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Abstract 
 

In this study, the electrical activities in the brain were classified during mental mathematical tasks and silent text reading. EEG 

recordings are collected from 18 healthy male university/college students, ages ranging from 18 to 25. During the study, a total of 60 

slides including verbal text reading and arithmetical operations were presented to the subjects. EEG signals were collected from 26 

channels in the course of slide show. Features were extracted by employing Hilbert Huang Transform (HHT). Then, subject-

dependent and subject-independent classifications were performed using k-Nearest Neighbor (k-NN) algorithm with parameters k=1, 

3, 5 and 10. Subject-dependent classifications resulted in accuracy rates between 95.8% and 99%, whereas the accuracy rates were 

between 92.2% and 97% for subject independent classification. The results show that EEG data recorded during mathematical and 

silent reading tasks can be classified with high accuracy results for both subject-dependent and subject-independent analysis. 
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1. INTRODUCTION 

Studies on Human-Computer Interaction (HCI) systems increased rapidly in the last decade (Lughofer et al., 2009;  Lughofer et 

al., 2011; Vézard et al., 2015). The goal of these systems is to provide interactive communication between humans and computers. 

Automatic voice response systems and search engines are some examples of above-mentioned systems. A specialized version of 

these systems is Brain-Computer Interface (BCI) in which the systems are driven by brain signals. These interfaces are extremely 

useful for specifically disabled individuals with difficulty of using their muscles or skeletal systems (Kottaimalai et al., 2013; Liao 

et al., 2014; Liao et al., 2012). In these systems, the analysis of the signals produced in the brain is performed, mostly, in real time. 

Electrical signals, magnetic field and hemodynamic changes that occur during the processes in brain can be measured by 

Electroencephalography (EEG), Magnetoencephalography (MEG) and Functional Magnetic Resonance Imaging (fMRI), 

modalities respectively. The most commonly used method in BCI systems is EEG due to its ease of use, mobility and low cost 

(Ruan et al., 2014; Schalk, 2008; Wolpaw et al., 2006).  

 

EEG signals are non-stationary and non-linear signals like many other physiological signals (Kaplan et al., 2005; Lo et al., 2009). 

Wavelet Transform, which is known to be more effective in analyzing nonlinear signals, is widely used (Eraldemir & Yildirim, 

2015; Handojoseno et al., 2013), although Fourier Transform (FT) is used in some studies (Dkhil et al., 2015; Samiee et al., 2015; 

Wang et al., 2016) in EEG signal analysis. A relatively new method, Hilbert Huang Transform (HHT), was proposed by Norden 

E. Huang in 1996. HHT is an adaptive and efficient signal processing method and it is convenient for processing non-linear and 

non-stationary signals (Huang et al., 1996). The method has been used for EEG feature extraction in many studies (Guang et al., 

2005; Rahul Kumar Chaurasiya et al., 2015; Wang et al., 2015; Yang et al., 2006). HHT is used in areas such as detection of alcohol 

dependence (Lin et al., 2015), detection of automatic sleep level (Fraiwan et al., 2011; Liu et al., 2010), diagnosis (Bajaj & Pachori, 

2013) and prediction (Ozdemir & Yildirim, 2014) of epileptic seizure, measurement of anesthesia depth (Shih et al., 2015) and 

BCI applications (Jerbic et al., 2015). k-Nearest Neighbor (k-NN) is one of the popular classification methods that have been used 

in many EEG signal classification studies. (Eraldemir et al., 2014) have classified mathematical tasks using wavelet-based features 

from EEG signals with k-NN classifier and have reported 79.3%, 74.9%, 72.4% and 68.6% accuracy for k=1, 3, 5, and 10 

respectively. (Noshadi et al., 2014) used empirical mode decomposition and k-NN for cognitive tasks classification with 97.78 % 

accuracy. (Yazdani et al., 2009) used autoregressive (AR) models and wavelet decomposition transform for feature Extraction and 

k-NN for classification of EEG signals of five different mental tasks. 

 

In this study, EEG signals collected during a slide show consisting of mental arithmetic operation and silent reading slides are 

classified by means of k-NN. Features used for classification are extracted using HHT methodology. Subject dependent and 

independent classification performances are presented. The rest of the paper is organized as follows. Section 2 briefly describes 

the collection of EEG data, extraction of features and classification algorithm. The classification results obtained by k-NN are 

given in Section 3 and the conclusion is given in Section 4. 

2. MATERIALS AND METHOD 

This section describes the details of the materials and methods used during experimental study, which include the experimental 

tasks, dataset description, Hilbert Huang Transform and description of classifier and the discussion of their performance 

parameters. The main steps used in the study is summarized in Fig. 1. 

 

 

Fig. 1. The basic steps of the experimental study 

Collection of EEG Data

Pre-processing

Feature extraction by using HHT

Classification using kNN
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2.1. Collection of EEG Data 

In this study, EEG signals are collected from 18 voluntary healthy males who are university/college students. EEG electrodes were 

positioned according to the 10-20 international system and signals were collected from 22 electrodes forming 26 channels with a 

sampling frequency of 1 kHz.  

 

26 channels which was used on EEG device are attained by using reference points. The names of those are Fp1-A1, Fp2-A2, F3-

A1, F4-A2, C3-A1, C4-A2, P3-A1, P4-A2, O1-A1, O2-A2, F7-A1, F8-A2, T3-A1, T4-A2, T5-A1, T6-A2, Fp2-O2, Fp1-O1, Fp1-

Fp2, F7-F8, F3-F4, T3-T4, C3-C4, T5-T6 P3-P4 and O1-O2, respectively. 

 

Subjects were warned prior to the recording sessions about not to move their muscles, blink or swallow to minimize possible 

artefacts in EEG signals. EEG recordings were collected in a quiet and comfortable environment. In addition, subjects were asked 

to have short and clean hair and they were warned not to use any medical drug.  

 

30 arithmetic and 30 verbal slides, each 13.25 seconds long, 5 were shown the subjects. Sample arithmetic and verbal slides are 

shown in Fig. 2. and Fig. 3., respectively. 

 

 

Fig. 2. The examples of numeric slide 

 

Fig. 3. The examples of verbal slide 

The subjects were asked to focus on the arithmetic operation or reading the text instead of being in a rush to complete the process. 

2.2. Feature Extraction 

50 Hz line noise was directly cleaned by the EEG device and a band-pass filter between 0.5 and 120 Hz was applied to the EEG 

recordings. The first and the last slides were not used because of the synchronization problem in segmenting the raw EEG data. 

After this pre-processing step features are extracted using HHT. 

 

HHT is presented by Huang et al. in 1996 (Huang et al., 1996). HHT associates Empirical Mode Decomposition (EMD) with well-

known Hilbert transform to form the Hilbert spectrum. HHT is a more developed technique than other techniques such as Fourier 

Transform and Wavelet Transform, which expand the signal by predetermined basis functions. This technique is an adaptive data 
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analysis method, which extracts the basis function from the data itself, designed privately for analyzing data from nonlinear and 

nonstationary signals. 

 

The main step of the HHT is the EMD method with which a complicated data set can be decomposed into components named 

intrinsic mode functions (IMF). Hilbert transform is applied to the IMFs to obtain the energy-frequency-time distribution, 

designated as Hilbert spectrum. 

 

The instantaneous frequencies can be calculated by means of the Hilbert Transform, with which any real valued function x(t) can 

be presented as an analytic function, z(t), with the complex part, y(t) computed as: 
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where the P represents the Cauchy principle value of the singular integral. Finally the analytic function is: 
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Here a  is the instantaneous amplitude, and   is the phase function; and the instantaneous frequency is indicated as follows. 
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2.3. Classification 

EEG signals collected during mental mathematical operations and silent readings are classified using a k Nearest Neighbor (k-

NN). The k-NN algorithm is one of the machine learning algorithms used in many fields (Cover & Hart, 1967). The algorithm is 

also a simple and intuitive method of classifier used by many researchers typically for classifying EEG signals. The k-NN 

classification is based on finding closest training samples to a test sample and assigning it to the most dominant class. 

 

We need to specify the value of “k” closest neighbor for binary classification. In this experiment, we try different “k” values 

ranging from 1 to 10, namely 1, 3, 5 and 10. “Euclidean” distance measure is used in order to calculate distance between test 

sample and training samples in the feature space. 

 

 
2

1
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n

i i

i
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              (5) 

 

where ( , )d p q  is the distance between the samples p and q , n represents the number of features and the ith feature of the sample 

are described as ip  and iq , respectively (Ahangi et al., 2013).  

3. RESULTS AND DISCUSSION 

In this study, we considered the effect of HHT and k-NN method on classification result, considering that HHT based features 

show better classification performance. The features were obtained by using HHT from EEG signals and these features were binary 

classified as mathematical operation / verbal reading using k-NN algorithm. 

 

The performance of k-NN was computed using the most commonly used parameters such as accuracy, precision and f-measure 

(Subasi & Gursoy, 2010).  
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The values of k in the k-NN algorithm used in the study were selected as 1, 3, 5, and 10. The 10 fold cross-validation approach 

was used in an attempt to test to performance of k-NN algorithm. The results were compared as both subject-dependent and subject-

independent. The results of subject-dependent studies are shown in Table 1-4. 

 

The classification results of 26-channel EEG data are given in Table 1 for k = 1. Examining Table 1, it is seen that the number of 

subjects with accuracy of 99% and above is 11. The lowest accuracy rate is 94.80% for the subject 3 while the highest accuracy 

rate was 99.9% for the subject 14 and subject 15. The average accuracy rate of 18 subjects was 99.01%. In addition, there are two 

subjects with 99.9% accuracy in this table. In analysis of 26-channel EEG data, precision and f-measure were 99.01% and 99.01%, 

respectively on the average. 

 

Table 1: The results of subject-dependent with k=1 

1-NN 

No of Subject Accuracy Precision F-Measure 

Subject1 0.984 0.984 0.984 

Subject2 0.987 0.987 0.987 

Subject3 0.948 0.949 0.948 

Subject4 0.987 0.987 0.987 

Subject5 0.996 0.996 0.996 

Subject6 0.988 0.988 0.988 

Subject7 0.996 0.996 0.996 

Subject8 0.998 0.998 0.998 

Subject9 0.990 0.990 0.990 

Subject10 0.993 0.993 0.993 

Subject11 0.987 0.987 0.987 

Subject12 0.997 0.997 0.997 

Subject13 0.996 0.996 0.996 

Subject14 0.999 0.999 0.999 

Subject15 0.999 0.999 0.999 

Subject16 0.988 0.988 0.988 

Subject17 0.992 0.992 0.992 

Subject18 0.996 0.996 0.996 

 

 

 

Table 2 shows the results when the k parameter is selected as 3. The k-NN algorithm yielded the highest performance for the 

subject 7 with the accuracy of 99.7%. The average classification performances of EEG data with 18 subjects was found as 97.72%, 

97.75% and 97.72% with accuracy, precision and f-measure, respectively. Table 2 demonstrated that there are only 6 subjects 

whose performance are 99% or above for accuracy. 

 

Table 2: The results of subject-dependent with k=3 

3-NN 

No of Subject Accuracy Precision F-Measure 

Subject1 0.966 0.966 0.966 

Subject2 0.964 0.965 0.964 

Subject3 0.901 0.905 0.901 

Subject4 0.973 0.973 0.973 

Subject5 0.993 0.993 0.993 

Subject6 0.968 0.968 0.968 

Subject7 0.997 0.997 0.997 

Subject8 0.990 0.990 0.990 

Subject9 0.971 0.971 0.971 

Subject10 0.982 0.982 0.982 

Subject11 0.973 0.973 0.973 
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Table 2 (Cont): The results of subject-dependent with k=3 

3-NN 

No of Subject Accuracy Precision F-Measure 

Subject12 0.988 0.988 0.988 

Subject13 0.991 0.991 0.991 

Subject14 0.994 0.994 0.994 

Subject15 0.996 0.996 0.996 

Subject16 0.972 0.972 0.972 

Subject17 0.984 0.984 0.984 

Subject18 0.987 0.987 0.987 

    

 

As can be seen from Table 3, the subject 7 has the best performance metrics with %99.4 while the subject 3 has the worst 

achievement on accuracy, precision and f-measure with 87.9%, 88.6% and 87.8%, respectively. In addition, the average accuracy, 

precision and f-measure were 96.75%, 96.79% and 96.74%, respectively. It is also worth to note that, k=5 resulted in 99% or above 

accuracy for only 3 subjects. 

 

 

Table 3: The results of subject-dependent with k=5 

5-NN 

No of Subject Accuracy Precision F-Measure 

Subject1 0.950 0.950 0.950 

Subject2 0.938 0.939 0.938 

Subject3 0.879 0.886 0.878 

Subject4 0.969 0.969 0.969 

Subject5 0.985 0.985 0.985 

Subject6 0.943 0.943 0.943 

Subject7 0.994 0.994 0.994 

Subject8 0.983 0.983 0.983 

Subject9 0.963 0.963 0.963 

Subject10 0.972 0.972 0.972 

Subject11 0.967 0.967 0.967 

Subject12 0.973 0.973 0.973 

Subject13 0.987 0.987 0.987 

Subject14 0.992 0.992 0.992 

Subject15 0.990 0.990 0.990 

Subject16 0.966 0.966 0.966 

Subject17 0.978 0.978 0.978 

Subject18 0.986 0.986 0.986 

 

Table 4 shows that k-NN algorithm achieved the best results on subject7 when the value of k was selected as 10. Subject3 has the 

poorest performance values with 85.9%, 86.7% and 85.8% for accuracy, precision and f-measure respectively. In addition, the 

average accuracy of 95.81% was obtained. The results show that there is no subject with an accuracy of 99% or above for k=10. 
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Table 4: The results of subject-dependent with k=10 

10-NN 

No of Subject Accuracy Precision F-Measure 

Subject1 0.941 0.941 0.941 

Subject2 0.921 0.923 0.921 

Subject3 0.859 0.867 0.858 

Subject4 0.967 0.967 0.967 

Subject5 0.979 0.979 0.979 

Subject6 0.932 0.932 0.932 

Subject7 0.988 0.988 0.988 

Subject8 0.970 0.970 0.970 

Subject9 0.956 0.957 0.956 

Subject10 0.964 0.964 0.964 

Subject11 0.950 0.951 0.950 

Subject12 0.965 0.965 0.965 

Subject13 0.981 0.982 0.981 

Subject14 0.984 0.984 0.984 

Subject15 0.982 0.982 0.982 

Subject16 0.957 0.957 0.957 

Subject17 0.970 0.970 0.970 

Subject18 0.980 0.980 0.980 

 

It is demonstrated that the best classification results are obtained for k = 1 in subject-dependent study, and EEG signals recorded 

during mathematical and silent reading tasks are classified with an accuracy of %99.01 on average.  

 

In this study, EEG signals were also classified as subject-independent using k-NN algorithm. In a subject independent study, 

training and testing are performed on EEG data that are collected from a group of subjects, whereas for subject dependent study 

these procedures are performed on only one subject’s recordings. The values of ‘k’ is considered as 1, 3, 5 and 10 for subject 

independent study as in subject dependent studies for comparison purposes. 

 

As it is shown in Table 5, k-NN algorithm performs very well on this dataset, with 99.01% for accuracy, precision and f-measure 

for k=1  in subject-dependent study on average. 

 

Table 5: The average results of subject-dependent analysis 

k Accuracy Precision F-Measure 

1 0.9901 0.9901 0.9901 

3 0.9772 0.9775 0.9772 

5 0.9675 0.9679 0.9674 

10 0.9581 0.9588 0.9581 

 

Table 6 shows that the best accuracy is achieved as 97.02% for k=1, as for the subject dependent case. As expected, subject 

dependent studies resulted in better accuracy values since each subject is trained with and tested on their own recordings. 

Nevertheless, the results achieved for subject–independent study are substantial. 

 

Table 6: The results of subject-independent analysis 

k  Accuracy Precision F-Measure 

1 0.9702 0.9702 0.9702 

3 0.9492 0.9494 0.9493 

5 0.9389 0.9390 0.9390 

10 0.9225 0.9225 0.9225 
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It is clearly seen that the HHT-based features extracting during mental arithmetic and silent reading tasks are classified with high 

accuracy for both subject-dependent and subject-independent analysis. 

 

4. CONCLUSION 

In this paper we have presented an approach to cognitive tasks based on the processing of EEG. The study presented the use of 

Hilbert Huang transform along with machine learning algorithms for the classification of spontaneous EEG signals recorded during 

a cognitive tasks. 

 

For classification, k-NN was employed and its performance was evaluated for cognitive task discrimination. The classification 

results of k-NN demonstrated above 97% accuracy with features extracted using HHT method. The Hilbert transform is a powerful 

and useful tool to classify the EEG signals corresponding to complex cognitive tasks, and it will be helpful for EEG classification 

in clinical applications, such as epilepsy, depression, and stress diagnosis. 
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