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Abstract 

Mathematical modelling, and optimization are efficiently used in open pit mining problems, as it is the case of other engineering 

areas, business, and economic disciplines. One of the problems in this context is related to the role of stockpiles to serve 
maximization of the profit and minimization of the costs. In this paper, a short-term production plan for a mine-mill operation 
having a stockpile area is developed. The approach is based on network diagrams and linear programming method.  Data set used 
in the application is hypothetical considering two months of duration. In the scenario, the milling facility nearby the mine is 
subjected to two stages material feeding located in the mining and milling areas. The objective is to minimize the costs while 
fulfilling the demands of the milling unit. LINGO software is used to evaluate the mathematical model. From the results of this 
study, it is concluded that there is no need for stockpiling operation at mill area for the stage 2 production process and the stockpile 
at mine area is required to satisfy the stage 1 production demand of 6,000 tons in month 2. 
© 2023 DPU All rights reserved. 
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Açık İşletme Tesisinde Cevher Stoklama İşleminin Üretim Planlaması Üzerine Bir 

Durum Çalışması 

Öz 

Matematik modelleme yada optimizasyon, ekonomi, işletme gibi disiplinleri ve diğer mühendislik alanlarında olduğu gibi 
madencilik sektöründe de yoğun olarak kullanılmaktadır. Bu alandaki problemlerden birisi de açık işletme tesislerindeki cevher 
stoklama işleminin planlanmasıdır. Bu makale de açık işletme tesisindeki cevher stoklama işleminin kısa dönemli (2 aylık ) 

planlanması araştırılmıştır. Bunun için şebeke diyagramı ve doğrusal programlama metotları ile LINGO yazılım paketi 
kullanılmıştır. Amaç fonksiyon olarak tesisin kapasitesini karşılayan en düşük maliyetli cevher üretimi için iki adet stoklama alanı 
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planlanmıştır. Çalışmadan elde edilen sonuçlara göre, sadece maden sahasındaki stok alanının yeterli olduğuna ve tesis alanında 
bir stoklamanın gerekmediği kanısına varılmıştır. 

© 2023 DPU All rights reserved. 
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1. Introduction 

Mine planning requires sequential decisions and their implementation so that the assets of a mineral deposit can be 

extracted and processed economically and sustainably. As an engineering discipline, mining also relies on detailed 

mathematical calculations. Therefore, mathematical programming and estimating optimum solutions are of great 

importance. Linear and non-linear programming, game theory, transportation problems, assignment systems, 

networks, dynamic programming, etc. are some of approaches developed for this purpose.  

Linear programming is used in the optimization of coal distribution problem where production is performed in six 

locations and forwarded to four consumption points at Garp Lignite Enterprise in Kütahya, Turkey [1].  

Various shovel and truck operation approaches and optimization techniques for dispatching of trucks for different 

operating conditions are evaluated. They studied Orhaneli Open Pit Coal Mine in Turkey to find the optimum path for 

the trucks. It is shown the effect of the number of trucks and dispatching models on the cost of transporting the material 

by using linear programming [2].  

Linear programming approach is proposed to determine the optimum distribution model in Kegalle, Sri Lanka [3]. 

The objective is to minimize the cost and Excel Solver is used.  Mixed integer network a flow model is formulated 

for the underground gold mine in Red Lake, Ontario, Canada [4].  

Linear Programming is one of the most commonly preferred mathematical tools for solving real optimization 

problems in many disciplines. Here, the optimal is unique through alternative combinations. The resources are scarce 

and mathematical behavior of the parameters are linear. Optimization exits as maximization or minimization. For 

example, maximization of revenue, production efficiency or minimization of costs, consumption of sources, distances, 

etc.   

For the case study in this paper, a mathematical formula of linear program type to represent the open pit production 

planning for a mine-mill operation system with stockpiling problem is developed. 

The problem in this case study is that mine manager wants an operating plan for the next two months which will 

maximize the profits (or minimize the costs) for his mine and operating system.  

The mine can ship directly to the mill or stockpile. Stockpile is to supply the mill next month. 

Mine capacity: 5 x 103 tons / month 

Total reserves: 15 x 103 tons / month 

Mining cost/ton: $1.00 

Stockpiling cost (mill or mine):  $0.10/ton 

Rehandling from Stockpile:  $0.15/ton 

Transportation cost (mine-mill):  $0.50/ton 

The mill is a two stage operation and produces two marketable products (one after every stage). The mill ships 

directly to market from each stage. 

As a principle, linear programming approach is based on the assumption that all the mathematical functions existing 

in the model are linear all [5]. The linear programs have commonly the following components:  

• Decision variables: The decision variables represent the parameters for which the values to be estimated after 

solving the model. The symbols of them may be like X1, X2, X3, ….  Xn. These variables are value carriers of 

unknown quantities (i.e. number of trucks in the fleet, amounts of ore or waste to be produced and so on).   
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• Objective function: It is the mathematical function written in terms of the decision variables which give maximum 

or minimum value after solving the entire functions. For instance, the objective function may aim at maximizing the 

revenues, minimizing the cost, as well as distance, time, energy consumption, etc. 

• Resources Constraints: These functions represent the restrictions and limitations on raw materials, resources, 

time, manpower, requirements, etc. of the problem are expressed as inequalities or equations by using decision 

variables.  

After describing the basic elements and idea of linear programming model, similarly, another approach, nonlinear 

programming model can be stated as the one including either a nonlinear objective function and/or any combination 

of nonlinear constraints. Linearity or nonlinearity seems to be the basic difference. However, the problem becomes 

more complex in nonlinear programming problems. Programming is a technique used to solve mathematical 

programming models with linear objective function and linear constraints. Linear type mathematical models including 

objective and constraint functions are solved and optimum can be found by the Simplex Algorithm approach 

developed by [6]. This technique, in fact, has a matrix base and are used to solve real or hypothetical linear 

programming models. 

In this case study, an operational short-term production plan for a mine-mill operation with stockpiling option is 

developed as a case study.  

2. Method and Input Data 

2.1. Minimum Cost Network Flow Problems 

Some type of problems can be structured on graphical networks and the paths, flows or spans on them can be 

maximized or minimized. Minimum cost flow problem has a primary and basic role through network flow problems. 

Application of minimum cost flow problems may find a large area in almost all industries such that manufacturing, 

transportation, energy distribution, marketing, communication, etc. In these problems, each node has a “supply”, or a 

“demand” given by some parameters. Each edge has some capacity, which is greater than zero. It is required to send 

the flow through the graph from between the supply nodes and the demand nodes to satisfy the demands regarding 

the limitations of the capacity. Finally, the objective of doing this in a manner which minimizes the total cost of the 

flow is attained. Here, network simplex yields the solution of any minimum cost network flow problem (MCNFP) 

where, the simplex is eligible, efficient, and easy to use. It is extremely important to formulate an LP as an MCNFP. 

A MCNFP can be defined by letting an example nomenclature given below [6]. 
xij = amount of flow from node i to node j through arc (i, j) (i.e. tons of ore produced/processed per month in the case 

study problem.) 
bi = net outflow and/or inflow at node i 

cij = cost of transporting of flow per unit from node i to node j through arc (i, j) 

Uij =Upper bound on flow from node i to node j through arc (i, j) for each arc in the network  

Lij = Lower bound on flow from node i to node j through arc (i, j) for each arc in the network. 

 

MCNFP can be formulated as (Winston, 2004): 

𝑀𝑖𝑛 ∑ 𝑐𝑖𝑗 . 𝑥𝑖𝑗𝑎𝑙𝑙 𝑎𝑟𝑐𝑠                   (1) 

 

Subject to: 

∑ 𝑥𝑖𝑗 − 𝑗 ∑ 𝑥𝑘𝑖𝑘  =bi   for node I                       (2) 
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Lij ≤ xij ≤ Uij                                      for arc (i,j)                           (3) 

xij ≥ 0    Non-negativity                                                            (4) 

 

3Constraints (2) mandate an equality between the net flow out of node i and bi. Besides, the constraint equations 

(2) should provide a balance in network flow. Group (3) constraints (3) enable restrictions and satisfaction equilibrium 

on the arc capacity. In our case study, all Lij are initialized as zero. The constraints for the case study problem as 

MCNFP representation are given in Table 1. The first twelve constraints balance the flow through the nodes, and the 

last seventeen ones are for the capacity restrictions. The variable Fij of flow balance equation gets +1 coefficient in 

the node I, -1 in the node j, and 0 in other flow balance equations. Node 1 is the supply node that has a capacity of 

+10.000 (tons of ore) while node 13 is the demand node having the same amount of 10.000 with negative sign. All 

other nodes have a capacity of zero. 

Table 1. The MCNFP Incidence Matrix Representation of case study problem 
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<= rhs Constraints 

                     

1 0 0 0 0 0 0 0 0 1  0 0 0 0 0 0 0 = 10000 Node_1 

1 -1 -1 0 0 0 0 0 0 0  0 0 0 0 0 0 0 = 0 Node 2 

0 1 0 -1 0 0 0 0 0 0  0 0 0 0 0 0 0 = 0 Node_3 

0 0 0 1 -1 1 0 0 -1 0  0 0 0 0 0 0 0 = 0 Node_4 

0 0 0 0 1 0 0 -1 0 0  0 0 0 0 0 0 0 = 0 Node_5 

0 0 0 0 0 1 -1 0 0 0  0 0 0 0 0 0 0 = 0 Node_6 

0 0 1 0 0 0 0 0 0 0  -1 0 0 0 0 0 0 = 0 Node_7 

0 0 0 0 0 0 0 0 0 1  0 -1 0 0 0 0 0 = 0 Node_8 

0 0 0 0 0 0 0 0 0 0  1 1 -1 0 0 0 0 = 0 Node_9 

0 0 0 0 0 0 0 0 0 0  0 0 1 -1 0 -1 0 = 0 Node_10 

0 0 0 0 0 0 1 0 0 0  0 0 0 1 -1 0 0 = 0 Node_11 

0 0 0 0 0 0 0 0 0 0  0 0 0 0 1 0 -1 = 0 Node_12 

0 0 0 0 0 0 0 -1 -1 0  0 0 0 0 0 -1 -1 = -10000 Node_13 

1 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 <= 5000 Arc(1,2) 

0 1 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 <= 5000 Arc(2,3,) 

0 0 1 0 0 0 0 0 0 0  0 0 0 0 0 0 0 <= 5000 Arc(2,7) 

0 0 0 1 0 0 0 0 0 0  0 0 0 0 0 0 0 <= 5000 Arc(3,4) 

0 0 0 0 1 0 0 0 0 0  0 0 0 0 0 0 0 <= 4000 Arc(4,5) 

0 0 0 0 0 1 0 0 0 0  0 0 0 0 0 0 0 <= 7000 Arc(4,6) 

0 0 0 0 0 0 1 0 0 0  0 0 0 0 0 0 0 <= 7000 Arc(5,10) 

0 0 0 0 0 0 0 1 0 0  0 0 0 0 0 0 0 <= 2000 Arc(5,13) 

0 0 0 0 0 0 0 0 1 0  0 0 0 0 0 0 0 <= 2000 Arc(4,13) 

0 0 0 0 0 0 0 0 0 1  0 0 0 0 0 0 0 <= 5000 Arc(1,8) 

0 0 0 0 0 0 0 0 0 0  1 0 0 0 0 0 0 <= 5000 Arc(7,9) 

0 0 0 0 0 0 0 0 0 0  0 1 0 0 0 0 0 <= 5000 Arc(8,9) 

0 0 0 0 0 0 0 0 0 0  0 0 1 0 0 0 0 <= 7000 Arc(9,10) 

0 0 0 0 0 0 0 0 0 0  0 0 0 1 0 0 0 <= 7000 Arc(10,11) 

0 0 0 0 0 0 0 0 0 0  0 0 0 0 1 0 0 <= 4000 Arc(11,12) 

0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 1 0 <= 2000 Arc(10,13) 

0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 1 <= 4000 Arc(12,13) 

                     

All variables are nonnegative. 
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2.2. Input Data and Network Model of Case Study  

Optimization problems such as production planning can be analysed by graphical or network representations. The 

input data for the case study problem is given in Table 2 and Table 3 below. 

Table 2. The production cost data for case study 

 

Stage 

Production Cost 
($/ton) 

Capacity (ton 103) 
/ month  

Low 

Capacity (ton x103) /month  

High 

1           1.08                2                                7 

2           0.75                2                                4 

Table 3. Market demands and prices for case study 

Product 
Month 1           

(tons x103 ) 

Month 2                 

(tons x103) 

Price  

($/ton) 

1 2 2                               6.000 

2 2 4                               7.000 

 

The mathematical model for production planning problems can be described by linear programming methods. The 

case study problem has two stages (i.e. two months). It means that network diagrams can be used to solve this problem. 

The following network diagram summarizes the activities under consideration for the case study problem of mine-

mill operations. The numbers on each arc represent the costs for each operation and permissible capacity on each 

potential node of the process.  (Fig.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Network diagrams for the case study. 
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2.3. LINGO Codes for the Case Study Problem 

LINGO codes of the case study problem are given in Figure 2.  

In line 2 of the codes given in Figure 2, the nodes are defined and they are linked to a net supply (flow out – flow 

in) with each node. Code line 12 is for data supplies. The arcs are defined in line 3 as a list and they are linked by a 

capacity (CAP), a flow (FLOW), and a cost/unit shipped (COST) with each arc in line 4. Line 11 is the code part 

where the cost of unit’s shipping is entered. Line 6 generates the Objective function takes place in Line 6 and it is 

summed up over all arcs (unit cost for arc) x (flow through arc). Each arc’s capacity constraints are stated in Line 7 

where the arc data are entered in Line 13. Code Lines 8 and 9 generate the conservation-of-flow constraints for each 

node I. They imply that for each node I, 
(flow out of node I)  - (flow into node I) = supply of node I.  

 
 

 

 

All variables are nonnegative. 

Figure 2: LINGO Model for case study 

 

 

 

 

Fig 2. LINGO Model for case study 

All variables are nonnegative. 

2.4. LINDO Model of the Case Study Problem 

LINDO model of the case study is given in Figure 3. 
 

 
 

Fig 3. LINDO Model for the case study 
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In figure 3 with LINDO model, Line 1, the objective function is specified as a Minimization of the total cost of 

mining, transportation, stock-piling, re-handling and processing for the case study problem. It is noted that the 

coefficients are all negative for the demand node 13 only while all other nodes have positive coefficient in the objective 

function. Lines 2- 19 are arc capacity constraints for all arcs in the network and the other rest including lines 20-31 

are the node flow balance constraints in the network problem. 

3. Results and Discussion 

When the LP model of the case study problem was solved both on LINDO and LINGO. it was found that the 

optimal value of the objective function was equal to – 35,950 $ meaning that negative total cost is in fact a positive 

income for the operational plan. It means that the mining company will earn a profit of 35,950 $ by the production 

schedule for the two months’ duration from this mine-mill operational plan (i.e., according to the minus signs that are 

assigned to the income from the sales of both product 1 an d product 2 while all other cost parameters are assumed to 

be positive). The output results of the decision variables for case study problem obtained by LINGO and LINDO 

software is summarized in Table 4.  As it can be seen from Table 4, there is no need for stockpiling operation at mill 

site for the stage 2 production process and the stockpile at mine site is required to satisfy the production stage 1 

demand of 6,000 tons in month 2. 

Table 4. Output Data obtained for case study problem by LINGO and LINDO 

Decision  

Variables 

Cost  

Coefficient 

($/ton) 

Value  

(Production rate) (tons/month) 

Capacity 

 

(tons/month) 

 

Activity 

FLOW( 1, 2) 1.00     5000  5000 Mine Production in Month 1 

FLOW( 2, 3) 0.50 4000 5000 Transportation mill 

FLOW( 2, 7) 0.10  1000 5000  Stockpiling at mine site 

FLOW( 3, 4) 1.08 4000 7000 Production at stage 1 

 FLOW( 4, 5) 0.75 2000 4000 Production at stage 2 

FLOW( 4, 6) 0.10 0 7000  Stockpiling for product 1 

 FLOW( 6, 11) 0.15 0 7000 Rehandling for product 1 

 FLOW( 5, 13) -7.00 2000 2000 Market for product 2 in month 1 

 FLOW( 4, 13) -6.00 2000 2000 Market for product 1 in month 1 

FLOW( 1, 8) 1.00 5000 5000 Mine Production in Month 2 

FLOW( 7, 9) 0.15  1000 5000 Rehandling for month 2 

FLOW( 8, 9) 0.50 5000 5000 Transportation mill 

 FLOW( 9, 10) 1.08 6000 7000 Production at stage 1 

  FLOW( 10, 11) 0.00 4000 7000 Gravity Flow 

  FLOW( 11, 12) 0.75 4000 4000 Production at stage 2 

  FLOW( 10, 13) -6.00 2000 2000 Market for product 1 in month 2 

FLOW (12,13) 

 

Global Optimal 

Solution  

-7.00 4000 

 

-35950.00 

4000 Market for product 2 in month 2 

 

 

4. Conclusion 
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In this paper, production planning problems in open pit mining were modelled and solved using two softwares 

called LINGO and LINDO. An operating short-term production plan was developed on a hypothetical case study for 

the following two months’ duration which maximizes profits (or equivalently minimizes cost) for a mine-mill 

operation system with stockpiling. 

As seen from the optimization process, the following main results could be derived: 
a) The production planning problems in mining operations can be solved by mathematical programming methods such 

as Linear Programming to reduce the total operating cost during the life of mines.  
b) Network flow models can be applied to other areas in open pit or underground mining industry such as open pit 

truck dispatching problem, blasting pattern design optimization, transportation network optimization and like many 

other optimization problems. 

c) Stockpiling options provides great operational flexibility for production planning problems in mine-mill operations 

since the planning parameters are highly sensitive to variations in costs and prices.   

 d) Open pit mining systems involve many financial factors such as operating cost, revenues, total capital investment 

etc. that are highly stochastic in nature and, therefore, they should be modelled accordingly.    
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