
EKOIST Journal of Econometrics and Statistics
EKOIST 2024, 41 : 54–81

DOI: 10.26650/ekoist.2024.41.1490601

RESEARCH ARTICLE

Operational Implications of Time Window Relaxation in Vehicle Routing
Problems

Ahmet Çağlar Saygılı1 , Halim Kazan2

1(Res. Assist..), İstanbul University, Faculty of Economics, Department of Business Administration, İstanbul, Türkiye
2(Prof. Dr.), İstanbul University, Faculty of Economics, Department of Business Administration, İstanbul, Türkiye

ABSTRACT
The Vehicle Routing Problem with Time Windows (VRPTW) poses a significant challenge in logistics, requiring vehicles to meet
the objective of minimising costs—such as distance travelled and total travel time—while adhering to specified delivery time
constraints and vehicle capacities. This study investigates the implications of relaxing time window constraints by transitioning
from VRPTW instances to standard Vehicle Routing Problem (VRP) instances. Our findings highlight notable differences between
VRP and VRPTW configurations, particularly in total route length and consistency of route metrics. Removal of time window
constraints generally resulted in shorter and more uniform route lengths, indicating operational benefits under certain conditions.
However, our comparisons also revealed substantial variability in route structures across datasets, emphasising the cost implications
of adhering to strict time windows. This study underscores the critical balance logistics firms must strike between operational
efficiency and customer satisfaction when navigating the complexities of VRPTW. This research provides a foundation for
future investigations into optimizing route planning under varying logistical constraints, with potential implications for enhanced
flexibility and reduced operational costs despite dynamic delivery requirements. We used a state-of-the-art heuristic solver to solve
instances from standard benchmark datasets heavily used for VRPTW literature.
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Introduction

The Vehicle Routing Problem (VRP) is a complex combinatorial optimisation problem that seeks to design optimal routes for
multiple vehicles delivering goods or services to various destinations under specified constraints. Originating from the Travelling
Salesman Problem (TSP), where the goal is to find the shortest possible route for a salesperson to visit each city and return to the
origin, VRP extends this goal by incorporating multiple vehicles with capacities operating from one or more depots.

VRP aims to reduce costs like distance, time, and fuel while respecting limits on vehicle capacity, delivery times, customer
needs, and driver shifts. The problem’s complexity increases with the number of vehicles, geographic spread of delivery points,
and quality and quantity of constraints, making it challenging to solve the problem optimally.

VRP is pivotal in logistics and has significant applications in transportation, distribution, and supply chain management, impact-
ing overall efficiency and operational costs. It has spurred diverse variants with multiple attributes and solution methodologies,
from exact algorithms to heuristic and metaheuristic approaches, to address the different forms and industry-specific requirements.

The Vehicle Routing Problem with Time Windows (VRPTW) is a generalisation of the VRP, where each delivery location has
a specific delivery time window. The objective is to minimise the total route cost while respecting these time constraints. VRPTW
involves determining optimal routes for vehicles delivering to multiple locations. Each customer must be served within a specified
time period, and vehicles must arrive on time. The solution aims to reduce costs, such as distance travelled or total travel time,
while adhering to all time window constraints and vehicle capacity limits.

The primary focus of this study is to explore the effects of time window constraints on route structuring in VRP. Specifically, we
aim to demonstrate, compare, and analyse the modifications in route configurations when these constraints are altered or removed.
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Traditionally, time window constraints are integral to ensuring customer satisfaction; they dictate when deliveries must be made.
However, firms may be unable to adhere to these constraints due to various unforeseen circumstances.

This research investigates the implications of transitioning from a standard VRP with strict time windows to a Capacitated
Vehicle Routing Problem (CVRP) in which these constraints are either absent or significantly relaxed. By removing or loosening
time window constraints, an alternative route structure emerges, which we examine using numerous metrics to elucidate different
aspects of route formation.

The fundamental question we address is as follows: What potential benefits can logistics firms accrue from not satisfying time
window constraints under certain conditions? This relates to operational flexibility and potential gains in efficiency and customer
service under varying logistical constraints.

Our paper is structured in the following manner. The literature review section provides a succinct yet comprehensive overview of
existing VRPTW studies. Subsequently, the research problem section articulates our specific investigative focus within this field,
setting the stage for further discussion. The methods section delineates the methodologies and analytical techniques used to address
the research problem. The results section then presents the findings of our study. Finally, the conclusions section summarises the
implications of our findings, discusses the limitations of our study, and suggests avenues for future research.

Literature Review

While the scope of our article necessarily limits the expansiveness of our literature review, we have endeavoured to include a
substantial number of citations. These references are intended to guide interested readers towards a more in-depth exploration of
topics related to VRPTW. By doing so, we ensure that although our review may not be exhaustive, it still serves as a valuable
starting point for readers seeking extensive knowledge on current research and methodologies in this area.

In particular, we have included essential review papers and their brief descriptions to address the scope limitations and ensure
comprehensive topic coverage. This approach provides readers with foundational insights and context while directing them to
more detailed reviews of the cited works. Each selected review has been chosen for its relevance and contribution to the field,
ensuring that despite the brevity of our review section, the quality and depth of the information remain uncompromised.

Vehicle Routing Problem with Time Windows

VRPTW addresses the challenge of designing optimal routes from a depot to a set of geographically scattered points, where
each delivery or pickup location is constrained within specific time periods (Bräysy & Gendreau, 2002). This problem variant not
only aims to minimise the total routing cost, including the distance and travel time, and it also adds the complexity of scheduling
within tight time frames, which significantly impacts solution feasibility and optimisation strategies.

In the context of the problem, time constraints can be categorised into two types: soft and hard. Soft time windows allow for
some flexibility in arrival times, often incurring penalties for early or late arrivals. In contrast, hard time windows strictly enforce
arrival within designated periods, with violations typically rendering a solution infeasible. Studies using hard time windows are
more common than those using soft windows (Figliozzi, 2010).

We can also differentiate between tight and loose time windows and between narrow and wide time windows. A tight time
window significantly affects the solution by acting as an active constraint. Conversely, a time window is deemed narrow if it is
small compared to the planning horizon, for example, 10 min within 12 h. However, a narrow time window does not automatically
imply tightness. When time windows are predominantly broad, the VRPTW resembles a Capacitated Vehicle Routing Problem
(CVRP) (Desaulniers et al., 2014, pp. 119–120).

Researchers have developed a range of exact and heuristic solution methodologies to address the VRPTW. Exact algorithms
(Pecin et al., 2017), including branch-and-cut (Bard et al., 2002) and dynamic programming techniques, have been designed to
guarantee optimality. Although these methods are powerful for solving smaller instances or instances in which the solution’s
optimality is critical, their computational expense often becomes prohibitive as the problem size increases.

On the other hand, heuristic approaches, such as genetic algorithms (Nazif & Lee, 2010), simulated annealing (Wang et al.,
2013), and tabu search (Cordeau et al., 2001), do not offer the same optimality guarantees but are notably fast and effective for
larger problem instances. These methods have been engineered to produce high-quality solutions within acceptable computational
times, making them more suitable for practical applications in which near-optimal solutions are sufficient and computational
resources or time are limited (Laporte et al., 2014). Each of these heuristic techniques leverages different mechanisms to explore
the solution space and avoid local optima, thereby increasing the likelihood of identifying feasible and reasonable solutions, (see
Prodhon & Prins, 2016; Labadie et al., 2016).
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The following are critical works on vehicle routing problem with time windows that are highly beneficial for researchers. We
provide summaries of each work to elucidate their contributions to the field.

We would like to begin with a book chapter. For a rigorous introductory exploration of the VRPTW, Desaulniers et al. (2014) is
indispensable. This comprehensive study delves into various mathematical formulations of VRPTW and critiques both exact and
heuristic solution methodologies. This study examines exact techniques, such as branch-and-cut-and-price, branch-and-cut, and
set partitioning, alongside heuristic and metaheuristic approaches, including local search techniques and evolutionary algorithms.

Bräysy and Gendreau, (2005a) examine conventional heuristic methods and modern local search algorithms, analysing their
effectiveness using Solomon’s (Solomon, 1987) benchmark problems. Their paper highlights the importance of evaluating heuristics
through Pareto optimality to effectively compare different methodologies. The paper details each method’s basic features and their
experimental outcomes.

In the second part of their study, Bräysy and Gendreau (2005b) comprehensively reviewed metaheuristics applied to VRPTW,
focusing on strategies to design cost-efficient routes from depots to various locations. The paper details these methods’ structures
and benchmarks their performance on Solomon’s test problems (see Solomon, 1987), demonstrating how they effectively navigate
and optimise complex routing challenges.

X. Liu et al. (2023) examined the evolution of solving methods for the VRPTW, emphasising its relevance in real-life logistics
challenges. Following the PRISMA guidelines (see Page et al., 2021) for methodical research and analysis, their paper reviewed
literature from 2018-2022, revealing a dominance of approximate methods (86%), with a significant inclination towards meta-
heuristics over simple heuristics. Notably, the authors reported that approximately 40% of the studies integrate hybrid approaches,
blending multiple algorithms to tackle the multi-constrained, multi-objective nature of VRPTW.

Research Problem

Background

The increasing service expectations of customers present a formidable challenge in the logistics sector, particularly for parcel
delivery companies. For a comprehensive meta-analysis on logistics customer service research, (see Leuschner et al., 2013).
Customers increasingly demand high-quality services and expect these services to be delivered within specific time frames that
align with their availability and immediate needs (Salari et al., 2022). In response, logistics firms have begun to offer time-window
services designed to meet these precise temporal requirements. Although this approach ostensibly enhances customer satisfaction
and allows companies to charge premiums for tailored delivery options, it also introduces significant operational complexities and
costs (Köhler et al., 2023).

One critical issue in adhering to time window constraints is the potential disruption to route optimisation, which directly affects
efficiency (Schaumann et al., 2023). Traditional routing algorithms aim to minimise the total route length while reducing travel
time and fuel consumption. However, when specific time windows are imposed, these algorithms must be adjusted or completely
redesigned to accommodate the constraints, often at the expense of route efficiency. This adjustment can lead to suboptimal routes
that are longer and more convoluted than those generated under a more flexible system.

While time window services can provide a competitive edge and cater to individual customer preferences, they require careful
consideration of their associated costs and logistical challenges. Balancing these factors is essential for logistics companies that
aim to maintain efficiency while satisfying evolving service expectations (Deflorio et al., 2012).

Problem Statement

This investigation discerns the immediate benefits and potential costs and efficiency trade-offs engendered by time window
constraints. These constraints typically arise from the need to align pick-up and delivery schedules with customer availability,
thereby purportedly enhancing service quality and customer satisfaction. However, the consequences of these constraints on
operational efficiency and resource utilisation still need to be adequately understood.

To systematically assess the impacts, we consider a series of critical metrics reflective of route optimisation and demand
fulfilment, segmented into three primary categories: route lengths, route demands, and route customers. Members of these metrics
will be explained in the methods section, detailing how each metric is calculated and utilised in the analysis.
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Purpose of the Study

The study methodically investigated the effects of time window constraints on logistical operations, specifically, in the context
of vehicle routing problems. This research aims to present a comprehensive analysis of how these constraints influence key
performance metrics, such as route length, demand fulfilment, and service efficiency. By using empirical data and graphical
representations, this study seeks to elucidate the operational trade-offs and costs associated with the enforcement of time window
constraints, thereby contributing valuable insights to the optimisation strategies employed by logistics firms.

Significance

This study quantifies the additional operational complexities introduced by time window constraints in vehicle routing problems.
Through numerical analysis, this paper systematically compares various performance metrics of routing processes with and without
the imposition of time window constraints. The comparative analysis aims to elucidate the impact of these constraints on logistical
efficiency, cost, and service quality, providing insights that can guide the optimisation of transportation and delivery systems.

Methods

Benchmark Set

We employed a widely recognised benchmark dataset in this study, i.e., Homberger and Gehring, (1999) dataset. Our analysis
was limited to a subset of the entire dataset following the selection employed by Vidal et al. (2013), where only instances involving
200 customers were analysed. However, distinct from their approach, our study encompassed all instances within this subset.

The Homberger and Gehring (1999) and Gehring (1999) dataset has been extensively utilised across various studies in diverse
settings, highlighting its relevance and robustness for academic investigation. Representative VRP studies that have deployed this
dataset include, but are not limited to, Alfredo Tang Montané and Galvão (2006) and Pisinger and Ropke (2007), R. Liu et al.
(2013) and Vidal et al. (2014). More recent research examples include Y. Zhang et al., (2020); Beling et al. (2022); Kool et al.
(2022), Y. Liu et al. (2023).

We derive our benchmark set from a subset of Homberger and Gehring (1999). We selected instances with 200 customers
representing an expanded edition of the initial framework outlined by Solomon (1987). Solomon’s original research investigated
vehicle routing problem instances with 100 customers and various vehicle capacities of 200, 700, and 1000. Homberger and
Gehring extended Solomon’s dataset (Meira et al., 2020) and maintained vehicle capacities while increasing the number of
customers across different datasets, namely 200, 400, 600, 800, and 1000.

We selected the 200-customer dataset because the optimum total route lengths are known. In addition, the solver that we use
in this study is capable of solving these instances well. It can provide solutions that either achieve the optimum or approximate
it very closely. The efficacy of the solver is noteworthy because it can solve 80% of the instances optimally. The following table
illustrates instances in which our solver could not resolve optimally, including the percentage gap between the solver’s solution
and the known optimal solution.

Table 1. Solver Performance Gaps (%) of best known solutions.

4. Methods 
4.1. Benchmark Set 
 We employed a widely recognised benchmark dataset in this study, i.e., Homberger and Gehring, 
(1999) dataset. Our analysis was limited to a subset of the entire dataset following the selection employed by 
Vidal et al. (2013), where only instances involving 200 customers were analysed. However, distinct from their 
approach, our study encompassed all instances within this subset. 
 The Homberger and Gehring (1999) and Gehring (1999) dataset has been extensively utilised across 
various studies in diverse settings, highlighting its relevance and robustness for academic investigation. 
Representative VRP studies that have deployed this dataset include, but are not limited to, Alfredo Tang 
Montané and Galvão (2006) and Pisinger and Ropke (2007), R. Liu et al. (2013) and Vidal et al. (2014). More 
recent research examples include Y. Zhang et al., (2020); Beling et al. (2022); Kool et al. (2022), Y. Liu et al. 
(2023). 
 We derive our benchmark set from a subset of Homberger and Gehring (1999). We selected instances 
with 200 customers representing an expanded edition of the initial framework outlined by Solomon (1987). 
Solomon’s original research investigated vehicle routing problem instances with 100 customers and various 
vehicle capacities of 200, 700, and 1000. Homberger and Gehring extended Solomon’s dataset (Meira et al., 
2020) and maintained vehicle capacities while increasing the number of customers across different datasets, 
namely 200, 400, 600, 800, and 1000. 
 We selected the 200-customer dataset because the optimum total route lengths are known. In addition, 
the solver that we use in this study is capable of solving these instances well. It can provide solutions that 
either achieve the optimum or approximate it very closely. The efficacy of the solver is noteworthy because it 
can solve 80% of the instances optimally. The following table illustrates instances in which our solver could 
not resolve optimally, including the percentage gap between the solver’s solution and the known optimal 
solution. 
 
Table 1: Solver Performance Gaps (%) of best known solutions. 
Instance Gap (%) Instance Gap (%) Instance Gap (%) 

R1_2.18 0.12 R1_7.18 0.07 R1_4.18 0.14 
R1_6.18 0.02 R1_9.18 0.15 R1_10.18 0.27 

R2_7.4 0.56 RC1_2.18 0.02 RC1_5.18 0.18 
RC1_7.18 0.03 RC1_9.18 0.69 RC1_10.18 0.11 

 
 To elucidate the characteristics and specifics of the dataset, we included comprehensive details in 
graphical representations and tabular format in the subsequent sections. 
 Following the methodology established by Solomon (1987), Homberger and Gehring (1999) organised 
their dataset into six distinct subsets: C1, C2, R1, R2, RC1, and RC2. The notation used denotes ‘C’ for 
clustered configurations, ‘R’ for random configurations, and ‘RC’ for random clustered or semi-clustered 
configurations. 
 Variability exists in the number of vehicles; for instance, the subset C1 exhibits variability with 18, 19, 
or 20 vehicles, R1 exhibits variability with 18 or 20 vehicles, and RC2 ranges from 4 to 6 vehicles. Conversely, 
subsets C2, R2, and RC1 maintain a consistent number of vehicles, with C2 employing 6, R2 4, and RC1 18 
vehicles. The following table provides information about the number of vehicles and vehicle capacities of the 
instance sets. 
 
Table 2: Summary of vehicle numbers and capacities by instance 
Instance Set Vehicle Number Vehicle Capacity 
C1 18 (5), 19 (1), 20 (1) 200 
C2 6 700 
R1 18 (9), 20 (1) 200 

To elucidate the characteristics and specifics of the dataset, we included comprehensive details in graphical representations and
tabular format in the subsequent sections.

Following the methodology established by Solomon (1987), Homberger and Gehring (1999) organised their dataset into six
distinct subsets: C1, C2, R1, R2, RC1, and RC2. The notation used denotes ‘C’ for clustered configurations, ‘R’ for random
configurations, and ‘RC’ for random clustered or semi-clustered configurations.

Variability exists in the number of vehicles; for instance, the subset C1 exhibits variability with 18, 19, or 20 vehicles, R1
exhibits variability with 18 or 20 vehicles, and RC2 ranges from 4 to 6 vehicles. Conversely, subsets C2, R2, and RC1 maintain a
consistent number of vehicles, with C2 employing 6, R2 4, and RC1 18 vehicles. The following table provides information about
the number of vehicles and vehicle capacities of the instance sets.
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Table 2. Summary of vehicle numbers and capacities by instance

4. Methods 
4.1. Benchmark Set 
 We employed a widely recognised benchmark dataset in this study, i.e., Homberger and Gehring, 
(1999) dataset. Our analysis was limited to a subset of the entire dataset following the selection employed by 
Vidal et al. (2013), where only instances involving 200 customers were analysed. However, distinct from their 
approach, our study encompassed all instances within this subset. 
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various studies in diverse settings, highlighting its relevance and robustness for academic investigation. 
Representative VRP studies that have deployed this dataset include, but are not limited to, Alfredo Tang 
Montané and Galvão (2006) and Pisinger and Ropke (2007), R. Liu et al. (2013) and Vidal et al. (2014). More 
recent research examples include Y. Zhang et al., (2020); Beling et al. (2022); Kool et al. (2022), Y. Liu et al. 
(2023). 
 We derive our benchmark set from a subset of Homberger and Gehring (1999). We selected instances 
with 200 customers representing an expanded edition of the initial framework outlined by Solomon (1987). 
Solomon’s original research investigated vehicle routing problem instances with 100 customers and various 
vehicle capacities of 200, 700, and 1000. Homberger and Gehring extended Solomon’s dataset (Meira et al., 
2020) and maintained vehicle capacities while increasing the number of customers across different datasets, 
namely 200, 400, 600, 800, and 1000. 
 We selected the 200-customer dataset because the optimum total route lengths are known. In addition, 
the solver that we use in this study is capable of solving these instances well. It can provide solutions that 
either achieve the optimum or approximate it very closely. The efficacy of the solver is noteworthy because it 
can solve 80% of the instances optimally. The following table illustrates instances in which our solver could 
not resolve optimally, including the percentage gap between the solver’s solution and the known optimal 
solution. 
 
Table 1: Solver Performance Gaps (%) of best known solutions. 
Instance Gap (%) Instance Gap (%) Instance Gap (%) 

R1_2.18 0.12 R1_7.18 0.07 R1_4.18 0.14 
R1_6.18 0.02 R1_9.18 0.15 R1_10.18 0.27 

R2_7.4 0.56 RC1_2.18 0.02 RC1_5.18 0.18 
RC1_7.18 0.03 RC1_9.18 0.69 RC1_10.18 0.11 

 
 
Table 2: Summary of vehicle numbers and capacities by instance 
 
Instance Set Vehicle Number Vehicle Capacity 

C1 18 (5), 19 (1), 20 (1) 200 
C2 6 700 

R1 18 (9), 20 (1) 200 
R2 4 1000 
RC1 18 200 

RC2 4 (8), 5 (1), 6 (1) 1000 
 
 Customer locations were placed within a 140 × 140 coordinate system, with the depot consistently at 
the centre (70, 70). There are differences in customer locations between subsets C1 and C2, whereas R1 and 
R2, and RC1 and RC2, share identical customer locations. The following graphics show the customer locations 
of the datasets. 
 

Customer locations were placed within a 140 × 140 coordinate system, with the depot consistently at the centre (70, 70). There
are differences in customer locations between subsets C1 and C2, whereas R1 and R2, and RC1 and RC2, share identical customer
locations. The following graphics show the customer locations of the datasets.

Figure 1. Customer Locations of the Datasets (Left to Right) C1, C2, R1-R2, RC1-RC2

C1 and C2 have different customer demand distributions, while R1 and R2, RC1 and RC2 have the same. Here, we provide
histograms representing the demand data.

Figure 2. Customer Demands of Datasets (Left to Right) C1, C2, R1-R2, RC1-RC2

Figures showing the distribution of time windows for C1, C2, R1, R2, RC1, and RC2.

Datasets are provided in the appendix.

Solver

We utilised LKH-3 (Helsgaun, 2017), an enhanced Lin-Kernighan-Helsgaun (Helsgaun, 2000) TSP solver designed for various
constrained routing problems, such as the travelling salesman and vehicle routing problems with specific limitations like capacity
and time windows. The extension effectively converts these complex issues into standard symmetric TSP problems using penalty
functions to manage constraints.

Helsgaun (2017) reported that extensive testing demonstrated LKH-3’s efficacy, frequently matching or surpassing the best-
known solutions. The solver uses a hybrid iterated local search that blends an iterative local search heuristic and a set partitioning
formulation, mixing a metaheuristic with mixed integer programming to solve various VRP variants (Muniasamy et al., 2023).
LKH-3 and its resources are freely available for academic use.

LKH-3 is a well-recognised solver extensively used across diverse research contexts. We provide direct quotations from several
recent scholarly articles in which LKH-3 was used to substantiate the solver’s versatility and efficacy. These excerpts were carefully
chosen to reflect the breadth of application and diverse analytical assessments that researchers make in their respective studies.
This approach underscores the prevailing acceptance and reliability of the solver within the academic community and enriches our
methodology by situating it within a broader scholarly dialog.
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• “powerful heuristic solver” (Li et al., 2021, p. 1)
• “well-known heuristic solver” (Hottung et al., 2022, p. 1)
• “widely used by the ML community for solving VRPs” (Accorsi, 2022, p. 103)
• “known as one of the best mTSP heuristics” (Kim et al., 2022, p. 7)
• “one of the best heuristic solvers for the TSP” (Löwens et al., 2022, p. 2)
• “able to tackle many VRP variants. Although less efficient with respect to other state-of-the-art CVRP heuristics” (Cavaliere

et al., 2022, p. 751)
• “strong heuristic solver” (Sun & Yang, 2023, p. 24)
• “powerful extension of LKH that can solve many TSP variants” (Zheng et al., 2023, p. 1)
• “one of the leading heuristics algorithms” (Pan et al., 2023, p. 9345)
• “a highly optimised solver for routing problems” (Ye et al., 2023, p. 43707)
• “allows an efficient exploration of the search space” (Osorio-Mora et al., 2023, p. 3)
• “state-of-the-art heuristic solver which efficiently produces solutions with a very small optimality gap and has good scalability”

(Yang & Fan, 2024, p. 4)

Study Steps

We outline our study methodology in a detailed, step-by-step format, presented as a numbered sequence. We describe each study
stage to ensure clarity and reproducibility and facilitate fellow researchers conducting similar or replication studies. Additionally,
we highlight that the data generated during our investigation are available for sharing with researchers upon request. We hope that
this transparency will help foster a collaborative environment within the academic community.

1. We derive our benchmark dataset from Homberger and Gehring (1999). The Capacitated Vehicle Routing Problem Library
(CVRPLIB) (see Uchoa et al., 2017) hosts this benchmark on its website. To maintain consistency in the data complexity,
the selection of benchmark instances was limited to those involving 200 customers.

2. To solve these instances, we utilised the LKH-3 (Helsgaun, 2017). The LKH-3 solver is renowned for its efficacy in handling
various Vehicle Routing Problem (VRP) variants, such as VRP with Time Windows (VRPTW). Notably, LKH-3 combines
ease of use with robust performance, rapidly achieving high-quality results although optimal outcomes are only occasionally
achieved and are not guaranteed.

3. We downloaded the source code for LKH-3 and implemented it according to the guidelines provided on the official website.
The solver includes comprehensive documentation; we followed the author’s recommendations for parameter settings. Since
it is open source, it is always possible to investigate the source code and follow annotations if certain aspects are unclear.
For example, we successfully refactored certain functions without any issues.

4. The computational experiments were executed on a GNU/Linux operating system with an Intel G5500 CPU complemented
by 8 GB of RAM. The choice of this modest hardware setup and operating system was deliberate and aimed at assessing
the performance and replicability of the study on systems that are not high-end, thereby reflecting a more typical user
environment.

5. Our programming tool was Julia (Bezanson et al., 2017), a programming language renowned for its high performance,
exceptional modularity, and superior composability, which it achieves through the implementation of multiple dispatch and
just-in-time compilation techniques (Christ et al., 2023, p. 2). This study was conducted entirely within the Julia environment,
utilising its multi-threading capabilities to deploy LKH-3 across all available CPU cores, resulting in enhanced computational
efficiency. We also used DataFrames.jl (Bouchet-Valat & Kamiński, 2023), Plots.jl (Christ et al., 2023), StatsBase.jl, and
Statistics.jl.

6. Moreover, we performed our statistical analyses and comparisons using Jamovi (The Jamovi Project, 2024), a versatile
statistical spreadsheet (see Şahin & Aybek, 2020) built on top of the R statistical language (see R Core Team, 2024).
Consistent with our commitment to transparency and accessibility in research, we prioritised using non-proprietary, open-
source software whenever feasible.

7. For data storage and accessibility, we employed durable ordinary text-based files that can be easily opened and modified
with any standard text editor, thus avoiding the need for specialised software. This approach ensures compatibility across
different platforms and enhances the longevity and reproducibility of our research outputs.

8. We used plain text-based instance files in CVRPLIB rather than XML files in VRP-REP (see Mendoza et al., 2014), as they
are generally easier to read and manipulate. We investigated the VRPTW instance files and determined how to convert them
into VRP instance files. We made the necessary changes to text files using only Julia’s string manipulation functions.

9. After conversion, we solved the original instances and then all modified versions. We compared the results obtained from
these different instances to identify any significant discrepancies. To facilitate the comprehension of our findings, we
constructed tables and graphs, which served as effective visual aids.

10. Several graphs did not yield significant insights and were therefore excluded from the analysis.
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Results
When time window constraints are removed from VRPTW, the problem undergoes a transformation to CVRP. This shift induces

notable changes in the structure of the solution routes and other related aspects. A diverse array of metrics was employed in our
analysis to elucidate these transformations. In this section, we provide a concise description of the metrics used, followed by a
detailed presentation of the findings.

Homberger and Gehring’s dataset comprises six subsets: C1, C2, R1, R2, RC1, and RC2. To facilitate the comparison, we
organised our graphs as follows: C1 at the top left and C2 at the bottom left; R1 at the top centre and R2 at the bottom centre; RC1
at the top right and RC2 at the bottom right. In these graphs, the blue and red bars denote the values associated with the modified
versions of the problem set (VRP) and the original versions (VRPTW). Detailed data tables for these instances are presented in
the Appendix.

We note that in the datasets, C denotes clustered R denotes randomized, and RC denotes random clustered or semi-clustered.

Performance Metrics

Total Route Length

Figure 3. Comparison of total route lengths

Total route length refers to the cumulative distance or travel time traversed by a fleet of vehicles while delivering goods to
customers, starting and ending at a depot. Minimising total route length is a critical objective in VRP because it directly affects
the operational efficiency, fuel consumption, and overall logistical costs.

In accordance with established methodologies aimed at ensuring compatibility of comparative analyses, the calculated route
lengths were rounded. In contrast, no rounding adjustments were applied to any other metrics while generating figures. For
convenience, we rounded values to two decimal places in the data tables.

In addition, we observed no significant changes in the total route for the C1 instance set. Although the VRPTW versions
consistently exhibited slightly higher values than the VRP versions, the differences were negligible. The C2 and RC1 instances
showed similar values, suggesting a resemblance between these subsets. In both cases, the presence of time window constraints
tended to increase the total route length. The differences were more pronounced on the R1, R2, and RC2 datasets. Certain instances
in these datasets almost doubled the total route length in one version compared to the other.

Generally, the imposed time window constraints increased the total route length, although the magnitude of this effect was not
universally consistent. Factors such as customer demand, location, and the specific structure of the time window constraints may
influence these variations.
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Minimum Route Length

Figure 4. Comparison of minimum route lengths

The minimum route length identifies the shortest distance a vehicle in a fleet travels to complete its assigned deliveries and
return to the depot. It helps determine the vehicle that completes its route within the least distance, often also resulting in it being
the earliest to return to the depot.

Our observations indicate that the minimum route length is one of the most variable metrics under investigation. The VRP versions
demonstrate greater stability and consistency across all datasets. Conversely, VRPTW ones exhibited significant variability. In
nearly all instances, the VRPTW versions registered higher minimum route lengths, with exceptions noted in datasets R1_4, R2_8,
RC_1, and RC_2. We can confidently assert that including the time window constraints significantly affected the minimum route
length. In other words, removing the time window constraints resulted in more stable, consistent, and almost identical or similar
minimum route length values. Route Length identifies the shortest distance a vehicle in a fleet travels to complete its assigned
deliveries and return to the depot. It helps determine the vehicle that completes its route within the least distance, often also
resulting in it being the earliest to return to the depot.

R1_1, RC2_1, and RC2_2 demonstrated notably small values due to the formation of routes that served only a single customer
in these instances. In our observations, the highest degree of volatility in the VRP versions was noted for the C1 instance, whereas
the other instances exhibited significantly lower levels of volatility. Conversely, the VRPTW versions demonstrated the minimum
volatility for the RC1 instance, and the remaining instances demonstrated much higher volatility.

Maximum Route Length

Figure 5. Comparison of maximum route lengths
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Maximum Route Length measures the longest distance a vehicle in a fleet travels to complete its deliveries and return to the
depot. This metric is essential for identifying the most extended and potentially resource-intensive routes, which may impact fuel
consumption, driver fatigue, and vehicle maintenance. By analysing the maximum route length, logistics planners can ensure that
every vehicle is equally burdened, thus promoting balanced workloads and improving overall fleet efficiency.

In addition, the maximum route length signifies that the vehicle assigned the longest route will be the last to return to the depot
after all other vehicles have already completed their routes. Consequently, the duration of the vehicle’s route determines the overall
duration of the entire operation. Thus, this metric provides an opportunity to compare the total operation duration.

For each dataset, we observed that the versions associated with the VRPTW generally exhibited higher maximum route length
values. The most substantial differences are observed in datasets RC2, R2, R1, and RC1, listed in descending order of observed
variations. It is essential to note that no differences exist between the VRP versions regarding the maximum route length. This
consistency provides a valuable opportunity to compare values across different instances. Instances C1 and C2 exhibited the highest
values. They were followed by instance R1, with RC1 and RC2 showing slightly lower values. Finally, instance R2 obtained the
lowest values among the observed instances.

Moreover, in the R1, R2, RC1, and RC2 datasets, variations in the time constraints significantly affected the maximum route
length. The datasets C1 and C2 did not significantly contribute to our insights because the values across these datasets were nearly
identical. The results indicate that time window constraints do not significantly affect the metric in these two instances.

Mean Route Length

Figure 6. CComparison of mean route lengths

The mean route length calculates the average distance travelled by all vehicles in a fleet to complete their respective routes and
return to the depot. This metric provides a comprehensive overview of the overall routing plan efficiency and balance. By analysing
the mean of the route lengths, logistics managers can identify trends, detect inconsistencies, and make informed decisions optimise
route planning.

A lower mean route length generally indicates more efficient routing, reduced operational costs, improved service levels, and
better resource allocation across the fleet. A higher mean route length indicates that, on average, the vehicles in the fleet travel
longer distances to complete their deliveries and return to the depot. This metric can indicate potential inefficiencies in the routing
plan, such as suboptimal route assignments, imbalanced workloads, or delivery point clustering issues. Higher mean route lengths
often mean increased operational costs, fuel consumption, driver fatigue, and increased vehicle wear and tear.

Our observations indicate that mean route lengths are generally higher in the VRPTW than in the VRP. We found the most
significant variability in mean route lengths in R1, R2, and RC2. Removing the time window constraints in all datasets resulted
in lower mean route lengths. Specifically, the clustered datasets (C1 and C2) exhibited minimal differences between the VRP and
VRPTW values, whereas the randomised datasets (R1 and R2) exhibited the highest discrepancies. The semi-clustered datasets
(RC1 and RC2) had values that fell between those of the purely clustered and purely randomised datasets.
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In C1, we observed a strong correlation between the values derived from the VRP and VRPTW. The VRPTW versions
demonstrated marginally higher values than the VRP versions.

Median Route Length

Our analysis did not reveal any significant differences in the median route lengths across the datasets except for RC2_1. The
median route length metric did not yield any insights into the impact of removing the time window constraints. Consequently, we
could not make meaningful comparisons within or between the instances. Given the lack of informative value, we opted not to
include graphical representations.

Variance of Route Lengths

Figure 7. Comparison of route length variance

The variance of route lengths can provide insights into the consistency and balance of the routes assigned to vehicles. High
variance suggests significant discrepancies in the lengths of routes, potentially leading to inefficiencies, such as unequal workload
distribution among drivers and inefficient utilisation of resources. Conversely, low variance indicates more uniform route lengths,
which contributes to balanced operations, predictable delivery times, and optimised fleet performance. Analysing route length
variance helps identify areas for improvement in route planning and enhances the overall logistics efficiency.

In the C2, R2, and RC1 instances, removing the time window constraints significantly altered the route length variance, which
was uniform across the datasets. R1 and RC2 datasets exhibited minimal variance with only one and two exceptions, respectively.
In contrast, eliminating the time window constraints in C2 and RC2 led to notably high variances. Upon closer examination of the
C2 datasets, we found consistently high variance values across all VRP versions. However, this pattern was less pronounced on the
RC2 datasets (only two versions exhibiting similarly high variance. In the R2 dataset, except for the R2_5 instance, removing the
time window constraints generally reduced the variance in the route lengths. The RC1 dataset presented a mixture of characteristics
from both clustered and randomised datasets. The effect of removing the time window constraints in RC1 was inconsistent; in
certain instances, it led to an increase in variance, while in other instances, a decrease was observed. Notably, on this dataset, the
RC1_4 and RC1_10 instances exhibited minimal variance changes upon removing the time window constraints, albeit in opposite
directions.

Standard Deviation of Route Lengths

The standard deviation of the route lengths is a metric used to assess the variability or dispersion of the lengths of different
routes. It quantifies how much the route lengths deviate from the average route length, providing insight into the consistency and
balance of the routes. A lower standard deviation indicates that the routes are relatively uniform in length, indicating that their
efficiency and equitable distribution, whereas a higher standard deviation indicates more significant disparities, which could imply
inefficiencies or issues in route planning. This metric helps evaluate and optimise the overall routing performance.
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Figure 8. Comparison of the route length standard deviations

As anticipated, the standard deviation of the route lengths in the presented graphs closely mirrors the variance of the route
lengths. For the VRP versions, all instances (except C1) exhibited consistent standard deviations of route lengths. In the VRPTW
versions, particularly with clustered datasets, removing the time window constraints increased the standard deviation of the route
lengths. Conversely, for the other datasets, we observed fluctuations in both directions; some instances exhibited increased standard
deviations, while others demonstrated decreased values. The lowest standard deviation values were recorded for RC1.

Furthermore, the values were comparable between C1 and R1 and C2 and R2. However, in RC1, the standard deviation values
were markedly low, whereas in RC2, they were significantly higher. For R1 and RC2, the observed values were generally similar,
with exceptions noted in instances R1_1, RC2_1, and RC2_2.

Minimum Route Demand

Figure 9. Comparison of minimum route demand

Minimum route demand (MRD) represents the minimum load or demand for a single route or vehicle. It captures the smallest
amount of goods, passengers, or services that must be delivered or attended to on any given route. MRD is essential for optimising
resource allocation, ensuring that no route is underutilised, and balancing logistics efficiency with operational cost-effectiveness.
MRD helps craft efficient, sustainable, and cost-effective routing plans by minimising unproductive distances and reducing fuel
consumption and labour expenses.

Randomised and semi-clustered datasets did not provide insights into minimum route demand. Instances R1, R2, RC1, and RC2
exhibit no significant disparities, with the notable exceptions of R1_1, RC2_1, and RC2_2 demonstrating substantial decreases in
minimum route demand.
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In the clustered datasets, for example in C2, the minimum route demands remained consistent after removing the time window
constraints and displayed values lower than those in the VRPTW versions. We observed noteworthy decreases in C1_1, C1_5,
C1_6, and C1_7, with C1_8 showing no change and the rest of the dataset experiencing moderate variations. The lowest variance
in minimum route demands was observed in the RC1 category, whereas the highest variance was observed in C1.

Maximum Route Demand

We did not observe any significant differences in any instances between the VRP and VRPTW versions or between them. The
maximum route demand metric yielded no meaningful insights. Therefore, we did not include a graphical representation of this
metric.

Median Route Demand

We did not observe any significant differences between the VRP and VRPTW versions. The median route demand metric did
not provide meaningful insights. Therefore, we did not include a graphical representation of this metric.

Variance of Route Demands

Figure 10. Comparison of the Route Demand Variance

The variance of route demands is a metric for evaluating the efficiency and balance of solutions. It measures the degree to
which demands are spread across different routes, indicating how evenly workloads are distributed among vehicles. A lower
variance suggests a more balanced allocation, where each vehicle has a similar load; this leads to improved operational efficiency
and customer satisfaction. Conversely, a high variance may indicate an imbalance, potentially resulting in increased travel times,
higher fuel consumption, and uneven service levels.

After removing the time window constraints, we observed significant variations in the route demands, although in different
directions between datasets C2 and R2. In particular, on the C2 dataset, variances were uniformly higher than the original values.
Conversely, on the R2 dataset, variances decreased and equalised. Notably, all instances exhibit substantial increases and decreases.
For in most instances, the variance in the VRP versions equalised. We detected no deviations in the C2, R2, and RC1 datasets.
However, an outlier was found for dataset R1, specifically R1_1. We note four exceptions to dataset C1, specifically in instances
C1_1, C1_5, C1_6, and C1_7. The variance values of C1 and RC1 were notably low.

In contrast, the RC2 dataset exhibited the highest variance values. Interestingly, on the RC1 dataset, only the RC1_10 instance
demonstrated a decrease in variance after removing the time window constraints. A similar trend was observed for datasets RC2
and R1, with only the instances RC2_8 and R1_4, respectively, showing decreased variance. Dataset C2 uniformly exhibited
increased variance, whereas dataset R2 uniformly exhibited decreased variance upon removing the time window constraints. The
remaining datasets exhibited a mix of increased and decreased variances.
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Standard Deviation of Route Demands

Figure 11. Comparison of the Route Demand Standard Deviations

The standard deviation of the route demands is a critical metric for assessing the variability in demand across different
routes. It quantifies the extent to which individual route demands deviate from the average demand, providing insights into
the consistency and efficiency of route planning. Higher standard deviations indicate more significant fluctuations, suggesting
potential inefficiencies and imbalances among the routes. Conversely, a lower standard deviation indicates a more uniform demand
distribution, contributing to optimised vehicle use and a balanced workload among drivers.

The observed standard deviations of the route demands in various instances exhibit an increasing trend in the following sequence:
RC1, C1, R1, C2, R2, and RC2. Notably, the R2 dataset demonstrated the highest variability in the standard deviations of the
route demands, indicating significant fluctuations. Conversely, the R1 and RC1 datasets displayed low variability, suggesting more
consistent demand patterns. Furthermore, we observed variations in the standard deviations for both small and large magnitudes
across different instances. Notably, the standard deviation values are comparable among the datasets categorised as C1, R1, and
RC1, as well as among C2, R2, and RC2. This pattern may imply underlying differences in demand characteristics within these
categorizations, warranting further examination to understand the factors contributing to such variability.

Minimum Number of Customers per Route

Figure 12. Comparison of minimum number of customers per route.
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The minimum number of customers per route represents the smallest number of customers served on any given route in the
solution. This metric helps evaluate route efficiency and distribution balance by ensuring that every route is utilised. It is particularly
useful for identifying potential route planning and resource allocation improvements to balance workloads and enhance service
delivery. By understanding this metric, decision makers can make informed adjustments to achieve more optimised and equitable
vehicle routing solutions.

Our analysis revealed no significant differences in R1, R2, RC1, and RC2. However, exceptions were noted in instances R1_1,
RC2_1, and RC2_2, which parallel the trends in minimal route demand. In R2, we observed increased values after removing
the time window constraints, which deviated from the trend observed across the other datasets. Conversely, C1, R1, and RC2
consistently recorded the lowest values.

Maximum Number of Customers per Route

We observed no significant variations in the maximum number of customers per route. Although minor differences were observed,
they were deemed negligible and did not warrant further discussion. Therefore, we do not include graphical representations for
this metric.

Median Number of Customers per Route

The results revealed that the median number of customers per route remained consistent across all datasets after removing the
time window constraints. Consequently, we determined that graphical representations would not add value to the interpretation of
the data, which led to their omission.

Variance of the Number of Route Customers

Figure 13. Comparison of variances of the number of customers per route.

The variance of the number of route customers is a metric used to assess the distribution uniformity of customer assignments
among different routes in a vehicle routing problem. It quantifies how evenly customers are allocated to various routes by measuring
the spread or dispersion of the average number of customers per route. A high variance indicates significant imbalances, which
suggests that some routes may be heavily loaded while others are underutilised. Conversely, a low variance indicates a more
balanced distribution, which is often desirable for efficiency and workload equity in logistics and transportation planning.

The comparison of the minimum number of customers per route in R1, R2, and RC1 revealed no significant differences between
the VRP and the VRPTW versions. Notably, three specific instances, R1_1, RC2_1, and RC2_2, exhibited substantial reductions
in this metric. This phenomenon can be attributed to the inclusion of a single-customer route in both VRP versions.

The observed variance among VRPTW versions was notably higher than that of the VRP versions. We observed that the R2
category exhibited the highest variance for VRPTW, whereas the RC2 category demonstrated the highest variance for VRP.
Conversely, the lowest variance for VRPTW was observed in both the C1 and RC1 categories, whereas for VRP, it was most
minimal in the RC1 category.
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All datasets consistently exhibited stable metrics for the VRP and VRPTW versions, with the exception of R2. After removing
the time window constraints, all instances in this dataset displayed decreased and equalised metrics. Dramatic reductions were
observed in datasets C1 and R1, particularly in instances C_1, C1_5, C1_6, C1_7, and R1_1. Conversely, we observed increased
results for the R2 and RC2 datasets.

Figure 14. Comparison of standard deviation of number of customers per route.

The standard deviation of the number of route customers measures the average deviation from the mean number of customers
per route, providing insight into the variability and balance of the distribution. A high standard deviation indicates considerable
differences between routes, with some having significantly more or fewer customers than others, potentially leading to inefficiencies
and uneven workloads. In contrast, a low standard deviation suggests that customer assignments are distributed more evenly, which
contributes to a more balanced and efficient routing solution.

After removing the time window constraints, the C1 dataset showed a consistent increase in standard deviation values. The
C2 dataset exhibited a significant increase in all measured values. For the R1 dataset, an increase was observed in all instances
except for R1_4. In the R2 dataset, a decrease in the standard deviation values was noted consistently. These values became more
equalised, with the smallest difference observed in R2_5 and the largest difference observed in R2_8. The RC1 dataset primarily
showed increases in standard deviation values, with the exception of RC1_10. All VRP versions in the RC1 dataset tended to
equalise in terms of standard deviation. In the RC2 dataset, primarily moderate changes were observed, with notable exceptions to
RC2_1 and RC2_2. RC2_8 was the sole instance exhibiting a decreased value in this dataset.

Route Formations

Figure 15. Route formations for R1_1 instance. Without Time-Windows Constraints (Left) and with Time-Windows Constraints (Right) Versions

We observed the most significant total and mean route length differences in instance R2_1. The most significant disparity in
minimum route length was observed in instance R1_1. Furthermore, we observed the most substantial differences in the variance
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and standard deviation of the number of route customers in instance RC2_1. Here, we provide route graphs for these instances
to illustrate them. These representations include the VRP and VRPTW versions to demonstrate how including or excluding time
window constraints can affect route structure. The selected figures highlight significant variations between the VRP and VRPTW
versions of the instances. By comparing and contrasting these versions, valuable insights into their structural and operational
differences can be gained.

In figure 15, left graph illustrates relatively sparse routing patterns with minimal overlap, which is characteristic of a typical
VRP structure. On the other hand, the right graph presents a denser network with significant intersections and overlaps, which is
typical for VRPTW scenarios where the synchronisation of service times is critical.

Figure 16. Route formations for R2_1 instance. Without Time-Windows Constraints (Left) and with Time-Windows Constraints (Right) Versions

In figure 16 on the left side, the routes are distinct and separated, indicating fewer constraints on the routing process. Conversely,
the right side demonstrates tightly packed and interwoven routes, highlighting the complexities introduced by the time window
constraints.

Figure 17. Route formations of RC2_1 instance. Without Time-Windows Constraints (Left) and with Time-Windows Constraints (Right) Versions

In figure 17 on the left, we see routes that appear more spaced out and cover a broader area, while the right side depicts a more
compact and tangled routing network, which is indicative of the VRPTW versions’ operational characteristics.

Structural Comparisons

Route Density

The VRP figures (figures on the left) depict relatively less dense routes than their VRPTW counterparts (figures on the right).
The routes displayed in the VRPTW versions are markedly denser, indicating a higher frequency of stops within closer proximity.
This density is attributed to the time window constraints that necessitate more localised route planning to meet stringent scheduling
requirements.
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Route Complexity

The VRPTW figures demonstrate increased route complexity, characterised by spaghetti-like patterns and overlapping paths.
This complexity arises due to the adherence to specified time windows, which introduces the need for more detailed planning
to optimise service times and travel durations. In contrast, VRP figures exhibit more straightforward and less intertwined routes,
reflecting the absence of temporal constraints and the resulting more linear route optimisation.

Operational Differences

Service Efficiency

The increased density and complexity of the VRPTW versions underscore a focus on maximising service efficiency within the
restricted time windows. Clustering routes within smaller geographical segments enhances the ability to fulfil multiple service
requests within limited time frames. This is in contrast with the VRP models, where the primary objective centres on minimising
travel distance without the constraint of specific service times, as evidenced by the more spatially distributed routes.

Geographical Coverage

VRP routes tend to exhibit wider geographical coverage, with routes sprawling across wider areas. This approach is suitable
for scenarios in which the service time is flexible, emphasising covering a larger service area with minimal travel expenditure.
Conversely, VRPTW routes are more concentrated within confined areas, effectively using available time slots for service delivery.

Summary

The comparison between the VRP and VRPTW route graphs shows pronounced differences in the route density, complexity,
operational efficiency, and geographical coverage. The VRP models prioritise covering larger areas with minimal travel, whereas
VRPTW models emphasise route optimisation within specified time windows, leading to denser and more complex routing
patterns. These distinctions underscore the need for tailored approaches to address various routing challenges in logistics and
service delivery contexts.

Conclusion

In this study, we removed the time window constraints from Homberger and Gehring (1999) VRPTW instances and solved them
as VRP instances to observe the resulting changes. We observed significant differences between the VRP and VRPTW versions
for almost all metrics, with a few notable exceptions. Various figures, graphs, and tables thoroughly illustrate these phenomena.

Our analysis revealed significant variability in total route length. Based on the obtained data, we can confidently assert that
time window constraints typically affect the total route length. When the time constraints are removed, the mean route lengths
tend to be smaller and more consistent across all datasets. Furthermore, removing the time window constraints led to more stable
measures regarding the route lengths, route demands, and number of customers per route. Conversely, this study did not derive any
substantive insights from metrics such as median route length, maximum route demand, median route demand, maximum number
of customers, and median number of customers.

For logistics firms aiming to meet their customers’ temporal requests and requirements, it is critical to recognise the substantial
variations observed in specific datasets. The imposition of time window constraints incurs significant changes in the route structures,
which may result in high costs.

Limitations and Directions for Future Research

This study utilised a dataset comprising 200 customer-size instances. Relatively small dataset size is a notable limitation. Future
research can benefit significantly from the use of larger datasets. The selection of dataset size was influenced by the capability of
our solver to handle these instances and achieve near-optimal solutions. However, the scalability of our approach may not hold for
larger datasets, which poses a challenge for future work in this field.

Conversely, future researchers may also explore the use of smaller datasets. Utilising smaller datasets facilitates the application of
exact solvers, which guarantees optimal solutions. This approach can yield more definitive insights but may be less representative
of larger, real-world scenarios.

Our study aimed at achieving near-optimal solutions; however, in practical applications, attaining near-optimality may only
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occasionally be feasible. Comparative studies focusing on VRP and VRPTW solutions that are significantly far from optimal can
offer valuable insights into the performance and applicability of various methodologies.

This research was constrained to a single dataset. Future research could explore combining multiple datasets to enhance the gener-
alizability of the findings. Additionally, while our study employed specific performance metrics for comparison, future researchers’
development and utilisation of alternative performance metrics can provide a broader understanding of solver performance.

One limitation of our dataset is that it only allows for one-on-one comparisons. If larger datasets or combinations of datasets are
employed in future studies, various statistical tests and advanced data analysis methods can be applied. This would enhance the
robustness and applicability of the findings.

Future research could also extend to different VRP variants. For example, standard VRP instances can be examined as Open
VRP instances. Comparative analyses of multi-depot versus single-depot VRP using identical customer locations and demands
could yield insights into the effect of depot quantity on solution quality. Such studies could involve varying the number of depots
to evaluate how the depot quantity affects the solutions.

Although our study provides significant insights, the above-mentioned limitations and avenues for future research highlight the
potential for further advancements in this field.
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Appendix A

Appendix 1. C1 Data
A C1 Data

Instance Name RLT RLM1 RLM2 RLM3 RLM4 RLV RLS RDM1 RDM2 RDM3 RDV RDS RCM1 RCM2 RCM3 RCV RCS
C1_1.20.vrp 2583 22 205 129.15 200 2023.95 44.99 20 200 200 8 2.83 1 13 11 8 2.83
C1_2.18.vrp 2551 63 205 141.72 200 201.63 14.2 140 200 200 3.16 1.78 6 13 12 3.16 1.78
C1_3.18.vrp 2551 63 205 141.72 200 201.63 14.2 140 200 200 3.16 1.78 6 13 12 3.16 1.78
C1_4.18.vrp 2551 63 205 141.72 200 201.63 14.2 140 200 200 3.16 1.78 6 13 12 3.16 1.78
C1_5.20.vrp 2583 22 205 129.15 200 2023.95 44.99 20 200 200 8 2.83 1 13 11 8 2.83
C1_6.20.vrp 2583 22 205 129.15 200 2023.95 44.99 20 200 200 8 2.83 1 13 11 8 2.83
C1_7.20.vrp 2583 22 205 129.15 200 2023.95 44.99 20 200 200 8 2.83 1 13 11 8 2.83
C1_8.19.vrp 2562 55 205 134.84 200 625.73 25.01 120 200 200 3.6 1.9 6 13 11 3.6 1.9
C1_9.18.vrp 2551 63 205 141.72 200 201.63 14.2 140 200 200 3.16 1.78 6 13 12 3.16 1.78
C1_10.18.vrp 2551 63 205 141.72 200 201.63 14.2 140 200 200 3.16 1.78 6 13 12 3.16 1.78
C1_1.20.vrptw 2690 60 202 134.5 180 476.58 21.83 130 200 180 2.95 1.72 7 13 11 2.95 1.72
C1_2.18.vrptw 2906 70 206 161.44 200 48.69 6.98 180 200 200 1.16 1.08 9 13 12 1.16 1.08
C1_3.18.vrptw 2693 92 204 149.61 200 72.22 8.5 170 200 200 1.99 1.41 8 13 12 1.99 1.41
C1_4.18.vrptw 2627 93 211 145.94 200 60.46 7.78 170 200 200 1.28 1.13 9 13 12 1.28 1.13
C1_5.20.vrptw 2687 60 202 134.35 180 529.21 23 130 200 180 3.05 1.75 7 13 11 3.05 1.75
C1_6.20.vrptw 2686 60 202 134.3 180 466.05 21.59 130 200 180 3.05 1.75 7 13 11 3.05 1.75
C1_7.20.vrptw 2686 60 202 134.3 180 466.05 21.59 130 200 180 3.05 1.75 7 13 11 3.05 1.75
C1_8.19.vrptw 2771 68 216 145.84 190 359.06 18.95 120 200 190 1.71 1.31 8 13 11 1.71 1.31
C1_9.18.vrptw 2671 95 212 148.39 200 25.16 5.02 190 200 200 1.4 1.18 9 13 12 1.4 1.18
C1_10.18.vrptw 2634 91 206 146.33 200 60.46 7.78 170 200 200 1.16 1.08 9 13 12 1.16 1.08

RLT Route Length Total
RLM1 Route Length Minimum
RLM2 Route Length Maximum
RLM3 Route Length Mean
RLM4 Route Length Median
RLV Route Length Variance
RLS Route Length Standard Deviation
RDM1 Route Demand Minimum
RDM2 Route Demand Maximum
RDM3 Route Demand Median
RDV Route Demand Variance
RDS Route Demand Standard Deviation
RCM1 Route Customer Minimum
RCM2 Route Customer Maximum
RCM3 Route Customer Median
RCV Route Customer Variance
RCS Route Customer Standard Deviation

27

RLT Route Length Total
RLM1 Route Length Minimum
RLM2 Route Length Maximum
RLM3 Route Length Mean
RLM4 Route Length Median
RLV Route Length Variance
RLS Route Length Standard Deviation
RDM1 Route Demand Minimum
RDM2 Route Demand Maximum
RDM3 Route Demand Median
RDV Route Demand Variance
RDS Route Demand Standard Deviation
RCM1 Route Customer Minimum
RCM2 Route Customer Maximum
RCM3 Route Customer Median
RCV Route Customer Variance
RCS Route Customer Standard Deviation
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Appendix B

Appendix 2. C2 Data
B C2 Data

Instance Name RLT RLM1 RLM2 RLM3 RLM4 RLV RLS RDM1 RDM2 RDM3 RDV RDS RCM1 RCM2 RCM3 RCV RCS
C2_1.6.vrp 1470 101 325 245 700 17616.67 132.73 370 700 700 90.67 9.52 17 41 37 90.67 9.52
C2_2.6.vrp 1470 101 325 245 700 17616.67 132.73 370 700 700 90.67 9.52 17 41 37 90.67 9.52
C2_3.6.vrp 1470 101 325 245 700 17616.67 132.73 370 700 700 90.67 9.52 17 41 37 90.67 9.52
C2_4.6.vrp 1470 101 325 245 700 17616.67 132.73 370 700 700 90.67 9.52 17 41 37 90.67 9.52
C2_5.6.vrp 1470 101 325 245 700 17616.67 132.73 370 700 700 90.67 9.52 17 41 37 90.67 9.52
C2_6.6.vrp 1470 101 325 245 700 17616.67 132.73 370 700 700 90.67 9.52 17 41 37 90.67 9.52
C2_7.6.vrp 1470 101 325 245 700 17616.67 132.73 370 700 700 90.67 9.52 17 41 37 90.67 9.52
C2_8.6.vrp 1470 101 325 245 700 17616.67 132.73 370 700 700 90.67 9.52 17 41 37 90.67 9.52
C2_9.6.vrp 1470 101 325 245 700 17616.67 132.73 370 700 700 90.67 9.52 17 41 37 90.67 9.52
C2_10.6.vrp 1470 101 325 245 700 17616.67 132.73 370 700 700 90.67 9.52 17 41 37 90.67 9.52
C2_1.6.vrptw 1923 268 357 320.50 630 176.67 13.29 610 640 630 2.67 1.63 31 36 37 2.67 1.63
C2_2.6.vrptw 1854 179 356 309 640 3856.67 62.10 520 690 640 9.47 3.08 28 36 37 9.47 3.08
C2_3.6.vrptw 1767 161 356 294.50 645 4296.67 65.55 500 690 645 11.07 3.33 27 36 37 11.07 3.33
C2_4.6.vrptw 1691 194 347 281.83 640 5296.67 72.78 490 700 640 12.67 3.56 27 36 37 12.67 3.56
C2_5.6.vrptw 1867 271 353 311.17 625 896.67 29.94 590 670 625 3.47 1.86 31 36 37 3.47 1.86
C2_6.6.vrptw 1852 251 352 308.67 635 2176.67 46.65 550 690 635 6.27 2.50 30 36 37 6.27 2.50
C2_7.6.vrptw 1842 264 352 307.00 625 1176.67 34.30 580 670 625 5.07 2.25 31 36 37 5.07 2.25
C2_8.6.vrptw 1813 251 350 302 640 1896.67 43.55 550 670 640 4.67 2.16 30 36 37 4.67 2.16
C2_9.6.vrptw 1822 264 349 303.67 620 576.67 24.01 610 670 620 3.87 1.97 31 36 37 3.87 1.97
C2_10.6.vrptw 1800 251 350 300 635 2016.67 44.91 550 670 635 5.47 2.34 30 36 37 5.47 2.34

RLT Route Length Total
RLM1 Route Length Minimum
RLM2 Route Length Maximum
RLM3 Route Length Mean
RLM4 Route Length Median
RLV Route Length Variance
RLS Route Length Standard Deviation
RDM1 Route Demand Minimum
RDM2 Route Demand Maximum
RDM3 Route Demand Median
RDV Route Demand Variance
RDS Route Demand Standard Deviation
RCM1 Route Customer Minimum
RCM2 Route Customer Maximum
RCM3 Route Customer Median
RCV Route Customer Variance
RCS Route Customer Standard Deviation

28

RLT Route Length Total
RLM1 Route Length Minimum
RLM2 Route Length Maximum
RLM3 Route Length Mean
RLM4 Route Length Median
RLV Route Length Variance
RLS Route Length Standard Deviation
RDM1 Route Demand Minimum
RDM2 Route Demand Maximum
RDM3 Route Demand Median
RDV Route Demand Variance
RDS Route Demand Standard Deviation
RCM1 Route Customer Minimum
RCM2 Route Customer Maximum
RCM3 Route Customer Median
RCV Route Customer Variance
RCS Route Customer Standard Deviation
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Appendix 3. R1 Data
C R1 Data

Instance Name RLT RLM1 RLM2 RLM3 RLM4 RLV RLS RDM1 RDM2 RDM3 RDV RDS RCM1 RCM2 RCM3 RCV RCS
R1_1.20.vrp 2881 2 244 144.05 197 2804.98 52.96 9 200 197 15.05 3.88 1 17 11 15.05 3.88
R1_2.18.vrp 2866 61 244 159.22 197.5 68.38 8.27 167 200 197.5 6.46 2.54 7 17 11 6.46 2.54
R1_3.18.vrp 2866 61 244 159.22 197.5 68.38 8.27 167 200 197.5 6.46 2.54 7 17 11 6.46 2.54
R1_4.18.vrp 2866 61 244 159.22 197.5 68.38 8.27 167 200 197.5 6.46 2.54 7 17 11 6.46 2.54
R1_5.18.vrp 2866 61 244 159.22 197.5 68.38 8.27 167 200 197.5 6.46 2.54 7 17 11 6.46 2.54
R1_6.18.vrp 2866 61 244 159.22 197.5 68.38 8.27 167 200 197.5 6.46 2.54 7 17 11 6.46 2.54
R1_7.18.vrp 2866 61 244 159.22 197.5 68.38 8.27 167 200 197.5 6.46 2.54 7 17 11 6.46 2.54
R1_8.18.vrp 2866 61 244 159.22 197.5 68.38 8.27 167 200 197.5 6.46 2.54 7 17 11 6.46 2.54
R1_9.18.vrp 2866 61 244 159.22 197.5 68.38 8.27 167 200 197.5 6.46 2.54 7 17 11 6.46 2.54
R1_10.18.vrp 2866 61 244 159.22 197.5 68.38 8.27 167 200 197.5 6.46 2.54 7 17 11 6.46 2.54
R1_1.20.vrptw 4784 138 325 239.20 180 309.40 17.59 135 199 180 1.58 1.26 8 12 11 1.58 1.26
R1_2.18.vrptw 4093 111 307 227.39 197 50.50 7.11 170 200 197 2.10 1.45 9 14 11 2.10 1.45
R1_3.18.vrptw 3390 103 268 188.33 196.5 21.32 4.62 184 200 196.5 3.52 1.88 8 15 11 3.52 1.88
R1_4.18.vrptw 3059 54 255 169.94 198 70.62 8.40 163 200 198 6.58 2.56 8 18 11 6.58 2.56
R1_5.18.vrptw 4128 134 374 229.33 196 14.50 3.81 187 200 196 3.75 1.94 8 15 11 3.75 1.94
R1_6.18.vrptw 3609 107 301 200.50 199 77.44 8.80 168 200 199 3.05 1.75 8 14 11 3.05 1.75
R1_7.18.vrptw 3165 112 257 175.83 197 24.03 4.90 186 200 197 3.63 1.91 8 15 11 3.63 1.91
R1_8.18.vrptw 2971 76 241 165.06 199 133.79 11.57 150 200 199 5.28 2.30 7 17 11 5.28 2.30
R1_9.18.vrptw 3790 124 309 210.56 197 23.09 4.81 186 200 197 2.93 1.71 9 14 11 2.93 1.71
R1_10.18.vrptw 3318 97 266 184.33 198 97.44 9.87 157 200 198 2.58 1.60 8 14 11 2.58 1.60

RLT Route Length Total
RLM1 Route Length Minimum
RLM2 Route Length Maximum
RLM3 Route Length Mean
RLM4 Route Length Median
RLV Route Length Variance
RLS Route Length Standard Deviation
RDM1 Route Demand Minimum
RDM2 Route Demand Maximum
RDM3 Route Demand Median
RDV Route Demand Variance
RDS Route Demand Standard Deviation
RCM1 Route Customer Minimum
RCM2 Route Customer Maximum
RCM3 Route Customer Median
RCV Route Customer Variance
RCS Route Customer Standard Deviation

29

RLT Route Length Total
RLM1 Route Length Minimum
RLM2 Route Length Maximum
RLM3 Route Length Mean
RLM4 Route Length Median
RLV Route Length Variance
RLS Route Length Standard Deviation
RDM1 Route Demand Minimum
RDM2 Route Demand Maximum
RDM3 Route Demand Median
RDV Route Demand Variance
RDS Route Demand Standard Deviation
RCM1 Route Customer Minimum
RCM2 Route Customer Maximum
RCM3 Route Customer Median
RCV Route Customer Variance
RCS Route Customer Standard Deviation

76



Saygılı, A.Ç., Kazan, H., Operational Implications of Time Window Relaxation in Vehicle Routing Problems

Appendix D

Appendix 4. R2 Data
D R2 Data

Instance Name RLT RLM1 RLM2 RLM3 RLM4 RLV RLS RDM1 RDM2 RDM3 RDV RDS RCM1 RCM2 RCM3 RCV RCS
R2_1.4.vrp 1598 325 443 399.5 848 6452.25 80.33 820 997 848 8.67 2.94 47 53 50 8.67 2.94
R2_2.4.vrp 1598 325 443 399.5 848 6452.25 80.33 820 997 848 8.67 2.94 47 53 50 8.67 2.94
R2_3.4.vrp 1598 325 443 399.5 848 6452.25 80.33 820 997 848 8.67 2.94 47 53 50 8.67 2.94
R2_4.4.vrp 1598 325 443 399.5 848 6452.25 80.33 820 997 848 8.67 2.94 47 53 50 8.67 2.94
R2_5.4.vrp 1598 325 443 399.5 848 6452.25 80.33 820 997 848 8.67 2.94 47 53 50 8.67 2.94
R2_6.4.vrp 1598 325 443 399.5 848 6452.25 80.33 820 997 848 8.67 2.94 47 53 50 8.67 2.94
R2_7.4.vrp 1598 325 443 399.5 848 6452.25 80.33 820 997 848 8.67 2.94 47 53 50 8.67 2.94
R2_8.4.vrp 1598 325 443 399.5 848 6452.25 80.33 820 997 848 8.67 2.94 47 53 50 8.67 2.94
R2_9.4.vrp 1598 325 443 399.5 848 6452.25 80.33 820 997 848 8.67 2.94 47 53 50 8.67 2.94
R2_10.4.vrp 1598 325 443 399.5 848 6452.25 80.33 820 997 848 8.67 2.94 47 53 50 8.67 2.94
R2_1.4.vrptw 4477 1012 1179 1119.25 872.5 8804.92 93.83 775 993 872.5 16.67 4.08 47 56 50 16.67 4.08
R2_2.4.vrptw 3610 764 1040 902.5 896.5 12554.92 112.05 726 994 896.5 28.00 5.29 43 55 50 28.00 5.29
R2_3.4.vrptw 2865 420 847 716.25 897 14239.58 119.33 728 991 897 74.67 8.64 38 58 50 74.67 8.64
R2_4.4.vrptw 1970 424 558 492.5 907 14328.92 119.70 709 990 907 72.67 8.52 43 62 50 72.67 8.52
R2_5.4.vrptw 3355 773 916 838.75 887.5 5203.58 72.14 797 941 887.5 17.33 4.16 45 55 50 17.33 4.16
R2_6.4.vrptw 2897 605 841 724.25 931 18454.92 135.85 678 973 931 70.67 8.41 39 59 50 70.67 8.41
R2_7.4.vrptw 2442 391 763 610.5 883 15080.25 122.80 751 996 883 68.67 8.29 41 61 50 68.67 8.29
R2_8.4.vrptw 1838 305 533 459.5 891.5 16148.25 127.08 742 988 891.5 118.00 10.86 36 60 50 118.00 10.86
R2_9.4.vrptw 3087 654 865 771.75 888 10298.25 101.48 756 981 888 24.00 4.90 44 56 50 24.00 4.90
R2_10.4.vrptw 2655 555 940 663.75 902 13292.92 115.29 728 981 902 58.00 7.62 44 61 50 58.00 7.62

RLT Route Length Total
RLM1 Route Length Minimum
RLM2 Route Length Maximum
RLM3 Route Length Mean
RLM4 Route Length Median
RLV Route Length Variance
RLS Route Length Standard Deviation
RDM1 Route Demand Minimum
RDM2 Route Demand Maximum
RDM3 Route Demand Median
RDV Route Demand Variance
RDS Route Demand Standard Deviation
RCM1 Route Customer Minimum
RCM2 Route Customer Maximum
RCM3 Route Customer Median
RCV Route Customer Variance
RCS Route Customer Standard Deviation

30

RLT Route Length Total
RLM1 Route Length Minimum
RLM2 Route Length Maximum
RLM3 Route Length Mean
RLM4 Route Length Median
RLV Route Length Variance
RLS Route Length Standard Deviation
RDM1 Route Demand Minimum
RDM2 Route Demand Maximum
RDM3 Route Demand Median
RDV Route Demand Variance
RDS Route Demand Standard Deviation
RCM1 Route Customer Minimum
RCM2 Route Customer Maximum
RCM3 Route Customer Median
RCV Route Customer Variance
RCS Route Customer Standard Deviation
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Appendix 5. RC1 Data
E RC1 Data

Instance Name RLT RLM1 RLM2 RLM3 RLM4 RLV RLS RDM1 RDM2 RDM3 RDV RDS RCM1 RCM2 RCM3 RCV RCS
RC1_1.18.vrp 2786 75 225 154.78 199 8.94 2.99 190 200 199 2.69 1.64 8 15 11 2.69 1.64
RC1_2.18.vrp 2786 75 225 154.78 199 8.94 2.99 190 200 199 2.69 1.64 8 15 11 2.69 1.64
RC1_3.18.vrp 2786 75 225 154.78 199 8.94 2.99 190 200 199 2.69 1.64 8 15 11 2.69 1.64
RC1_4.18.vrp 2786 75 225 154.78 199 8.94 2.99 190 200 199 2.69 1.64 8 15 11 2.69 1.64
RC1_5.18.vrp 2786 75 225 154.78 199 8.94 2.99 190 200 199 2.69 1.64 8 15 11 2.69 1.64
RC1_6.18.vrp 2786 75 225 154.78 199 8.94 2.99 190 200 199 2.69 1.64 8 15 11 2.69 1.64
RC1_7.18.vrp 2786 75 225 154.78 199 8.94 2.99 190 200 199 2.69 1.64 8 15 11 2.69 1.64
RC1_8.18.vrp 2786 75 225 154.78 199 8.94 2.99 190 200 199 2.69 1.64 8 15 11 2.69 1.64
RC1_9.18.vrp 2786 75 225 154.78 199 8.94 2.99 190 200 199 2.69 1.64 8 15 11 2.69 1.64
RC1_10.18.vrp 2786 75 225 154.78 199 8.94 2.99 190 200 199 2.69 1.64 8 15 11 2.69 1.64
RC1_1.18.vrptw 3693 93 397 205.17 198.5 6.12 2.47 191 200 198.5 1.40 1.18 9 13 11 1.40 1.18
RC1_2.18.vrptw 3319 93 310 184.39 198 5.88 2.43 193 200 198 1.05 1.02 9 13 11 1.05 1.02
RC1_3.18.vrptw 3013 93 235 167.39 199 12.71 3.56 186 200 199 1.99 1.41 8 14 11 1.99 1.41
RC1_4.18.vrptw 2875 83 243 159.72 199 9.18 3.03 189 200 199 2.10 1.45 8 14 11 2.10 1.45
RC1_5.18.vrptw 3451 114 297 191.72 198 7.29 2.70 190 200 198 1.40 1.18 8 13 11 1.40 1.18
RC1_6.18.vrptw 3390 100 288 188.33 199 14.59 3.82 188 200 199 1.63 1.28 9 13 11 1.63 1.28
RC1_7.18.vrptw 3296 109 264 183.11 198 5.41 2.33 192 200 198 1.63 1.28 9 14 11 1.63 1.28
RC1_8.18.vrptw 3132 93 282 174.00 199 6.82 2.61 192 200 199 2.10 1.45 9 14 11 2.10 1.45
RC1_9.18.vrptw 3099 93 263 172.17 199 12.47 3.53 186 200 199 2.10 1.45 8 13 11 2.10 1.45
RC1_10.18.vrptw 3006 93 276 167.00 199 8.35 2.89 191 200 199 3.28 1.81 8 15 11 3.28 1.81

RLT Route Length Total
RLM1 Route Length Minimum
RLM2 Route Length Maximum
RLM3 Route Length Mean
RLM4 Route Length Median
RLV Route Length Variance
RLS Route Length Standard Deviation
RDM1 Route Demand Minimum
RDM2 Route Demand Maximum
RDM3 Route Demand Median
RDV Route Demand Variance
RDS Route Demand Standard Deviation
RCM1 Route Customer Minimum
RCM2 Route Customer Maximum
RCM3 Route Customer Median
RCV Route Customer Variance
RCS Route Customer Standard Deviation

31

RLT Route Length Total
RLM1 Route Length Minimum
RLM2 Route Length Maximum
RLM3 Route Length Mean
RLM4 Route Length Median
RLV Route Length Variance
RLS Route Length Standard Deviation
RDM1 Route Demand Minimum
RDM2 Route Demand Maximum
RDM3 Route Demand Median
RDV Route Demand Variance
RDS Route Demand Standard Deviation
RCM1 Route Customer Minimum
RCM2 Route Customer Maximum
RCM3 Route Customer Median
RCV Route Customer Variance
RCS Route Customer Standard Deviation
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Appendix F

Appendix 6. RC2 Data
F RC2 Data

Instance Name RLT RLM1 RLM2 RLM3 RLM4 RLV RLS RDM1 RDM2 RDM3 RDV RDS RCM1 RCM2 RCM3 RCV RCS
RC2_1.6.vrp 1538 18 495 256.33 779.5 204654 452.39 19 984 779.5 665.87 25.80 1 59 43.5 665.87 25.80
RC2_2.5.vrp 1516 18 495 303.2 807 157808 397.25 22 984 807 519 22.78 1 59 47 519 22.78
RC2_3.4.vrp 1498 229 495 374.5 901.5 11257.67 106.10 771 984 901.5 52.67 7.26 42 59 49.5 52.67 7.26
RC2_4.4.vrp 1498 229 495 374.5 901.5 11257.67 106.10 771 984 901.5 52.67 7.26 42 59 49.5 52.67 7.26
RC2_5.4.vrp 1498 229 495 374.5 901.5 11257.67 106.10 771 984 901.5 52.67 7.26 42 59 49.5 52.67 7.26
RC2_6.4.vrp 1498 229 495 374.5 901.5 11257.67 106.10 771 984 901.5 52.67 7.26 42 59 49.5 52.67 7.26
RC2_7.4.vrp 1498 229 495 374.5 901.5 11257.67 106.10 771 984 901.5 52.67 7.26 42 59 49.5 52.67 7.26
RC2_8.4.vrp 1498 229 495 374.5 901.5 11257.67 106.10 771 984 901.5 52.67 7.26 42 59 49.5 52.67 7.26
RC2_9.4.vrp 1498 229 495 374.5 901.5 11257.67 106.10 771 984 901.5 52.67 7.26 42 59 49.5 52.67 7.26
RC2_10.4.vrp 1498 229 495 374.5 901.5 11257.67 106.10 771 984 901.5 52.67 7.26 42 59 49.5 52.67 7.26
RC2_1.6.vrptw 3086 417 623 514.33 584 8519 92.30 448 728 584 13.07 3.61 27 38 43.5 13.07 3.61
RC2_2.5.vrptw 2816 414 751 563.2 743 5680 75.37 599 792 743 11.50 3.39 36 44 47 11.5 3.39
RC2_3.4.vrptw 2586 571 785 646.5 883.5 5980.33 77.33 803 988 883.5 10 3.16 46 53 49.5 10 3.16
RC2_4.4.vrptw 2022 453 597 505.5 894 14643.67 121.01 774 996 894 32.67 5.72 44 57 49.5 32.67 5.72
RC2_5.4.vrptw 2903 609 844 725.75 877 1329 36.46 862 942 877 12.67 3.56 47 54 49.5 12.67 3.56
RC2_6.4.vrptw 2864 606 871 716.0 878 5885.67 76.72 809 993 878 16.67 4.08 45 55 49.5 16.67 4.08
RC2_7.4.vrptw 2517 525 757 629.25 926 12654.33 112.49 727 979 926 23.33 4.83 46 57 49.5 23.33 4.83
RC2_8.4.vrptw 2303 351 754 575.75 901.5 16371 127.95 756 999 901.5 60.67 7.79 41 57 49.5 60.67 7.79
RC2_9.4.vrptw 2172 456 688 543.0 893 14121 118.83 775 997 893 36.67 6.06 44 58 49.5 36.67 6.06
RC2_10.4.vrptw 1998 439 551 499.5 899.5 12855 113.38 771 988 899.5 18 4.24 47 56 49.5 18 4.24

RLT Route Length Total
RLM1 Route Length Minimum
RLM2 Route Length Maximum
RLM3 Route Length Mean
RLM4 Route Length Median
RLV Route Length Variance
RLS Route Length Standard Deviation
RDM1 Route Demand Minimum
RDM2 Route Demand Maximum
RDM3 Route Demand Median
RDV Route Demand Variance
RDS Route Demand Standard Deviation
RCM1 Route Customer Minimum
RCM2 Route Customer Maximum
RCM3 Route Customer Median
RCV Route Customer Variance
RCS Route Customer Standard Deviation

32

RLT Route Length Total
RLM1 Route Length Minimum
RLM2 Route Length Maximum
RLM3 Route Length Mean
RLM4 Route Length Median
RLV Route Length Variance
RLS Route Length Standard Deviation
RDM1 Route Demand Minimum
RDM2 Route Demand Maximum
RDM3 Route Demand Median
RDV Route Demand Variance
RDS Route Demand Standard Deviation
RCM1 Route Customer Minimum
RCM2 Route Customer Maximum
RCM3 Route Customer Median
RCV Route Customer Variance
RCS Route Customer Standard Deviation
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Appendix G

Appendix 7. C1 Time Windows Distributions

Appendix H

Appendix 8. C2 Time Windows Distributions

Appendix I

Appendix 9. R1 Time Windows Distributions
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Appendix J

Appendix 10. R2 Time Windows Distributions

Appendix K

Appendix 11. RC1 Time Windows Distributions

Appendix L

Appendix 12. RC2 Time Windows Distributions
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