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Abstract: Recently, solar energy has become an attractive topic for researchers as it has been preferred among renewable energy 

sources due to its advantages such as unlimited energy supply and low maintenance expenses. The precise modeling of the solar cells 

and the model’s parameter estimate are two of the most important and difficult topics in photovoltaic systems. A solar cell’s behavior 

can be predicted based on its current-voltage characteristics and unknown model parameters. Therefore, many meta-heuristic search 

algorithms have been proposed in the literature to solve the PV parameter estimation problem. In this study, the enhanced crayfish 

optimization algorithm (ECOA) with opposition-based learning (OBL) strategies was proposed to estimate the parameters of the three 

different PV modules. A thorough simulation study was conducted to demonstrate the performance of the ECOA algorithm in tackling 

benchmark challenges and PV parameter estimate problems. In the first simulation study, using three OBL strategies, six variations of 

the COA were created. The performances of these variations and the classic COA have been tested on CEC2020 benchmark problems. 

To determine the best COA variation, the results were analyzed using Friedman and Wilcoxon tests. In the second simulation study, the 

best variation, called ECOA, and the base COA were applied to estimate the parameters of three PV modules. According to the 

simulation results, the ECOA algorithm achieved 1.0880%, 37.8378%, and 0.8106% lower error values against the base COA for the 

parameter estimation of the STP6-120/36, Photowatt-PWP201, and STM6-40/36 PV modules. Moreover, the sensitivity analysis was 

performed in order to determine the parameters influencing the PV module’s performance. Accordingly, the change in the photo-

generated current and diode ideality factor in the single-diode model affects the performance of PV modules the most. The 

comprehensive analysis and results showed the ECOA’s superior performance in parameter estimation of three PV modules compared 

to other algorithms found in the literature. 
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1. Introduction 
Recently, the development and application of renewable 

energy have become more important due to the rising 

consumption of non-renewable energy sources and their 

associated environmental pollution. The abundance and 

low pollution of solar energy, especially, make it stand 

out (Wang et al., 2022). The utilization of solar energy is 

crucial for improving the ecological environment since it 

may be used to generate electricity or thermal energy 

without the need for fuel or water, nor does it produce 

pollution (Yang et al., 2020). Many researchers have 

undertaken various studies in order to address and 

overcome the problems in PV systems, where the aim is 

to decrease the total costs while increasing efficiency. PV 

systems must be thoroughly investigated and analyzed 

from a variety of perspectives as their popularity 

develops (Naeijian et al., 2021). The precise and effective 

modeling of solar cells is one of the most important and 

difficult aspects of PV systems. The main cause of this 

problem is the nonlinear properties of the solar cells and 

the lack of complete parameter availability. Therefore, a 

precise model needs to be developed to accurately study 

and assess the real behavior of PV systems (Yang et al., 

2020). 

In the literature, a number of mathematical models, the 

most prominent of which is the diode-based model, have 

been developed to characterize PV properties under 

various operating conditions. The most well-known PV 

models presented in the literature are the PV module 

model, single diode, double diode, and triple diode 

models (Naeijian et al., 2021). The modeling of the solar 

PV system includes parameter identification and 

mathematical formulations. Unfortunately, the lack of 

easy access to these parameter values restricts the 

usefulness of these models. This problem, which is 

inaccurate parameter identification, can lead to 
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significant errors in performance evaluation, quality 

control, and maximum power point tracking of PV 

systems. Therefore, the accurate model parameters, such 

as the number of diodes, ideality factor, series 

resistances, and shunt resistances, are necessary for 

correct results. Thus, the accurate parameter extraction 

of the solar cells is a growingly significant issue for 

researchers (Wang et al., 2022).  

Many methods have been presented in the literature to 

determine the parameters of PV cells, which are 

classified as analytical, iterative, and meta-heuristic 

algorithms (Wang et al., 2022). Analytical methods use 

complicated mathematical equations to calculate these 

values and can be easily implemented (Cárdenas et al., 

2016). However, they have significant drawbacks, such as 

the requirement for particular mathematical features and 

assumptions. These assumptions can occasionally cause 

significant errors or affect the accuracy of the solutions 

(Chenche et al., 2018). Iterative algorithms, such as 

Newton-Raphson and Lambert W-functions, rely heavily 

on initial guesses and gradient information. These 

methods require the equations of the system to be 

continuous, convex, and differentiable, which limits their 

usefulness (Ortiz-Conde et al., 2006; Ayang et al., 2019). 

To solve the drawbacks of the first two methods, meta-

heuristic search (MHS) algorithms have gained 

popularity for determining PV cell parameters due to 

their improved performance in nonlinear and complex 

optimizations. 

In the literature, many studies have been carried out to 

identify the parameters of the PV cell. A hybrid algorithm 

incorporating the trust-region reflective algorithm and 

the artificial bee colony algorithm was introduced to 

estimate the PV model (Wu et al., 2018). The authors 

used the slime mould optimization algorithm to estimate 

the PV cell parameters, where three diode model were 

considered (Kumar et al., 2020). An improved version of 

the whale optimization algorithm using the refraction-

learning strategy was presented for parameter 

estimation of the PV model, where only the single-diode 

PV model was considered (Long et al., 2020). The authors 

used the transient search algorithm to solve the PV 

parameter estimation problem. Here, only the 

parameters of the triple-diode model were determined 

under changing temperatures and solar irradiance (Qais 

et al., 2020). An improved version of the Harris Hawks 

optimization algorithm was introduced to extract the 

model parameters of PV, where four diode model and 

two different commercial PV cells (Naeijian et al., 2021). 

An improved equilibrium optimizer was proposed to 

determine the unknown parameters of the PV models. In 

this study, the simulations were carried out under 

constant conditions, and under partial shading and 

changing weather conditions (Wang et al., 2021). An 

improved JAYA algorithm based on chaotic learning 

methods was proposed for parameter identification of PV 

cells (Premkumar et al., 2021). The authors proposed a 

heterogeneous differential evolution algorithm to 

identify the parameters of PV cells, where six different PV 

modules were considered (Wang et al., 2022). An 

improved moth flame optimization algorithm based on 

opposition-based learning method was proposed to 

estimate the parameters of the PV cell. The parameters of 

the three commercial PV cell were extracted using the 

reported algorithm (Sharma et al., 2022). To extract the 

PV cell/module parameters, an improved version of the 

teaching-learning-based artificial bee colony algorithm 

using fitness-distance balance method was proposed 

(Duman et al., 2022). A hybrid seagull optimization 

algorithm was presented to identify the parameters of PV 

models for the SD, DD, and PV module models (Long et 

al., 2022). An enhanced gradient-based optimization 

algorithm by using the orthogonal learning mechanism 

was proposed to estimate the PV model parameters. 

Here, the experiments were carried out using the four PV 

models and two commercial PV modules (Yu et al., 2022). 

To specify the parameters of the two types of PV cell, the 

atomic orbital search algorithm was used (Ali et al., 

2023). The authors presented a comprehensive analysis 

on the PV parameter estimation using eight MHS 

algorithms for three types of PV models (Navarro et al., 

2023). In another study, an improved version of Harris 

Hawks optimization algorithm was introduced for 

determining the unknown parameters of the three diode 

model. In the study, the parameters of the most 

commonly used commercial PV cell and PV module were 

estimated using the proposed algorithm (Garip, 2023). 

To estimate the parameters of the three types of PV 

models, the chimp optimization algorithm was used 

(Yang et al., 2023). The authors used the northern 

goshawk optimization algorithm for identifying the PV 

model parameters, where only the three diode model 

was considered (El-Dabah et al., 2023). An improved 

moth flame algorithm including the local escape 

operators was proposed to estimate the PV model 

parameters (Qaraad et al., 2023). The ranking teaching–

learning-based optimization to solve the PV parameter 

estimation problem. In the study, three types of 

commercial PV modules were used to show the efficiency 

of the proposed algorithm (Yu et al., 2023). The authors 

used a squirrel search algorithm for the estimation of PV 

parameters. Here, the simulation study was performed 

under two case study, where R.T.C. France silicon solar 

cell and polycrystalline CS6P-220P solar module (Maden 

et al., 2023). The artificial hummingbird algorithm was 

used to estimate the electrical parameters of the single- 

and double-diode PV cell (El-Sehiemy et al., 2023). A 

hybrid optimization algorithm including white shark 

optimizer and artificial rabbit optimization was proposed 

to extract two PV cells and six PV modules (Çetinbaş et al. 

2023). The authors proposed an enhanced version of the 

artificial gorilla troops optimizer to estimate the 

parameters of two PV module (Shaheen et al. 2023). The 

artificial humming bird algorithm for solving the 

parameter estimation of the PV models was presented, 

where two different PV module were carried out 
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(Ayyarao and Kishore, 2024). A multi-strategy gaining-

sharing knowledge-based algorithm was introduced to 

identify the unknown parameters of the PV modules 

(Xiong et al. 2024). The author used the weighted leader 

search algorithm for estimating the parameters of the PV 

cells and modules (Çetinbaş, 2024). An enhanced prairie 

dog optimization algorithm was proposed to determine 

the parameters of the PV model (Izci et al., 2024). 

In this study, an enhanced crayfish optimization 

algorithm (ECOA) based on opposition-based learning 

(OBL) strategies was proposed to solve the PV parameter 

estimation problem and benchmark problems. Three 

OBL strategies were applied to improve the exploration 

ability of the COA. Using these OBL strategies, six 

variations of the COA using these OBL strategies were 

created. To validate the ECOA’s performance, a complete 

simulation study was conducted using the benchmark 

problems and PV parameter estimation problems. In the 

first simulation study, all variations and the base COA 

were implemented for solving the CEC2020 (Yue et al., 

2019) benchmark problems for five different 

dimensional search spaces (10/20/30/50/100). The 

performance of them was compared using the statistical 

analysis methods, and the best COA variation was 

selected. In the second experimental study, the ECOA and 

the base COA were applied to solve the PV parameter 

estimation problem. Here, only single-diode PV cell 

model was used. Three case studies using the PV module, 

including Photowatt-PWP201, STP6-120/36, and STM6-

40/36, were considered. Their results were compared 

with the reported results in the literature.  

The contributions of this paper to the literature are as 

follows: 

 An improved crayfish optimization algorithm based 

on opposition-based learning strategies was 

proposed to the literature as a strong MHS 

algorithm. 

 A comprehensive experimental study was 

performed to validate the performance of the 

proposed ECOA for solving both benchmark 

problems and PV parameter estimation problems. 

 The proposed ECOA presented the best optimal 

solutions in the literature for solving the PV 

parameter estimation problem. 

 The sensitivity analysis was carried out to 

determine the effect of the unknown parameters on 

the objective function. 

This study includes four sections after the introduction, 

and these are summarized accordingly. Section 2 

includes two sub-sections. In the first sub-section, the 

mathematical model of the PV cell or module and the 

formulation of the PV parameter extraction problem are 

presented. In the second sub-section, the proposed ECOA 

is explained. Section 3 analyzes and presents the 

simulation results of the benchmark problems and PV 

models of the three PV modules. Section 4 presents the 

conclusions. 

 

2. Materials and Methods 
This section consists of two sub-sections. In the first sub-

section, the mathematical model of the PV module and 

the formulation of the objective function considered in 

the PV parameter estimation problem are described. In 

the second sub-section, the proposed ECOA is presented. 

2.1. Mathematical Model of the PV cell and Problem 

Formulation 

The behavior of photovoltaic (PV) cells and modules has 

been modeled by many mathematical formulas and the 

most popular of which is the diode model. This is due to 

the fact that PV cells, which are made up of 

semiconductor components, have an I-V curve that is 

exponential and resembles a diode. There are multiple 

parameters in every diode-based model that need to be 

calculated with accuracy, and the precise estimation of 

these parameters is essential (Wang et al., 2022). 

The single-diode (SD) model is a generally used 

mathematical expression of a photovoltaic (PV) cell that 

simplifies its complex physical behavior into an 

equivalent electrical circuit s in Figure 1 (Wang et al., 

2022). This model consists of a current source (Ipv) for 

the photocurrent produced by sunlight, a diode for the p-

n junction, a series resistance (Rs) for resistive losses 

within the cell, and a shunt resistance (Rsh) for leakage 

currents. Accordingly, the output current (IL) is 

mathematically expressed as in Equation (1) (Isen and 

Duman, 2024). 

 

 

 

 

 

 

 

 
 

Figure 1. The equivalent circuit model of the single-

diode. 
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(1) 

 

Here, VL, Ish, Id, and Io1 represent the terminal voltage, the 

current passing through Rsh, the current passing through 

the diode, and the reverse saturation current of the 

diode, respectively. a, q, T, and k denote the ideality 

factor of the diode, the electron charge (1.60217646e−19 

C), the temperature in Kelvin, and the Boltzmann 

constant (1.3806503e−23 J/K), respectively. 

The models that are most frequently used in PV have 

been described above. These equations are converted 

into corresponding optimization problems so that an 

optimization algorithm can determine the parameter 

values with accuracy. By employing the ideal parameter 

values, the objective function seeks to minimize the 

difference between the measured and experimental data. 

The error function for the SD model is expressed as in 

Equation (2), where x is the decision variables (Wang et 
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al., 2022). 
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(2) 

 

The objective function used in this study is the total root 

mean square error (RMSE), which serves to quantify the 

difference between the observed and simulated results. 

The mathematical expression of the objective function 

considered in this study is evaluated by Equation (3), 

where m is the experimental I-V data and fobj represents 

the objective function (Wang et al., 2022). 
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   (3) 

 

2.2. Method 

2.2.1. Overview of the Crayfish Optimization 

Algorithm 

The Crayfish Optimization Algorithm (COA) proposed in 

the literature draws inspiration from the foraging, 

summer vacationing, and competitive behaviors of the 

crayfish. It includes two stages focused on exploitation 

(foraging and competition) and one stage dedicated to 

exploration (a summer resort). The equilibrium between 

these stages is managed by a temperature variable (Jia et 

al., 2023). 

The initial population for the COA involves randomly 

creating a set of candidate solutions (x) in the search 

space, where xi,j is the position of the ith individual in the 

jth dimension and is created using Equation (4). Also, LB 

and UB denote the lower and upper bounds of the search 

space, respectively (Jia et al., 2023).  
 

 ,i j j j jx rand UB LB LB     (4) 

 

Temperature changes influence crayfish behavior, 

prompting them to enter various stages. When the 

temperature (temp) value is greater than 30°, the COA 

moves into either the competition or the summer resort 

stage. In the summer resort stage, the crayfish aim to get 

closer to the cave, representing the optimal solution. This 

movement towards the cave strengths the exploitation 

ability of the COA. During this stage, new solutions are 

updated based on the positions of individual crayfish (xi) 

and the cave (xshade), where xshade is the average of the xG 

and xL. Here, xG and xL represent the best solution 

obtained so far and the best position of the current 

population, respectively. The competition among crayfish 

for caves occurs randomly. If rand < 0.5, it indicates no 

other crayfish are vying for the caves, allowing a crayfish 

to directly enter the cave for its summer vacation. At this 

point, the crayfish will move into the cave for the 

summer resort stage according to Equation (5), where c2 

is a decreasing curve (Jia et al., 2023). 
 

 1 1
, 2 , ,
t t t
i j shade i j i jx rand c x x x       (5) 

 

When rand ≥ 0.5 and the temp is higher than 30°, it 

indicates that other crayfish are also interested in the 

cave, leading to competition for it. The crayfish competes 

for the cave using Equation (6) (Jia et al., 2023).  
 

1 1
, , ,
t t t
i j shade i j z jx x x x     (6) 

 

When the temp is equal to or less than 30°, the crayfish 

will move towards the food source. Upon finding the 

food, they assess its size. The crayfish adjust their feeding 

behavior based on the size of the food, which is 

determined by the current solution (fitnessfood) and the 

fitness value of it (fitnessi). They generate new solutions 

when food is suitable, considering their position, a food 

intake constant (p), and the food’s position (xfood). If the 

food is too large, the crayfish will use their claws to tear 

it apart and eat it using their second and third walking 

legs alternately. The crayfish control the food intake, 

influenced by temperature and following a positive 

distribution. The mathematical expression of the 

alternating feeding of the crayfish is defined as follows in 

Equation 7 (Jia et al., 2023): 
 

1
, ,(cos(2 ) sin(2 ))t t

i j food i jx p π rand π rand x x            (7) 
 

When the food size is deemed suitable for direct 

consumption by the crayfish, they move directly to the 

food location and start eating. The formula for this direct 

feeding behavior is as follows in Equation 8 (Jia et al., 

2023): 
 

1 1
, , ,( )t t t

i j i j i j foodx x rand p p x x        (8) 

 

During the foraging stage, crayfish employ varying 

feeding techniques depending on the size of their food, 

with food location xfood symbolizing the optimal solution. 

Progressing through this stage, the COA moves closer to 

the optimal solution, improving its exploitation capacity 

and demonstrating strong convergence capabilities. 

2.2.2. Overview of the Opposition-Based Learning 

Strategies 

Opposition-based learning (OBL) strategies in MHS 

algorithms aim to improve the search process by 

considering both the present candidate solutions and 

their opposites. This dual consideration increases the 

exploration ability, helps avoid local optima, and 

accelerates the convergence of optimal solutions. The 

algorithm can be made more effective and efficient by 

analyzing opposing solutions, which will produce higher-

quality solutions and preserve population diversity. 

Ultimately, OBL enhances the overall performance of 

meta-heuristic algorithms by facilitating a more thorough 

and balanced search for optimal results (Mahdavi et al., 

2018). 

In the literature, different OBL strategies have been 

presented for improving the performance of the MHS 

algorithms. In this paper, three OBL strategies have been 

considered and are explained below: 

(i) Strategy-1: It is the classical OBL strategy proposed in 

the literature and can be mathematically described in 

Equation (9) (Tizhoosh, 2005). Here xj is a point in D-
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dimensional search space and 𝑥𝑗
0̅̅ ̅  is the opposite of xj. 

 

, , , 1,2,...,  
o
j j j j j j jx ub x lb x lb ub j D      

 (9) 

 

(ii) Strategy-2: It is the quasi-opposition based learning 

(QOBL) strategy introduced (Rahnamayan et al., 2007). It 

is described as in Equation (10), where 𝑥𝑗
𝑞̅̅ ̅ is the quasi-

opposite point of xj and Mj is the mean value of the ubj 

and lbj. r is a random number between 0 and 1. 
 

 
 

,

, 1,2,...,

,

   

 

 

o
j j j j j

q
j

o o
j j j

M r x M if x M

x j D

x r M x otherwise

    

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   


 
(10) 

 

(iii) Strategy-3: It is the quasi-reflection opposition based 

learning (QROBL) strategy proposed in the literature. It 

can be modeled as in Equation (11), where  

𝑥𝑗
𝑞𝑟

 is the quasi-reflected point of xj and r is a random 

number between 0 and 1 (Ergezer et al., 2009). 
 

 

 

,
, 1,2,...,

,

    
 

   

j j j j j
qr
j

j j j

x r x M if x M
x j D
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(11) 

 

2.2.3. Proposed Enhanced Crayfish Optimization 

Algorithm 

Similar to the other MHS algorithms, COA might 

experience sluggish convergence and become stuck in a 

local optimum. For this reason, three OBL strategies 

explained in section 2.2.2 were used in the COA. These 

strategies were implemented in two stages in the COA. 

Firstly, they were applied in population initialization to 

increase the variety and quality of the initial population. 

Secondly, it was applied in the population update phase 

to improve the convergence performance of the 

algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Algorithm-1: The pseudocode of the ECOA algorithm. 
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The pseudocode of the ECOA is presented in Algorithm-1 

in Figure 2. According to Algorithm-1, the population 

initializes in line 1. Then, the OBL strategy is selected in 

line 2. In line 3, the oppositional population is created 

based on the selected OBL strategy. Accordingly, for 

Case-1, the oppositional population is created using the 

Strategy-1, where Equation (9) is used. On the other 

hand, for Case-2, the oppositional population of the initial 

population is created using the Strategy-2, where 

Equation (10) is used. For Case-3, the Strategy-3 is 

considered and Equation (11) is used to obtain the 

oppositional population. The oppositional population is 

created according to the Case-1, Case-2, or Case-3 based 

on the selected strategy in line 3. The fitness values of the 

population are computed, and xG and xL are determined 

in line 4. In lines 5 to 25, the search process life cycle of 

the algorithm is carried out. The temp value is calculated 

in line 6. If temp value is higher than 30°, the summer 

resort stage or competition stage is applied according to 

the rand value; otherwise, the foraging stage is 

performed in lines 14 to 21. In line 22, the OBL strategy is 

selected, and the oppositional population is generated 

according to Case-4, Case-5 or Case-6 based on the 

selected strategy in line 22. For Case-4, Case-5, and Case-

6, Strategy-1, Strategy-2, and Strategy-3 are considered, 

respectively. Lastly, the fitness values of the population 

are calculated, and xG and xL are obtained in line 24. This 

process continues until the stopping criterion is met.  

 

3. Results and Discussion 
In this study, to prove the performance of the ECOA, a 

comprehensive experimental study was performed. This 

section consists of two sub-sections. In the first sub-

section, the six variations of and base COA were 

implemented to solve the CEC2020 benchmark problems 

in 10/20/30/50/100 dimensional search space. Using 

the Friedman test and convergence analysis, the best COA 

variation was determined. In the second sub-section, the 

best COA variation, called ECOA, was implemented on the 

PV parameter estimation problem. 

3.1. Determining the Best COA Variation on Solving 

Benchmark Problems 

In this section, the performance of the base COA and six 

variations of it were applied to solve the CEC2020 

benchmark suite. The CEC2020 benchmark suite includes 

10 benchmark problems (Yue et al., 2019). In order to 

ensure a fair comparison between the algorithms, the 

maximum number of fitness function evaluations 

(maxFEs) was set as the stopping criteria for the 

algorithms, which was taken as 10000*D. Moreover, each 

algorithm was run 51 times for each problem. The 

parameter settings of the algorithm are taken as given in 

its original paper, and the parameters for COA variations 

are the same as the base COA algorithm. 

In order to evaluate the results of all algorithms, the 

Friedman test and Wilcoxon pairwise test were carried 

out. The Friedman test results are presented in Table 1. 

In Table 1, the algorithm with the best Friedman score 

for each experiment is in bold. Besides, in the last column 

of Table 1, the mean Friedman score value obtained from 

the experiments carried out in five different dimensions 

for each algorithm is presented. Moreover, the mean 

Friedman score values obtained by each algorithm in five 

different experiments are given in the last column of 

Table 1. Accordingly, Case-3 achieved the best Friedman 

score value among all algorithms in all experiments. 

Other variations were not able to exhibit as stable search 

performance as Case-3 against the base COA. Case-6 

ranked second according to the mean score value, 

achieved better score values than the base COA in the 10, 

30, 50, and 100 dimensions, but fell behind the COA in 

the 20 dimensions. On the other hand, Case-4 ranked 

third according to the mean score value obtained better 

score values than the base COA in 3 of 5 experiments.  

In addition to the Friedman test, the Wilcoxon test was 

performed to assess the performance of the variations 

pairwise with the base algorithm. The results of the 

Wilcoxon pairwise results of the COA and its variations 

are presented in Table 2. To explain how to interpret the 

data in the table, for example, the expression “Case-1 vs. 

COA” indicates that a pairwise comparison is made 

between Case-1 and the COA. The “+”sign indicates that 

Case-1 is superior to the COA, the “-” sign indicates that 

the COA is superior to Case-1, and the “=” sign indicates 

that the two algorithms are equal. When the results given 

in Table 2 were examined, it was clearly seen that Case-3 

was superior to COA in all experiments. 

The convergence analysis as well as the statistical 

analysis methods are performed to evaluate the 

performance of the algorithms. The CEC2020 benchmark 

suite includes four problem types: unimodal, multimodal, 

hybrid, and composition. To evaluate the performance of 

the algorithms in these four different problem types, F1 

(unimodal), F3 (multimodal), F6 (hybrid), and F10 

(composition) were selected. The convergence curves of 

the six COA variations and the base COA in 20-

dimensional search space are presented in Figure 3. 

According to the convergence graph given in Figure 3 (a), 

it was seen that Case-3 achieved an error value below 

500 for the F1 problem compared to other algorithms. 

For problems F3 and F6, Case-3 achieved significantly 

smaller error values than its competitors. Lastly, for the 

F10 problem, Case-3 achieved better results than its 

competitors by a slight margin. To sum up, when the 

convergence curves for all problem types given in Figure 

3 were examined, it was seen that Case-3 obtained the 

lowest error values among all algorithms.  

The convergence graphs alone are not sufficient to 

evaluate the search performance of an algorithm because 

they are drawn based on the run in which each algorithm 

achieved the lowest objective function value among 51 

runs. Therefore, the box-plot graphs were drawn based 

on the results of 51 runs of the algorithms given in Figure 

4. For this, four different problem types, F1 (unimodal), 

F2 (multimodal), F5 (hybrid), and F9 (composition) were 

selected. According to box-plots of all problems given in 
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Figure 4, Case-3 obtained the lowest min, max, and 

median values among all algorithms. These results 

showed that Case-3 had a more stable search 

performance than its competitors.  

To sum up, when overall analysis results based on the 

Friedman test, Wilcoxon test, and convergence analysis 

were evaluated, Case-3 outperformed its competitors in 

the simulation study where CEC2020 benchmark 

problems were solved in five different dimensions. In the 

remainder of the study, Case-3 was referred to as ECOA. 

 

Table 1. Friedman score of the COA and its variations 

Method D = 10 D = 20 D = 30 D = 50 D = 100 Mean Score 

Case-3 3.4588 3.7176 3.5784 3.4098 3.4314 3.5192 

Case-6 4.0569 4.1725 3.9039 3.9706 3.8922 3.9992 

Case-4 3.9510 4.1039 4.1157 4.1588 3.8941 4.0447 

COA 4.0667 3.9706 4.0843 4.2039 4.0627 4.0776 

Case-2 4.2745 3.9471 3.8961 4.1745 4.2333 4.1051 

Case-1 4.0608 3.9608 4.2294 4.1451 4.2039 4.1200 

Case-5 4.1314 4.1275 4.1922 3.9373 4.2824 4.1341 

 

Table 2. Wilcoxon pairwise results of the COA and its variations 

vs. COA (+  / = / - ) D = 10 D = 20 D = 30 D = 50 D = 100 

Case-1 5/4/1 5/5/0 4/2/4 5/4/1 5/3/2 

Case-2 3/3/4 6/4/0 6/2/2 4/4/2 4/3/3 

Case-3 8/2/0 7/3/0 7/2/1 7/2/1 6/3/1 

Case-4 7/3/0 4/5/1 5/3/2 5/3/2 5/3/2 

Case-5 3/4/3 4/5/1 4/3/3 6/2/2 4/2/4 

Case-6 6/4/0 3/4/3 5/4/1 6/2/2 6/2/2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Convergence curves of the COA algorithm and six variations for 20 dimension. 
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Figure 4. Box-plot graphs of the COA algorithm and six variations for 100 dimension. 
 

Table 3. Parameter range for STP6-120/36, Photowatt-PWP201, and STM6-40/36 PV modules 

Parameter Photowatt-PWP201 STP6-120/36 STM6-40/36 

lb ub lb ub lb ub 

a 1 50 1 50 1 60 

Rs (Ω) 0 2 0 0.4 0 0.4 

Rsh (Ω) 0 2000 0 1500 0 1000 

Ipv (A) 0 2 0 8 0 2 

Io1 (μA) 0 50 0 50 1 50 

 

3.2. Implementation of the ECOA Algorithm for the PV 

Parameter Estimation Problem 

In this sub-section, the performance of the proposed 

ECOA is tested in detail for the PV parameter estimation 

problem. Here, three test cases are considered using 

three different PV modules including STP6-120/36, 

Photowatt-PWP201, and STM6-40/36. They have 36 

series connected solar cells and operate at 1000 W/m2 

and the temperatures of 45°, 55°, and 51°, respectively. 

While the current (I) / voltage (V) data of the Photowatt-

PWP201 can be extracted from (Wu et al., 2018), the I/V 

data of STP6-120/36 and STM6-40/36 can be obtained 

from (Premkumar et al., 2021). Moreover, the lower and 

upper bounds of the PV parameters are set to be the 

same as in the literature and are given in Table 3.  

3.2.1. Results of the Photowatt-PWP201 module 

The Photowatt-PWP201 module has five unknown 

parameters for the single-diode model. To estimate these 

parameters, the proposed ECOA and the base COA were 

applied. The optimal parameters obtained from them are 

listed in Table 4. Accordingly, the ECOA and COA 

obtained the 0.00238035 and 0.00382927 objective 

function values, respectively, where the result of the 

ECOA was 37.8378% lower than the COA. In Table 5, the 

mean, minimum (min), standard deviation (std), and 

maximum (max) of the ECOA, COA, and the optimization 

algorithms reported in the literature are tabulated. From 

Table 5, the ECOA achieved the best min, mean, and max 

values among the rivals. Besides, the objective function 

value of the ECOA was lower by 1.8441%,  15.3275%, 

1.8441%, 1.8410%, 1.8451%, and 1.8439% than the 

ABCTRR (Wu et al., 2018), SMA (Kumar et al., 2020), HDE 

(Wang et al., 2022), WHHO (Naeijian et al., 2021), RTLBO 

(Yu et al., 2023), and TLABC (Chen et al., 2018), 
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respectively. Figure 5 (a) presents the convergence 

graphs of the proposed ECOA and COA. Accordingly, the 

ECOA converged faster than the COA. Figure 6 (a) 

presents the box-plot graphs for the ECOA and COA 

algorithms, where it was clearly seen that the ECOA 

algorithm had a more stable performance than COA. In 

Figure 7, the I-V and P-V curves of the experimental and 

calculated data by ECOA are given. These curves clearly 

show that the proposed algorithm obtained the module 

parameters with high accuracy. 

 

Table 4. Optimal parameters obtained from ECOA and COA for Photowatt-PWP201 module 

Method a Rs (Ω) Rsh (Ω) Ipv (A) Io1 (μA) RMSE 

ECOA 48.55280659 1.21074419 996.27014927 1.03047082 3.39999999 0.00238035 

COA 50.13811413 1.14691709 777.56118051 1.03591932 5.06086952 0.00382927 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Convergence graphs of the ECOA and COA for (a) Photowatt-PWP201, (b) STP6-120/36, (c) STM6-40/36. 

 

Table 5. Comparison of the results of ECOA with the results of the literature studies for Photowatt-PWP201 module 

Method Min Mean Max Std 

ECOA 0.00238035 0.00238637 0.00239472 4.13E-06 

COA 0.00382927 0.00842824 0.01223100 1.79E-03 

ABCTRR  0.00242508 0.00242508 0.00242508 9.68E-17 

SMA  0.00281125 0.00335278 0.10799200 1.08E-02 

HDE 0.00242507 0.00242507 0.00242507 3.15E-17 

WHHO  0.00242500 0.00242500 0.00242500 N/A 

RTLBO  0.00242510 0.00242510 0.00242510 1.80E-17 

TLABC  0.00242507 0.00242647 0.00244584 4.00E-06 
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Figure 6. Box-plot graphs of the ECOA and COA for (a) Photowatt-PWP201, (b) STP6-120/36, (c) STM6-40/36. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. (a) I-V, (b) P-V curves of the experimental and calculated data by ECOA for Photowatt-PWP201. 

 

3.2.2. Results of the STP6-120/36 Module 

In order to estimate the parameters of the STP6-120/36 

module, the proposed ECOA and base COA were 

implemented. The optimal parameters obtained from 

both ECOA and COA are presented in Table 6. From Table 

6, the ECOA and COA achieved the 0.01607573 and 

0.01625257 objective function values, respectively. In 

Table 7, the mean, min, std, and max of the ECOA, COA, 

and the optimization algorithms reported in the 

literature are listed. From Table 7, the minimum 

objective value obtained by the ECOA was lower by 

1.0880%, 3.1618%, 3.1641%, 3.1618%, and 3.1618% 

than the HDE (Wang et al., 2022), RTLBO (Yu et al., 

2023), IMFOL (Qaraad et al., 2023), DPDE (Wang et al., 

2022), and RLDE (Wang et al., 2022), respectively. Figure 

5 (b) shows the convergence curves of the ECOA and COA 

algorithms. It is seen that the convergence performance 

of the proposed algorithm was better than its rival. 

According to Figure 6 (b), the ECOA obtained the lowest 

minimum, mean, and median objective function values 

than the COA algorithm. Figure 8 presents the I-V and P-V 

curves of the experimental and calculated data by ECOA. 

It shows that the proposed algorithm found the 

parameters of the STP6-120/36 module most accurately. 
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Table 6. Optimal parameters obtained from ECOA and COA for STP6-120/36 module 

Method a Rs (Ω) Rsh (Ω) Ipv (A) Io1 (μA) RMSE 

ECOA 44.19052491 0.18426534 1401.42330369 7.46334747 1.50240004 0.01607573 

COA 44.67749123 0.17788827 1020.92793143 7.46882458 1.80016445 0.01625257 

 

Table 7. Comparison of the results of ECOA with the results of the literature studies for STP6-120/36 module 

Method Min Mean Max Std 

ECOA 0.01607573 0.01613596 0.01631576 5.34E-05 

COA 0.01625257 0.02315716 0.07545616 1.01E-02 

HDE  0.01660060 0.01660060 0.01660060 1.86E-16 

RTLBO 0.01660100 0.01660100 0.01660100 1.10E-11 

DPDE  0.01660060 0.01660060 0.01660060 7.67E-17 

RLDE  0.01660060 0.01660060 0.01660060 1.98E-16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. (a) I-V, (b) P-V curves of the experimental and calculated data by ECOA for STP6-120/36. 
 

Table 8. Optimal parameters obtained from ECOA and COA for STM6-40/36 module 

Method a Rs (Ω) Rsh (Ω) Ipv (A) Io1 (μA) RMSE 

ECOA 56.53886354 0.00000010 603.02089356 1.66323522 2.91000000 0.00172618 

COA 55.71193861 0.06329994 578.11228241 1.66374528 2.31970890 0.00174028 

 

Table 9. Comparison of the results of ECOA with the results of the literature studies for STM6-40/36 module 

Method Min Mean Max Std 

ECOA 0.00172618 0.00172623 0.00172629 2.85E-08 

COA 0.00174028 0.00204472 0.00342965 3.71E-04 

HDE  0.00172981 0.00172981 0.00172981 7.89E-18 

RTLBO  0.00172980 0.00172980 0.00172980 3.40E-15 

IMFOL  0.00188700 0.00303350 0.00467490 8.55E-04 

DPDE 0.00172981 0.00172981 0.00172981 1.10E-17 

RLDE  0.00172981 0.00172981 0.00172981 1.58E-17 

 

3.2.3. Results of the STM6-40/36 Module 

The STM6-40/36 module has five unknown parameters, 

and the proposed ECOA and base COA were implemented 

to determine them. The optimal parameters obtained 

from both ECOA and COA are presented in Table 8. 

According to Table 8, the ECOA and COA obtained the 

0.00172618 and 0.00174028 objective function values, 

respectively. In Table 9, the mean, min, std, and max of 

the ECOA, COA, and the optimization algorithms reported 

in the literature are given. When evaluating the values 

given in Table 9, the minimum objective value achieved 

by the ECOA, was lower by 0.8106%,  0.2102%, 0.2094%, 

8.5226%, 0.2102%, and 0.2102% than the COA, HDE 

(Wang et al., 2022), RTLBO (Yu et al., 2023), IMFOL 

(Qaraad et al., 2023), DPDE (Wang et al., 2022), and 

RLDE (Wang et al., 2022), respectively. Figure 5 (c) 

presents the convergence curves of the ECOA and COA 

algorithms, where the convergence performance of the 

ECOA was better than the COA. According to Figure 6 (c), 

the ECOA showed superior performance than the COA 
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algorithm, where it achieved the lowest minimum, and 

mean, and median objective function values than the 

COA. The I-V and P-V curves of the experimental and 

calculated data by ECOA are presented in Figure 9. It is 

seen that the ECOA estimated the unknown parameters 

of the STM6-40/36 module most accurately. 

3.2.4 Sensitivity Analysis 

In this study, the aim of the PV parameter estimation 

problem is to identify the five unknown parameters (a, 

Rs, Rsh, Ipv, and Io1) of the STP6-120/36, Photowatt-

PWP201, and STM6-40/36 modules. In this section, the 

sensitivity analysis is performed to identify the most 

important parameters influencing the PV module’s 

performance. Therefore, the sensitivity analysis was 

carried out to identify the effect of five unknown 

parameters (a, Rs, Rsh, Ipv, and Io1) on the objective 

function. Within the range of -10%, -5%, +5%, and +10% 

of the base case values, the objective function values 

obtained by varying the determined parameters were 

recorded. The results of sensitivity analysis using the 

ECOA algorithm for the Photowatt-PWP201, STP6-

120/36, and STM6-40/36 modules are presented in 

Table 10. Here, the objective function values were 

calculated in line with the change rates of all parameters 

given one by one. According to Table 10, it is seen that 

the change in the a parameter seriously affects the 

objective function value. While the second parameter 

that most seriously affects the objective function value is 

Ipv, the third parameter is the Io1 affecting the objective 

function significantly. On the other hand, the parameter 

that has the least impact on the objective function value 

is Rsh. Thus, the parameters affecting the performance of 

PV modules were determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. (a) I-V, (b) P-V curves of the experimental and calculated data by ECOA for STM6-40/36. 

 

Table 10. The results of sensitivity analysis using ECOA algorithm for Photowatt-PWP201, STP6-120/36, and STM6-

40/36 modules 
 

Type  a Rs (Ω) Rsh (Ω) Ipv (A) Io1 (μA) 

P
h

o
to

w
at

t-

P
W

P
2

0
1

 

-10% 1.76417217 0.01424594 0.00283344 0.10312068 0.05788966 

Base 0.00238035 0.00238035 0.00238035 0.00238035 0.00238035 

+10% 1.76417217 0.01424594 0.00283344 0.10312068 0.05788966 

ST
P

6
-

1
2

0
/3

6
 

-10% 6.19388096 0.10764357 0.01608878 0.74638378 0.15803240 

Base 0.01607573 0.01607573 0.01607573 0.01607573 0.01607573 

+10% 6.19388096 0.10764357 0.01608878 0.74638378 0.15803240 

ST
M

6
-

4
0

/3
6

 -10% 0.39742699 0.00172618 0.00301994 0.16633338 0.01497132 

Base 0.00172618 0.00172618 0.00172618 0.00172618 0.00172618 

+10% 0.39742699 0.00172618 0.00301994 0.16633338 0.01497132 

 

4. Conclusion 
In this paper an enhanced version of the crayfish 

optimization algorithm including OBL strategies was 

proposed to determine the parameters of the three PV 

modules. In this study, three OBL strategies were 

considered and were applied in different phases of the 

COA. Accordingly, six COA variations were created, and 

their performances were compared on solving the 

CEC2020 benchmark problems in five dimensional 

search space against the base COA. To evaluate their 

results, the statistical analysis methods and the 

convergence analysis were performed. According to all 

results obtained from the Friedman and Wilcoxon tests, 

and the convergence analyzes, the best COA variation 

was determined and it was called ECOA. On the other 

hand, to prove the proposed ECOA algorithm on solving 

the PV parameter estimation problem, the parameters of 

three PV modules including STP6-120/36, Photowatt-

PWP201, and STM6-40/36 were determined using the 

ECOA and base COA. According to the simulation results, 
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the proposed ECOA achieved the 37.8378%, 1.0880%, 

and 0.8106% lower fitness value than the base COA for 

Photowatt-PWP201, STP6-120/36, and STM6-40/36, 

respectively. Besides, the results of the ECOA were 

compared with the results reported in the literature. It 

shows that the proposed ECOA algorithm achieved more 

accurate results in estimating model parameters for 

three PV modules than the results presented in the 

literature. On the other hand, the sensitivity analysis was 

conducted to show the effect of the PV model parameters 

on the objective function. According to the results of the 

sensitivity analysis, while Ipv and a parameters were the 

most effective parameters on the objective function, the 

change of Rsh has very little effect on the objective 

function. To sum up, the proposed ECOA is a viable 

solution to the PV parameter estimation problem since it 

extracts more accurate and stable parameters with 

greater efficiency. In future studies, it is considered to 

apply the ECOA for the estimation of double-diode and 

triple-diode PV module parameters. 
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