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Abstract 
 

In cognitive radio, users of the spectrum are grouped as primary and secondary users. Primary users are license holders and a certain 

interval of band is assigned to them. On the other hand, secondary users determine the idle frequency intervals which are not used 

by primary users. To determine whether a spectrum band is idle or in use, various spectrum sensing techniques have been proposed 

in the literature. In the studies on goodness of fit (GOF) tests, it is assumed that primary user does not change its status during 

spectrum analysis. However, when the duration of analysis is long, the status of primary user may change. In this study, effect of the 

primary user traffic on the sensing performance of GOF test based spectrum sensing methods is investigated. According to simulation 

results, it has been observed that changes in the primary user status adversely affect the sensing performance.  
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1. INTRODUCTION 

Goodness of fit (GOF) tests are considered as nonparametric spectrum sensing methods in the cognitive radio (CR) literature (Wang 

et al., 2009). They are also treated as blind spectrum sensing techniques since they do not need a priori knowledge of the primary 

user (PU) signal.  

  

It is possible to improve performance of GOF tests by extending the length of the sensing period. However, use of longer sensing 

periods may also increase the possibility of having a dynamic PU which changes its status during the sensing period. Therefore, 

possible PU status changes (also called PU traffic) in the channel should also be taken into consideration by a CR. However, a great 

majority of the works on spectrum sensing based on GOF testing assumes that the PU does not change its status during the sensing 

period (Wang et al., 2009), (Rostami et al., 2012), (Lei et al., 2011). Hence, in this study, we investigate performances of GOF tests 

for detecting dynamic PUs under the existence of PU traffic. 

  

The rest of the paper is organized as follows: The system model used in this study is introduced in Section 2. In Section 3, widely 

used GOF tests for spectrum sensing are presented. Simulation results are considered in Section 4, and finally, conclusions are 

given in Section 5. 

2. SYSTEM MODEL 

In the studies on spectrum sensing, the following system model is commonly used (Yücek and Arslan, 2009), (Düzenli and Akay, 

2013) 

   
0

: xH n w n ,               1, 2, ,n N  

(1)                                                                                                                                 

     
1

:H x n s n w n  ,     1, 2, ,n N  

where  w n  denotes samples of white Gaussian noise (WGN) distributed according to  2

0,N ,  s n  is the PU signal, and N  

is the number of total samples observed during the sensing period. 

 In Eq. (1), it is assumed that there is no PU status change during the sensing period. If there is a status change of the PU in the 

channel, then the model given in Eq. (1) can be modified as 
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where 1i  and 1j  are the PU status change points under 
0

H  and 
1

H , respectively.  

In the same way, the system model for two status changes of the PU can be written as 
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where  
1
i  and 

2
i  are the first and second status change points of the PU under hypothesis 

0
H , respectively. Similarly, 

1
j  and 

2
j  

are the first and second status change points of the PU under hypothesis 
1

H .  

The model in Eq. (3) can be extended for more than two PU status changes by assuming that hypothesis 
0

H  ends with noise-only 

samples and hypothesis 
1

H  ends with noise-corrupted signal samples (Düzenli and Akay, 2016).  

It can be stated that hypothesis 
0

H  corresponds to the absence of the PU in the channel (null hypothesis), and oppositely, hypothesis 

1
H  is the case where PU is in the channel (alternative hypothesis). If 

1
H  is decided under hypothesis 

1
H , then it leads to probability 

of detection, 
D

P . That is; probability of deciding that there is PU signal in the channel.  Thus, PU actually exists and is correctly 

detected. If 
1

H  is decided while 
0

H  is observed, then it refers to probability of false alarm, 
FA

P , which indicates deciding that the 

PU signal exists when there is actually no PU communication. Thus, error of false alarm leads to inefficient use of the spectrum. 

 

D
P  and 

FA
P can be expressed mathematically using the following definitions 

 

 
x x 1D

P P T H                                                                                                                                                          (4) 

 
x x 0FA

P P T H                                                                                                                                                          (5) 

 

where 
x

T  is the test statistic and 
x

  is the decision threshold value for the test statistic. 
FA

P  should be kept as small as possible in 

order to prevent underutilization of transmission opportunities. The decision threshold 
x

  can be selected for finding an optimum 

balance between 
D

P  and 
FA

P  . 

 

3. GOF Tests for Spectrum Sensing 

In GOF testing, the main goal is to determine if the observed data come from a particular known distribution or not. This testing 

scheme can be adapted to spectrum sensing in CR. Using GOF testing, the binary hypothesis testing problem for spectrum sensing 

can be formulated as (Zhang, 2002) 

 

   
0 0

:
N

H F x F x                 (6)                                                                                                                                 

   
1 0

:
N

H F x F x . 

 

In Eq. (6),  
0

F x  is a known cumulative distribution function (CDF) which is assumed to be present under the null hypothesis, 

0
H . 
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Assuming a Gaussian communication channel as in (Wang et al., 2009), (Rostami et al., 2012), (Lei et al., 2011),  
0

F x can be 

taken to be equal to the CDF of zero-mean Gaussian (normal) distribution,  2
0,N , with variance 

2
 .  

N
F x  corresponds to 

the empirical CDF which is calculated as (Rostami et al., 2012) 

 

 
: ,1

N

i
F x

N

i x x i N


  
                                                                                                                                       (7) 

 

where  .  denotes cardinality, ix  is the 
th

i  sample of the observed data vector x , and N  represents the number of observed 

samples. Without loss of generality, the elements of x  are assumed to be real-valued. 

There are several GOF tests proposed in the literature. In this paper, the following widely used GOF tests are considered: 

• Anderson – Darling (AD) (Wang et al., 2009), (Rostami et al., 2012), (Lei et al., 2011), (Zhang, 2002), (N.-Thanh et al., 

2012), (Arshad and Moessner, 2013) 

• Kolmogorov – Smirnov (KS) test (Lei et al., 2011), 

• Cramer – von Misses (CM) test (Lei et al., 2011), 

• Log-Likelihood Ratio (LLR) GOF tests (Zhang, 2002), 

• Order statistics (OS) (Rostami et al., 2012). 

 

3.1 Anderson-Darling (AD) Test 

In the AD test, it is aimed to measure the distance between the observed data and the known noise distribution. If the result of 

this measurement is smaller than a certain threshold, then 
0

H  is decided as the valid hypothesis.  

 

The AD decision statistic is given as (Arshad and Moessner, 2013) 

 

         
2

0 0 0AD N
T N F x F x F x dF x





                                                                                                           (8) 

 

where  .  is a weight function defined as     
1

1u u u


   for the interval 0 1u  . 

It is possible to simplify the AD test statistic in Eq. (8) by performing the integral. Then, AD
T   can be obtained as (Arshad and 

Moessner, 2013) 

 

 2

1

1

(2 1) ln ln(1 )
N

i N i

i

AD

N i z z

T
N

 



   

 


                                                                                                       (9) 

 

where   0i i
z F x . 

3.2 Kolmogorov-Smirnov (KS) Test 

As in the AD test, the KS test aims to obtain how far the empirical CDF of the received signal is from the known CDF of the 

noise. It is also possible to interpret the KS test as measuring “graphically the maximum vertical distance between the two 

distributions,  
N

F x   and   
0

F x ” (Arshad and Moessner, 2013).  
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Accordingly, the KS decision statistic is defined as (Lei et al., 2011) 

 

   0
max

KS N
T F x F x                                                                                                                                                     (10) 

 

where  
N

F x  is the empirical CDF as defined in Eq. (7). According to Eq. (10), the test statistic  
KS

T  converges to zero under 

hypothesis  0
H . 

3.3 Cramer-von Misses (CM) Test 

n the CM test, the distance between  
N

F x  and  
0

F x  is defined as (Lei et al., 2011), (Stephens, 1974) 

      
2

0 0CM N
T N F x F x dF x





                                                                                                                             (11) 

The CM test statistic can be simplified as (Lei et al., 2011) 

 
2

1

2 1 1

2 12

N

CM i

i

i
T z

N N


  

   
  
  

                                                                                                                          (12) 

where   
0i i

z F x . 

3.4 Log-Likelihood Ratio (LLR) GOF tests 

In GOF testing, it is possible to derive the test statistics by two basic equations which are given as (Zhang, 2002) 

 t
Z Z dw t





                                                                                                                                                                 (13) 

 
  max

,

sup
t

t

Z Z w t
  

                                                                                                                                                (14) 

where  w t  is some weight function.  

 

It is clear that performance of a test statistic generated using Equations (13) and (14) depends on t
Z  and  w t  which are used 

for calculating Z  and max
Z . For t

Z , two functions are used in the literature. They are given as Pearson statistic and the log-

likelihood ratio (LLR) which are defined, respectively, as (Zhang, 2002) 

 

    
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2 0

0 0
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                                                                                                                              (15) 

 

and 

 
 

 
  

 

 
2

0 0

1
2 log 1 log

1

N N

t N N

F t F t
G N F t F t

F t F t


  



    
    

    
.                                                                      (16) 

It is possible to generate new powerful and distribution symmetric tests by choosing   w t  and 
t

Z  functions as presented in Table 

1.  The resultant test statistics KZ , AZ , and CZ  are given as (Zhang, 2002) 
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0log
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Table 1. Derivation of new GOF tests using Equations (13) through (16). 

Weight Function 
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Since the test statistics KZ , AZ , and CZ  use the likelihood ratio, they are alternatively named as LLR based GOF tests. 
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3.4 OS based GOF Testing 

OS based GOF testing uses the quantiles of the observed data to measure the degree of fit of a distribution to data. In this technique, 

decision is taken by using the  -vector of the data (Rostami et al., 2012).  -vector is considered in several studies on OS based 

GOF tests (Glen et al., 2001). Thus, calculation of  -vector is very crucial in OS based spectrum sensing.  

Computation of the  -vector can be carried out using the following steps (Rostami et al., 2012): 

• Step #1 - Transformation: Elements of the received signal vector, x , are transformed via the known noise CDF,   
0

F x , as 

 

 
0i i

z F x ,  1,2, ,i N .                                                                                                                                (20) 

Then, a new vector   
1 2
, , ,

T

N
z z zz =  is defined. 

• Step #2 - Sorting: Elements of z   are arranged in ascending order of magnitude as      1 2 N
z z z   . The  sorted 

vector       1 2
, , ,

T

N
z z zz =   is formed.  

• Step #3 - Beta Transformation: By transforming the elements of  z  using Beta CDF, elements of  -vector are  obtained as 

  ; , 1
i i

F z i N i


    . Thus,  -vector is formed as  
1 2
, , ,

T

N
    . Here,  ; ,F y


    denotes the Beta CDF with 

shape parameters   and   

 

After this step has been completed, various test statistics based on  -vector can be defined. For example, two candidate test 

statistics can be given as (Glen et al., 2001) 

  
1

1

0.5
N

OS i

i

T 


   and  
22

1

0.5OS

N

i

i

T 


  .                                                                                                      (21) 

Also in (Rostami et al., 2012), the authors state that, based on simulations, they could obtain the maximum probability of 

detection using the following test statistic 

    
 

3

( ) 2

1 1

N

OS i

i

i
T

N




 


                                                                                                                                 (22) 

where  i  is the  
th

i   element of the sorted  -vector (in ascending order). 

In the end, a decision is taken by comparing the test statistic with a pre-determined threshold, 
OS

 , as in other GOF test statistics. 

This can be expressed as  

 
0

: ,
OS OS

H T   channel is idle, 

 
1

: ,
OS OS

H T   channel is busy. 

4. SIMULATION RESULTS 

In this section, the results of the simulations carried out using the models given in Eqs. (1), (2), and (3) are presented. In the 

simulations, it is assumed that the PU signal is given as a flat or DC valued signal such that ms where 1m   and   

corresponds to signal-to-noise ratio (SNR) (Rostami et al., 2012). The noise variance 
2

  is selected as equal to 1.  
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The PU status change points in the models given in Eqs. (2) and (3) are obtained according to Poisson distribution. Arrival and 

departure rate, 
a

  and 
d

 , respectively, parameters of Poisson distribution, are assigned as 1
a d

    (Beaulieu and Chen, 2010). 

In addition, the change point values are generated so that they are within the interval [1, ]N  to ensure that the PU status changes 

occur in the sensing period. 

The number of observed samples are assigned as 100N   and SNR is assumed to be equal to 10  dB. The thresholds for all the 

considered techniques are determined experimentally using Monte Carlo simulations according to which the data under both 

hypotheses, 
0

H  and 
1

H , are generated for 
5

10  times.  

For each realization, the spectrum sensing techniques considered in this letter have been calculated under both hypotheses. 

Performances of probability of detection, PD, versus probability of false alarm, 
FA

P , have been displayed in Figs. 1 and 2 using 

receiver operating characteristics (ROC) curves. 

The abbreviations in the legends of Figs. 1 and 2 are defined as follows: “AD” for Anderson-Darling test, “KS” for Kolmogorov-

Smirnov test, “CM” for Cramer-von Misses test, “ZK”, “ZC”, and “ZA” for the LLR based test statistics ZK, ZC, and ZA, 

respectively, and “OS” for the order statistics based GOF test introduced in (Rostami et al., 2012). 

In Fig. 1, it can be seen that all the GOF test based spectrum sensing techniques achieve good performance in terms of probability 

of detection, PD, when there is no PU status change in the channel. In addition, OS based spectrum sensing technique outperforms 

other methods for all 
FA

P  values.   

It is clear from Fig. 1 that when there is a PU status change in the channel, detection performances of all the considered techniques 

drastically decrease. 

In Fig.2, it is assumed that strictly one status and at most two status changes occur in the channel.  For the case of at most two 

status changes, one or two status changes of the PU occur in the channel with the same probability. That is, occurrence probabilities 

of the models given in Eqs. (2) and (3) are equal.  

According to results in Fig. 2, it can be said that the detection performances of the GOF test based spectrum sensing methods 

worsen as the PU traffic density in the channel increases.  

 

 

Figure 1. PD vs. PFA for no status change and one status change of the PU. 
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Figure 2. PD vs. PFA for one status change and at most two status changes of the PU. 

5. CONCLUSIONS 

In this study, the effect of PU traffic on the performance of GOF test based spectrum sensing methods in CR has been 

investigated.  

 

Seven different GOF tests have been considered. Simulations have been carried out for the three cases of no status change, one 

status change, and at most two status changes of the PU in the channel.  According to simulation results, it has been observed 

that PU traffic causes deterioration of the detection performance of the GOF test based spectrum sensing methods.  

 

As a future study direction, we plan to search for more robust GOF test based spectrum sensing techniques in order to increase 

the probability of detection performance under PU traffic. 
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