, additional operations had to be

performed on a dataset-specific basis.

The IQR (Interquartile Range) method is a widely
used statistical technique for identifying outliers.
This method is based on the distribution of the data
set and uses the interquartile range to detect outliers.
Here are the steps of the IQR method:

1. Sorting the Data:
The dataset is sorted from smallest to

largest.

2. Calculating the Quartiles:
Q1 (First Quartile): Represents the lower
25% of the dataset.
Q3 (Third Quartile): Represents the upper
25% of the dataset.
Median (Q2): The median value of the data
set.

3. IQR Calculation:
IQR is the difference between Q3 and Q1.

IQR = Q3 — Q1 1)

4. Determining Outlier Boundaries:

Lower Boundary:
Lower Boundary = Q1 — 1.5 X IQR 2

Upper Boundary:
Upper Boundary = Q3 + 1.5 X IQR 3)

5. Detecting Outliers:
Values smaller than the lower boundary are
considered lower outliers.
Values larger than the upper boundary are
considered upper outliers.

The IQR method is a simple and fast method that is
based on dataset distribution and objectively
determines outliers. It is especially useful for
detecting outliers in small and medium-sized
datasets. Since it is designed according to the
principle that the dataset should be close to a normal
distribution, it does not always succeed in providing
the same advantage [58].

Following outlier management, we standardized the
remaining data. Standardization is a crucial step that
scales the features within each dataset to a common
range. This method standardizes the data so that the
mean is 0 and the standard deviation is 1. This is
especially important for improving the performance

of machine learning algorithms because it ensures
that features at different scales are given equal
weight. It speeds up the training process, especially
for gradient descent-based algorithms (e.g., SVM,
logistic  regression, neural networks), and
standardized data can be more easily interpreted in
statistical analyses [59].

D) (4)
7 =

g
Here: x: Original value, u: Mean of the feature, o:
Standard deviation of the feature, z: Standardized
value.

3.4. Data Splitting and Balancing (Veri Bélme ve
Dengeleme)

k-fold cross-validation evaluates the performance of
the model on the entire dataset, providing more
reliable results compared to a single training-test
split. Since the entire dataset is used for both
training and testing, the risk of overfitting the model
to the entire dataset is reduced and data waste is
prevented. The k value was selected as 5 in the study
[60].

SMOTE improves the performance of classification
models by increasing the number of samples from
the minority class. In addition, since no samples are
removed from the dataset (undersampling is not
performed), there is no loss of information. Since it
creates synthetic samples instead of random
oversampling, it reduces the risk of overfitting.
Thus, it increases the number of samples from the
minority class to solve the class imbalance problem
and improves the generalization ability of the model
[61].

3.5. Logistic Regression (Lojistik Regresyon)

LR is a supervised learning algorithm that estimates
the likelihood of an event (classification) based on
a set of input variables (data points). It excels at
providing clear explanations for each variable's
impact on the predicted classification outcome. This
interpretability is valuable in healthcare settings, as
it allows us to understand which factors are most
influential in predicting each condition.

3.6. k-Nearest Neighbour (k-En Yakin Komsu)

This is a versatile technique used for exploring
relationships within data. It operates on the principle
of similarity, where a new data point is classified
based on the majority class or average value of its
closest neighbors. The key aspect of KNN is finding
the optimal number of neighbors (k) that minimizes
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errors. Selecting the appropriate k value is crucial,
as a small k can be sensitive to noise, while a large
k might result in an overly smooth decision
boundary that misses local patterns.

3.7. Ensemble Techniques (Topluluk Teknikleri)

Ensemble techniques were used to potentially
improve the accuracy and robustness of the
classifications. Random Forest Classifier combines
multiple decision trees, each trained on a random
subset of the data, to arrive at a final classification
through a majority vote. Extreme Gradient Boosting
(XGBoost) creates and combines multiple decision
trees, each focusing on correcting the errors of the
previous trees, to achieve a more accurate final
classification. Gradient Boosting builds an
ensemble of decision trees sequentially, where each
subsequent tree learns from the errors of the
previous trees. This allows the final model to
capture complex relationships within the data.

3.8. Support Vector Machine (Destek Vektor
Makinesi)

This technique excels in data with a high number of
variables. SVM seeks to identify the optimal
dividing line that separates different classifications
within the data. The positioning of this line
prioritizes maximizing the separation between
classes.

3.9. Hyperparameter Optimization (Hiperparametre
Optimizasyonu)

HPO is a crucial step in ML that involves adjusting
the model's internal configurations to optimize its
performance. Different hyperparameter settings can
significantly impact the model's ability to learn from
the data and generalize to unseen data. We used
Grid SearchCV which is a common technique that
systematically evaluates a predefined set of
hyperparameter values to identify the combination
that yields the best performance on a validation set
[59].

3.10. Model Evaluation (Model Degerlendirmesi)

When using k-fold cross-validation in the scikit-
learn library, the performance metrics of the model
are calculated for each fold and the final result is
usually obtained by averaging these values.

K-Fold Cross-Validation Process:

1. The dataset is divided into k parts (folds).

2. In each iteration, 1 fold is used as the test set
and the rest as the training set.

3. The model is trained and tested k times.

4. Metrics (accuracy, precision, recall, Fl-score,
etc.) are calculated for each fold.

5. The final performance is determined by
averaging the results.

Since we used k-fold cross validation, in each

iteration performance metrics are calculated k times

and final values were calculated by averaging. In

addition, we compared results without HPO and

with HPO, whole process were operated twice.

The performance metrics of ML models have been
calculated and evaluated in terms of accuracy,
precision, recall and F1 score with the help of the
confusion matrix. Accuracy is the ratio of correctly
classified observations to the total number of
observations. Precision is performed by taking the
ratio of correctly classified positive samples to the
total predicted positive samples. The recall is
calculated by taking the ratio of truly classified
positive samples to all samples in actual class. F1
score is performed by taking the weighted average
of precision and recall. The mathematical
expressions of accuracy, precision, recall, and F1
score are shown in the equations from 5 to 8
respectively.

| ~ TP + TN -
CoUracy = Tp TN+ FP + FN
TP
.. -_ - 6
Precision TP L FP (6)
Recall = — & @)
e = TP ¥ FN

1 5 Recall X Precision ®)
— score =
Recall + Precision

Where, TP, FN, FP, and TN represented True
Positive, False Negative, False Positive, and True
Negative, respectively.

4. APPLICATION (UYGULAMA)

We used python with pandas to read and manage
structured datasets for each disease. Visualization
libraries like Matplotlib and Seaborn facilitated data
exploration. Each  dataset was analyzed
independently to understand its characteristics. To
address imbalanced datasets, we employed the
SMOTE technique. SMOTE generates synthetic
data points for the minority class, mitigating bias
and improving model performance. A Technique
like StandardScaler helped us to standardize the
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data, ensuring a mean of 0 and a standard deviation
of 1 for all features.

4.1. Data Preprocessing (Veri Onisleme)

We evaluated various ML techniques on the
preprocessed data. These included LR, SVM, KNN,
RF, XGBoost and GB. HPO was performed using

Grid Search method to identify the best
configuration for each model, significantly
enhancing their performance. k-fold cross-

validation strategy ensured good evaluation by
providing more reliable performance results.

With the data preprocessing, performing some
additional operations for each dataset made
significant contributions to the model performance.

Since the values of 'trestbps’, ‘chol’, 'thalach’, 'slope’,
'thal’ used as features in the heart disease dataset are
naturally not possible to be 0, the relevant records
were cleaned from the dataset. Later, by applying
other preprocessing methods, high classification
success was achieved by preventing overfitting of
the models both without HPO and with HPO.

In the diabetes dataset, it is not possible for the
'‘Glucose', ‘BloodPressure’, '‘SkinThickness',
‘Insulin’, 'BMI' features to be 0. For this reason, the
relevant records were cleaned before other data
preprocessing steps. In the experiments conducted
with different scenarios, it was observed that the

Data Preparation and
Model building

Exploratory Data

Heart dataset 4
Analysis

Diabetes Exploratory Data
dataset Analysis
Exploratory Data
Breast Cancer Analysis
Parkinson Exploratory Data

dataset Analysis

highest performance metrics were obtained in this
way.

In the breast cancer dataset, the 'id' column, which
has nothing to do with diagnosis, has been deleted.

In addition, the features 'radius_mean’,
‘texture_mean', ‘perimeter_mean', ‘area_mean,
‘concave points_mean’, ‘radius_se', ‘'area_se',

‘perimeter_worst', ‘area_worst', which have high
correlations with the target value and each other,
have not been included in the training for the
purpose of reducing dimensionality. In this way, it
has been observed in experimental studies that the
models are both faster and give optimum
performance.

In the Parkinson's disease dataset, attributes were
extracted from voice recordings taken from 31
volunteers. Therefore, outlier detection and removal
were applied directly. No other process was done
beforehand.

4.2. Model Deployment and Web Application

Development (Model Kurulumu ve Web Uygulamasi
Gelistirme)

The web application was developed using Streamlit,
a Python library for building web applications. This
application integrates serialized models, enabling
users to interact with the system. The architecture of
the system is given in Figure 1 and sample interface
is given in Figure 2.

Deployment
ML model

Streamlit Web
ML model App
ML model
ML model Qutput

Figure 1. Architecture desing of multi-disease prediction system (Coklu hastalik tahmin sistemi mimari tasartmi)
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¥

Bl Diabetes Disease Prediction

B Multiple Disoase
Prediction System

Please Read the Medical describtion below before entering
the values |

Figure 2. Multi-Disease prediction system user interface (Coklu hastalik tahmin sistemi kullanic1 arayiizii)

The developed application was tested for usability
with simulated clinical and general user inputs. The
interface provides a streamlined workflow: disease
selection, data input, and instant predictions.
Feedback indicated ease of use and potential for
integration into clinical workflows, particularly for
early screening and risk assessment. Predictions
generated by the application matched the model
outputs, confirming its reliability. The intuitive
interface allows non-technical users to navigate
seamlessly, select diseases, input parameters, and
interpret results effectively.

5. EXPERIMENTAL RESULTS
Sonuglar)

(Deneysel

5.1. Heart Disease (Kalp Hastalig1)

We built and evaluated six ML models for heart
disease prediction: LR, RF, SVM, KNN, XGBoost
and GB. When we look at the results shown in Table
2, we see that HPO has a significant impact on the
performance of the models except RF. KNN showed
the most significant improvement (14%),
suggesting its initial configuration was suboptimal.
This highlights how tuning can help identify better
configurations even for simpler models. The chosen
hyperparameters (high C value, increased

iterations) indicate the model benefits from
regularization and more training data. 5-fold cross-
validation was used in all training. Cross-validation
reduces the chance factor as it allows training and
testing with different parts of the dataset. It shows
that the model performs well on the entire dataset,
not just on a specific subset of the data. However,
the increase in KNN brings overfitting to mind.
However, since the dataset is balanced before model
training, the probability of overfitting decreases due
to the difference between training and test scores
being around 1%.

Although a small increase is observed in Logistic
Regression, it can be expected that the accuracy
limits will not change much due to the nature of this
model. The best parameters include 'C": 0.1 and
‘penalty”: 'I1', which shows that the model gives
better results with L1 (Lasso) regularization. A
striking improvement is seen in KNN. When we
look at the best parameters, the settings 'metric'
'manhattan’, 'n_neighbors: 11' and ‘weights":
'distance' attract attention. Optimizing these
parameters seems to have provided the model with
significantly better generalization.

Table 2. Comparison of accuracy results on heart disease with and without HPO. (HPO'lu ve HPO'suz kalp
hastaliklarinda dogruluk sonuglarinin karsilastirilmast.)

Model Before HPO After HPO Best Parameters

LR 83.63% 84.91% 'C": 0.1, 'penalty": '11', 'solver': 'liblinear’

KNN 85.43% 99.49% 'metric':  'manhattan’, 'n_neighbors: 11,
'weights': 'distance’

RF 99.23% 99.23% 'bootstrap': True, 'max_depth": 70,
'min_samples leaf: 1, 'min_samples_split": 2,
'n_estimators': 200

SVM 92.07% 97.31% 'C": 10, 'kernel': 'tbf'

XG_Boost 99.11% 99.23% 'learning_rate': 0.2, 'max_depth": 7,
'n_estimators': 50

GB 97.44% 98.59% 'learning_rate": 0.2, 'max_depth': 5
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Interestingly, the accuracy did not change after
hyperparameter optimization in RF (99.23%). This
shows that the model is already working very close
to the optimal values and HPO does not provide any
additional improvement. The best parameters
determined are depth 70 and number of trees 200,
which provides the model to learn strongly. There is
a significant increase from 92.07% to 97.31% in
SVM. Among the best parameters, 'C: 10 and
'kernel": 'rbf' were selected, meaning the model
generalized better with a higher penalty parameter
and RBF kernel. The accuracy was already high in
the XGBoost and GB algorithms. In both
algorithms, the model was optimized with
'learning_rate’: 0.2 and 'max_depth' as 7 and 5,
respectively.

5.2. Diabetes (Diyabet)

While all models achieved good accuracy after
tuning, the results in Table 3 provide insights into
model-specific behavior. The KNN model showed
the most significant improvement, with test
accuracy increasing from 82.1% to 86.3%, a gain of
4.2 percentage points. The Logistic Regression
(LR) model saw a slight improvement, whereas the
Random Forest (RF) model experienced a minor
decline, with accuracy dropping from 83.7% to
83.5%. Surprisingly, the XGBoost model
deteriorated, with test accuracy decreasing from
84.2% to 82.3%. The SVM model remained
unchanged, and the Gradient Boosting (GB) model
showed a slight decline in performance.

Table 3. Comparison of HPO results on diabetes. (HPO'lu ve HPO'suz diyabette dogruluk sonuglarinin
kargilagtirilmasi.)

Model Before HPO After HPO Best Parameters

LR 79.47% 80.26% 'C': 0.1, 'penalty": '12', 'solver': 'liblinear'

KNN 82.10% 86.32% 'metric: 'manhattan’, 'n_neighbors: 2, 'weights"
'distance’

RF 83.68% 83.53% 'bootstrap': False, 'max_depth'": 60,
'min_samples leaf: 1, 'min samples split: 2,
'n_estimators': 200

SVM 83.16% 83.16% 'C": 1, 'kernel': 'tbf’

XGBoost | 84.21% 82.26% max_ 'learning rate. 0.2, ‘'max depth 3,
'n_estimators': 100

GBM 85.26% 85.00% 'learning_rate': 0.1, 'max_depth': 3

Although the LR model improved, its performance
gain was not as strong as in other models. The KNN
model was successfully optimized, achieving better
performance after HPO. However, the choice of a
small value (n_neighbors=2) may increase the risk
of overfitting, so it should be validated on larger
datasets. XGBoost and RF unexpectedly performed
worse after HPO. The learning rate was increased in
XGBoost (learning_rate=0.2), yet its performance
declined. Similarly, the RF model's performance
slightly worsened, likely due to excessive model
complexity for the dataset. The SVM model
remained unchanged, suggesting that its parameters
might have already been optimal.

5.3. Breast Cancer (Meme Kanseri)

HPO demonstrated the performance of six models
for breast cancer classification (Table 4). HPO
provided performance increase in all models except
RF model. It is possible to obtain higher scores by
expanding the parameter space of RF model.

However, since the same parameter pool was used
for all models in the study, the result remained low.
Although XGBoost and Gradient Boosting work
with similar parameters, XGBoost gave slightly
better results. As a result, the model that achieved
the highest accuracy appears to be KNN with
98.42%.

The best parameters for KNN are seen to be
"manhattan" distance metric, 6 neighbors and
weighted calculation (distance weighting). The
effect of HPO on KNN was quite positive (97.37%
— 98.42%). For LR, especially the 'C' value of 10
and the selection of 'liblinear' solver may be
effective. Using linear kernel and 'C' = 1 in SVM
provided stable development. For XGBoost,
'learning_rate = 0.2, 'max_depth= 3" and
'n_estimators=200' trees provided better results. A
slight decrease is seen in the RF model after HPO.
This situation can be explained by the fact that too
much depth (max_depth = 60) or other parameters
used reduce the generalization ability of the model.
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Table 4. Comparison of HPO results on diabetes. (HPO'lu ve HPO'suz meme kanseri dogruluk sonuglarinin

kargilastirilmast.)

Model Before HPO | After HPO Best Parameters

LR 96.49% 97.54% 'C": 10, 'penalty": 12", 'solver': 'liblinear'

KNN 97.37% 98.42% 'metric': 'manhattan’, 'n_neighbors: 6, ‘'weights"
'distance’

RF 97.72% 97.19% 'bootstrap': False, 'max_depth': 60, 'min_samples leaf":
1, 'min_samples_split': 2, 'n_estimators': 100

SVM 97.37% 97.54% 'C". 1, 'kernel': 'linear’

XGBoost | 96.67% 97.10% 'learning_rate': 0.2, 'max_depth": 3, 'n_estimators': 200

GB 96.84% 97.02% 'learning_rate": 0.2, 'max_depth': 3

A small improvement was seen in the GB model.
Similar to the XGBoost model, 'max_depth = 3' and
'learning_rate = 0.2' were used, but XGBoost
performed slightly better. This suggests that
XGBoost may be a more powerful model compared
to GB in terms of optimization.

5.4. Parkinson Disease (Parkinson Hastalig1)

HPO results for Parkinson’s disease varied
significantly between models (Table 5). The
accuracy of SVM after HPO increased by 4.83%. C
value (10) and RBF kernel may have created more
complex distinction surfaces. The accuracy of KNN
increased from 88.46% to 90.48% with Manhattan
distance, 'n_neighbors= 2' and weighted distance
method. The number of small neighbors may have
adapted to the data more precisely.

LR was optimized with 'C = 0.1', 'penalty = [2'
parameters and solver method 'lbfgs'. 'max_depth=
70, and 'n_estimators= 1000' are aggressive
parameters for RF. Although more trees provide
better generalization, it can increase the risk of
overfitting. Typical powerful settings such as
‘learning rate = 0.1') 'max depth = 5,
'n_estimators = 600" are used in the XGboost. There
was no change in GB (87.03%); 'learning_rate = 0.1'
and 'max_depth = 3' can already be optimal.

Since the whole process is performed with 5-fold
cross validation, the results can be considered
reliable. Models such as SVM and KNN seem to
have a significant increase in test accuracy.

Table 5. Comparison of HPO results on Parkinson. (HPO'lu ve HPO'suz Parkinson dogruluk sonuglarinin
karsilastirilmast.)

Model Accuracy Accuracy After | Best Parameters
Before HPO | HPO (%)

LR 81.54% 82.92% 'C": 0.1, "penalty": '12', 'solver": 'lbfgs'

KNN 88.46% 90.48% 'metric': 'manhattan’, 'n_neighbors': 2,
'weights': 'distance’

RF 86.96% 87.68% 'bootstrap': True, 'max_depth': 70,
'min_samples leaf': 1, 'min_samples_split': 2,
'n_estimators': 1000

SVM 86.34% 91.17% 'C": 10, 'kernel': 'tbf'

XGBoost 85.63% 86.32% 'learning_rate": 0.1, 'max_depth'": 5,
'n_estimators'": 600

GB 87.03% 87.03% 'learning_rate': 0.1, 'max_depth': 3

6. RESULTS AND DISCUSSIONS (BULGULAR
VE TARTISMA)

This study evaluated how hyperparameter
optimization affects the performance of different
machine learning algorithms for the classification of
heart disease, diabetes, breast cancer and

Parkinson's disease. The models used were LR,
KNN, RF, SVM, XGBoost and Gradient Boosting
algorithms. Models were trained using 5-fold cross-
validation (k-fold cross-validation) and
hyperparameter optimization (HPO) was performed
with GridSearch method.
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Table 6. Comparison of performance impact of HPO on all datasets. (HPO’nun tiim veri setlerindeki performans
karsilagtirmasi.)

Accuracy Precision Recall F1-Score

Before After Before After Before After Before After

Model HPO HPO HPO HPO HPO HPO HPO HPO

° LR 83.63 8491 83.73 85.11 8363 8491 8362 84.89
§ KNN 8543 99.49 85.81 9950 8543 99.49 85.38 99.49
-‘Di’ RF 99.23 99.23 99.25 99.24 99.23 99.23 99.23 99.23
*% SVM 92.07 97.32 9221 97.39 92.07 97.32 92.07 97.32
T _XGBoost 99.11 9923 99.11 9924 99.11 9923 99.11 99.23
GB 97.44 9859 97.48 98.61 97.44 9859 97.44 98.59

LR 79.47 80.26 80.16 80.82 79.47 80.26 79.35 80.16

«» _KNN 82.11 86.32 8270 87.76 8211 86.32 82.02 86.16
§ RF 83.68 8553 84.36 86.19 83.68 8553 83.60 85.47
.‘OE SVM 83.16 83.16 8347 8347 8316 83.16 83.11 83.11
XGBoost 84.21 85.26 84.67 85.73 84.21 8526 84.15 85.21

GB 85.26 85.00 85.82 8556 8526 85.00 8521 84.94

_ _LR 9754 97.37 9857 98.22 96.49 96.49 9751 97.35
§ KNN 96.32 97.02 97.19 9592 9544 98.25 96.26 97.05
S RF 9754 97.02 9791 97.25 97.19 96.84 97.54 97.02
% SVM 96.67 1.83 2.83 3.83 483 5.83 6.83 7.83
f% XGBoost 96.84 96.84 9653 96.86 97.19 96.84 96.85 96.84
GB 96.84 97.02 97.20 97.57 96.49 96.49 96.82 97.00

LR 81.54 8292 8227 83.67 8154 8292 8141 82.80

s KNN 88.46 90.48 88.63 90.70 88.46 90.48 88.44 90.47
2 RF 86.97 87.68 87.26 87.76 86.97 87.68 86.94 87.68
:‘% SVM 86.34 91.17 86.64 91.29 86.34 91.17 86.31 91.17
8 XGBoost 85.63 86.32 86.45 86.94 85.63 86.32 85.47 86.17
GB 87.03 87.03 87.57 8757 87.03 87.03 86.95 86.95

The findings of this study have revealed the
effectiveness of disease classification models.
However, the generalizability of the study can be
increased by using larger and more balanced data
sets. In the future, model performance can be further
improved by applying different feature selection
methods. In addition, deep learning approaches can
be effective in classifying complex and
observational data, especially Parkinson's. General
models can be developed for different diseases
using transfer learning methods. Finally, before
moving on to clinical applications, the modeled
systems should be tested with real hospital data and
their real-time performance should be analyzed.
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