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ABSTRACT

Objective:  Identification of methylation patterns in cell-free DNA (cfDNA) provides a non-invasive methodology for discovering critical 
biomarkers that facilitate detection and prognostic evaluation of ovarian cancer (OC). This study explored the epigenetic landscape of OC 
by examining the DNA methylation patterns of cfDNA.

Materials and Methods: Plasma samples from 5 OC patients and 5 healthy blood donors (HBDs) were processed for cfDNA isolation 
and methylated DNA immunoprecipitation, followed by next-generation sequencing and bioinformatics analysis to identify differentially 
methylated regions (DMRs) and genes (DMGs). Integration with The Cancer Genome Atlas (TCGA) data identified differentially expressed 
genes (DEGs) for functional analysis.

Results: The analysis revealed significant alterations in DNA methylation patterns, with 62 hypermethylated and 2 hypomethylated DMRs 
in OC compared with HBDs. Hierarchical clustering revealed distinct methylation patterns between OC and HBDs. Integrative analysis 
identified 18 genes with overlapping methylation and expression changes in OC and a negative correlation between methylation and 
expression levels (p<0.05). Ten genes exhibited a hypermethylation-downregulation pattern, indicating a suppressive role, whereas eight 
showed hypermethylation-upregulation. Survival analysis of OC data from TCGA highlighted B3GNT3 (p=0.04) and LRP1B (p=0.053) as 
promising prognostic markers.

Conclusion: Our study revealed an intricate relationship between DNA methylation alterations and gene expression dysregulation in 
ovarian cancer. We found that hypermethylation of B3GNT3 was correlated with its upregulation and poor survival outcomes, whereas 
hypermethylation of LRP1B pointed to its role as a tumor suppressor gene. 
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INTRODUCTION 

Ovarian cancer (OC) is a highly prevalent and deadly cancer 
that affects female reproductive organs, with an increasing 
incidence worldwide (1). It is currently the second most 
common cancer of the female reproductive system. The most 

prevalent form, epithelial ovarian cancer (EOC), accounts for 
85%–90% of ovarian tumors. OC spreads through direct 
extension, intra-abdominal seeding, and lymphatic routes, 
with advanced stages often involving peritoneal metastases, 
resulting in high mortality and poor prognosis (2). Treatment 
for advanced OC usually involves surgical tumor removal 
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and platinum-based chemotherapy (3). Despite treatment 
advancements, the prognosis remains poor, and OC has the 
highest mortality rate among gynaecological cancers. OC is 
typically asymptomatic in the early stages, and the absence of 
reliable biomarkers for early detection often leads to diagnosis 
at the late stage, making it more difficult to treat and resulting 
in worse outcomes. Thus, the development and validation of 
effective detection and prognostic biomarkers are essential for 
improving early diagnosis and survival rates for patients (4).

Recent studies have highlighted the crucial role of epigenetic 
modifications in the development and progression of OC (5-
8). Epigenetic changes, particularly DNA methylation, are 
emerging as promising non-invasive biomarkers for the early 
detection and monitoring of OC. DNA methylation, which 
involves addition of methyl groups to DNA promoter regions, 
regulates gene expression and is mediated by a complex 
network of enzymes, co-factors, and regulatory proteins 
(9). Tumor cells often exhibit abnormal DNA methylation at 
the promoters of tumor-suppressor genes and oncogenes, 
disrupting key biological processes such as cell proliferation, 
cell cycle regulation, and apoptosis (9, 10). This disruption 
is associated with the development and metastasis of OC. In 
parallel, liquid biopsy has emerged as a promising approach 
in oncology, enabling non-invasive detection of tumor-
derived material from various bodily fluids (11, 12). Cell-free 
DNA (cfDNA) holds particular significance among the analytes 
examined, as its aberrant DNA methylation profiles mirror 
tumorigenesis and cancer progression (13). Despite the 
challenges associated with low levels of methylated cfDNA, 
cfDNA methylation analysis shows potential as a biomarker for 
the diagnose and treatment of ovarian cancer (2, 14).

We investigated the epigenetic landscape of OC by analyzing 
DNA methylation patterns in cfDNA from plasma samples 
of OC patients and healthy blood donors (HBDs). We used 
methylated DNA immunoprecipitation (MeDIP) followed by 
next-generation sequencing (NGS) to identify differentially 
methylated regions (DMRs) and genes (DMGs). Additionally, 
we integrated our findings with differentially expressed genes 
(DEGs) from The Cancer Genome Atlas (TCGA) dataset to identify 
genes with concurrent methylation and expression changes, 
thereby providing a more comprehensive understanding of 
the epigenetic regulation in OC.

The present study underscores the intricate relationship 
between DNA methylation alterations and gene expression 
dysregulation in OC. Our findings contribute to the growing 
body of knowledge regarding the epigenetic mechanisms 
driving OC and highlight potential biomarkers and therapeutic 
targets for improving patient outcomes. 

MATERIALS AND METHODS 

Sample Collection

To identify DMRs in cfDNA from OC patients compared with 
healthy individuals, we utilized samples from 5 OC patients and 

5 HBDs. The clinical and demographic characteristics of the 
patient samples involved in this study are presented in Table 
1. Blood samples were obtained from serous adenocarcinoma 
from OC patients prior to surgery, who had not received any 
treatment. In the control group called HBDs, individuals with no 
history of cancer and without other diseases, such as diabetes, 
endometriosis, or hypertension, were included. 

Peripheral blood samples were collected in 10 mL EDTA tubes 
from individuals meeting the inclusion and exclusion criteria 
of the study. Using the cold chain method, these samples were 
transported to the Molecular Biology and Genetics Department 
of Istanbul University within 4 h. Samples were centrifuged at 
600 g for 10 min at 4°C, followed by a second centrifugation 
at 14.000 g for 10 min at 4°C. Plasma was transferred to 1.5 
mL cryotubes and stored at -80°C until cfDNA isolation. This 
study was approved in 2020 by Istanbul University, Istanbul 
Faculty of Medicine Clinical Research Ethics Committee under 
file number 1451. All participants provided voluntary informed 
consent by completing the consent forms after receiving 
detailed information.

Table 1. Clinical and demographic characteristics of OC 
samples

Characteristics OC (n=5)

Age Mean (Range) 54.4 (35-75)

CA125 Mean (Range) 859 (62-1754)

Types  

Primer Serous 5

FIGO Stage  

Stage 3A 1

Stage 3C 4

Recurrence  

Yes 0

No 3

Unknown 2

Lymphatic Invasion  

Yes 4

No 0

Unknown 1

Family History

Yes 1

No 3

Unknown 1
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Table 2. Summary of identified DMRs

DMR ID Name Chromosome Start End
Log2 Fold 
Change

p value

DMR1 PDZD7 chr10 1.03E+08 1.03E+08 4.047 0.0485

DMR2 snoU13 chr11 1.23E+08 1.23E+08 4.360 0.0492

DMR3 PRDM11 chr11 45114563 45116563 3.875 0.0405

DMR4 AX747537 chr11 880475 882475 3.495 0.0444

DMR5 NOX4 chr11 89056521 89058521 4.819 0.0156

DMR6 7SK chr12 1.15E+08 1.15E+08 5.546 0.0062

DMR7 CAPRIN2 chr12 30880312 30882312 4.010 0.0493

DMR8 ATN1 chr12 7036479 7038479 4.820 0.0126

DMR9 POU5F1P3 chr12 8285945 8287945 6.275 0.0021

DMR10 ZFHX2 chr14 23989063 23991063 3.796 0.0225

DMR11 KIAA0586 chr14 58905398 58907398 5.229 0.0041

DMR12 PPCDC chr15 75314926 75316926 6.473 0.0018

DMR13 ZNF774 chr15 90894476 90896476 3.443 0.0487

DMR14 MCTP2 chr15 94840429 94842429 4.333 0.0191

DMR15 NR2F2 chr15 96873110 96875110 4.493 0.0234

DMR16 DQ585716 chr15 97323965 97325965 4.530 0.0141

DMR17 TEKT5 chr16 10720360 10722360 4.247 0.0236

DMR18 TMC5 chr16 19428017 19430017 4.174 0.0127

DMR19 DYNC1LI2 chr16 66753798 66755798 4.443 0.0279

DMR20 BX537921 chr16 8739037 8741037 8.220 0.0001

DMR21 RP11-744K17.9 chr17 21903061 21905061 2.733 0.0359

DMR22 LYRM9 chr17 26204339 26206339 4.942 0.0234

DMR23 RP11-647F2.2 chr17 72298777 72300777 5.677 0.0101

DMR24 SECTM1 chr17 80277899 80279899 3.640 0.0359

DMR25 MC5R chr18 13824542 13826542 -5.334 0.0160

DMR26 PRDX2 chr19 12906633 12908633 4.601 0.0229

DMR27 NOTCH3 chr19 15287335 15289335 3.812 0.0473

DMR28 B3GNT3 chr19 17904918 17906918 4.022 0.0389

DMR29 LINC01224 chr19 23581035 23583035 4.373 0.0292

DMR30 PRODH2 chr19 36289891 36291891 4.090 0.0339

DMR31 CCER2 chr19 39398619 39400619 4.632 0.0209

DMR32 ZNF574 chr19 42571628 42573628 4.469 0.0262

DMR33 PTGIR chr19 47122724 47124724 3.825 0.0445
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DMR34 ZNF358 chr19 7583128 7585128 3.674 0.0349

DMR35 FMO5 chr1 1.47E+08 1.47E+08 4.349 0.0320

DMR36 S100A16 chr1 1.54E+08 1.54E+08 3.405 0.0481

DMR37 RP11-144L1.4 chr1 1.58E+08 1.58E+08 3.953 0.0374

DMR38 TRNA_Gly chr1 17052779 17054779 3.877 0.0118

DMR39 TAS1R2 chr1 19165092 19167092 4.081 0.0454

DMR40 FCAMR chr1 2.07E+08 2.07E+08 4.695 0.0187

DMR41 TRNA_Glu chr1 2.49E+08 2.49E+08 4.613 0.0366

DMR42 LRP8 chr1 53715361 53717361 4.423 0.0149

DMR43 ZBTB46-AS1 chr20 62438441 62440441 4.134 0.0291

DMR44 LINC01548 chr21 34536775 34538775 5.074 0.0047

DMR45 CCDC74B-AS1 chr2 1.31E+08 1.31E+08 3.800 0.0286

DMR46 LRP1B chr2 1.42E+08 1.42E+08 4.373 0.0292

DMR47 CD28 chr2 2.05E+08 2.05E+08 3.848 0.0443

DMR48 CXCR2P1 chr2 2.19E+08 2.19E+08 4.560 0.0391

DMR49 CCDC88A chr2 55560229 55562229 4.529 0.0260

DMR50 LINC02049 chr3 1.21E+08 1.21E+08 4.815 0.0075

DMR51 FBXL21 chr5 1.35E+08 1.35E+08 4.745 0.0147

DMR52 RN7SL295P chr5 1.6E+08 1.6E+08 5.323 0.0079

DMR53 WWC1 chr5 1.68E+08 1.68E+08 3.975 0.0385

DMR54 UIMC1 chr5 1.76E+08 1.76E+08 4.694 0.0191

DMR55 AX747985 chr5 1.79E+08 1.79E+08 4.473 0.0109

DMR56 MIR340 chr5 1.79E+08 1.79E+08 4.629 0.0077

DMR57 TRNA_Ser chr6 27508553 27510553 4.376 0.0236

DMR58 MIR4641 chr6 41565460 41567460 4.838 0.0074

DMR59 EXOC4 chr7 1.34E+08 1.34E+08 5.972 0.0066

DMR60 SPDYE1 chr7 44039488 44041488 4.853 0.0076

DMR61 RNU6-229P chr7 68865187 68867187 4.499 0.0413

DMR62 TG chr8 1.34E+08 1.34E+08 4.594 0.0110

DMR63 RP11-115J16.1 chr8 9181560 9183560 4.215 0.0318

DMR64 MIR3134 chr9 1.15E+08 1.15E+08 -5.190 0.0205

Summary of 64 statistically significant DMRs identified using the h19 reference genome. Each DMR was assigned a unique DMR 
ID ranging from 1 to 64. DMRs were identified based on their chromosomal locations, represented by the “Chromosome”, “Start”, 
and “End” columns. The statistical significance of each DMR is indicated by the calculated p value and log2 fold change, which 
were computed using the DESeq2 methodology. DMR: Differentially methylated region.
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Table 3. Genes with overlapping methylation and expression patterns in OC

Overlapped DMG-DEG
CfMEDIP
DMG

TCGA
DEG

Symbol Name Called
Fold 
Change

p value
Fold 
Change

p value

PRDM11 PR/SET domain 11
Hyper-
Down

3.874 0.0493 -1.081 8.04E-31

CAPRIN2 C family member 2
Hyper-
Down

4.009 0.0126 -2.246 8.97E-96

ATN1 Atropine 1
Hyper-
Down

4.820 0.0020 -1.111 5.79E-24

POU5F1P3 
POU class 5 homeobox 1 
pseudogene 3

Hyper-
Down

6.275 0.0234 -1.438 1.25E-179

NR2F2 
Nuclear receptor subfamily 2 
group F member 2

Hyper-
Down

4.492 0.0126 -3.255 2.59E-106

TMC5 Transmembrane channel like 5
Hyper-
Up

4.174 0.0278 1.38 2.33E-31

DYNC1LI2 
Dynein cytoplasmic 1 light 
intermediate chain 2

Hyper-
Down

4.442 0.0233 -1.598 9.79E-46

LYRM9 YR motif containing 9
Hyper-
Down

4.941 0.0358 -2.219 1.39E-98

SECTM1 
Secreted and transmembrane 
protein 1

Hyper-
Up

3.639 0.0472 1.837 2.44E-19

NOTCH3 Notch receptor 3
Hyper-
Up

3.812 0.0389 1.407 1.51E-13

B3GNT3 
Beta-1,3-N-
acetylglucosaminyltransferase 3

Hyper-
Up

4.021 0.02912 3.373 6.70E-66

LINC01224 
Long intergenic non-protein-
coding RNA 1224

Hyper-
Up

4.373 0.03203 2.348 6.18E-72

FMO5 
Flavin containing 
monooxygenase 5

Hyper-
Down

4.349 0.04812 -1.071 3.61E-59

S100A16 S100 calcium binding protein A16
Hyper-
Up

3.404 0.01485 1.236 3.16E-17

LRP8 LDL receptor-related protein 8
Hyper-
Up

4.423 0.02604 1.594 4.91E-34

CCDC88A 
Coiled-coil domain containing 
88A

Hyper-
Down

4.528 0.03853 -1.23 3.43E-35

WWC1 WW and C2 domain containing 1
Hyper-
Up

3.974 0.01912 4.036 7.61E-154

UIMC1 
Ubiquitin interaction motif 
containing 1

Hyper-
Down

4.693 0.02923 -1.982 3.34E-134

Log2 Fold Change (Log2FC) values represent differences in DNA methylation (cfMEDIP) and gene expression (TCGA mRNA) 
between OC and HBD. Positive Log2FC values denote hypermethylation in cfMEDIP and upregulation in gene expression. 
Conversely, negative Log2FC values indicate hypomethylation in cfMEDIP and downregulation in gene expression. Hyper-up 
genes refer to those exhibiting a positive correlation between hypermethylation and upregulation, whereas hyper-down genes 
denote a distinct pattern in which hypermethylation is linked with downregulation. DMG: Differentially methylated gene; DEG: 
Differentially expressed gene; OC: Ovarian cancer; HBD: Healthy blood donor.
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Isolation of cfDNA

For cfDNA isolation, frozen plasma samples were thawed 
at room temperature, which can cause the presence of 
cryoprecipitates. To eliminate these substances, plasma 
samples were centrifuged at 16.000 g for 5 min at 4°C, and the 
supernatant was carefully transferred to a new tube, avoiding 
the pellet. This supernatant was then used for cfDNA isolation 
following the recommended protocol for 4 mL of plasma 
outlined in the QIAamp® Circulating Nucleic Acid Kit (Qiagen, 
Catalogue No: 55114, Hilden, Germany). The concentration of 
isolated cfDNA was measured using a Qubit dsDNA HS Assay 
Kit (Thermo Fisher Scientific, Catalogue No: Q32851, Waltham, 
MA, USA) and a Qubit fluorometer (Thermo Fisher Scientific, 
Waltham, MA, USA). The quality and fragment size distribution 
of cfDNA were assessed using an Agilent High Sensitivity DNA 
Reagent Kit (Agilent Technologies, Catalogue No: 5067-4626, 
Santa Clara, CA, USA) and an Agilent Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, USA). Specifically, to ensure 
the integrity of our cfDNA samples, we performed quality 
control using an Agilent Bioanalyzer after the final library 
amplification. This assessment confirmed that the final libraries 
contained only cfDNA fragments with no detectable genomic 
DNA contamination, thereby validating the effectiveness of our 
purification process and the high purity of the cfDNA used in 
our study.

Circulating Cell-Free Methylated DNA 
Immunoprecipitation

Filler DNA was prepared according to established procedures. 
A pool of six PCR amplicons, each differ in size and CpG 
density (1CpG, 5CpG, 10CpG, 15CpG, 20LCpG, and 20SCpG), 
as originally described by Taiwo et al., were generated (15). 

Among these, fragments of 1CpG, 5CpGs, 10CpGs, 15CpGs, 
and 20LCpGs were methylated in vitro, whereas the 20SCpG 
fragment remained unmethylated. A 50:50 ratio of methylated 
to unmethylated DNA was utilized in the filler DNA mixture, 
consistent with previous studies. The library preparation 
protocol using the Kapa Hyper Prep Kit (Roche, Catalogue 
No: KK8504, Basel, Switzerland) was followed. Briefly, library 
preparation involves three primary stages: end repair and 
adenylation, adaptor ligation and purification, and final library 
amplification. The initial phase of end repair and adenylation 
was performed according to the protocol. To ensure 
consistency, the initial cfDNA input for library preparation 
was standardized at 10 ng per sample. The NEBNext Multiplex 
Oligos (New England Biolabs, Catalogue No: E7335S, Ipswich, 
MA, USA) adaptors were customized according to the initial 
cfDNA concentration and the recommended minimum 100:1 
adaptor/insert ratio using the Kapa Hyper Prep Kit. After 
adaptor ligation, purification was conducted employing 
AMPure XP beads (Beckman Coulter, Catalogue No: A63881, 
Brea, CA, USA) by the protocol. Before the immunoprecipitation 
method, the pool DNA amount (comprising adaptor-ligated 
cfDNA and filler DNA) was adjusted to 100 ng for all samples, 
with the initial amount of adaptor-ligated cfDNA set at 10 ng 
for each sample and the remaining 90 ng supplemented with 
previously prepared and quantified filler DNA fragments. The 
5-mC monoclonal antibody was diluted 1:15 and added to the 
samples. The immunoprecipitation was carried out following 
the MagMeDIP Kit (Diagenode, Catalogue No: C02010021, 
Seraing, Belgium) protocol with pooled cell-free DNA (cfDNA) 
with lambda DNA and spike-in DNA. Magnetic bead-based 
washing procedure was executed to expunge non-specifically 
bound DNA fragments, followed by incubation at 17°C for 4 h. 
The final libraries were indexed using the NEB index primer set 
1 (New England Biolabs, Catalogue No: E7335L, Ipswich, MA, 
USA) to label individual samples.

Next-Generation Sequencing

The final libraries from all samples were combined in equimolar 
concentrations to create a pooled library, which was diluted to 
4 nM and sequenced using paired-end reads of 150 bp. Library 
quantification, dilution, and loading were performed according 
to the manufacturer’s instructions. NGS was performed using 
the Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, 
USA). 

Bioinformatics Analysis

Raw sequencing data from cfMeDIP-seq underwent adapter 
trimming, low-quality base removal, and filtering using 
Trimmomatic. Raw sequencing data were normalized using 
DESeq2 normalization and Methylation Z-score normalization. 
DESeq2 normalizes raw read counts based on gene length 
and calculates size factors, which are the median ratios of 
observed read counts to geometric mean counts across all 
genes. Normalized read counts were obtained by dividing 
raw counts by these size factors, adjusting for sequencing 

Figure 1. Categorization of DMRs and DMGs.
This figure presents a bar plot illustrating the categorization 
of DMRs and DMGs based on methylation status. The 
bars are color-coded, with hypermethylated regions in 
red and hypomethylated regions in blue. In addition, a 
black line represents the total number of DMRs and DMGs. 
DMR: Differentially methylated region; DMG: Differentially 
methylated gene.
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depth, and enabling fair comparisons between samples. 
Normalized data were aligned to the human reference 
genome (hg19) using Burrows-Wheeler alignment. DMRs 
and methylation levels in DMRs relative to the HBDs were 
determined using DESeq2. Z-score normalization was applied 
to DESEQ2 normalized data. The method transforms data 
to have a mean of zero and a standard deviation of one by 
comparing relative methylation patterns across samples. For 
each gene, the mean and standard deviation of normalized 
counts across all samples were calculated, and each count 

was adjusted by subtracting the mean and dividing by the 
standard deviation. The analysis focused on 2-kilobase regions 
around transcription start sites and considered only autosomal 
chromosomes. The regions without raw data in more than 75% 
of the samples were excluded. Statistical evaluation of the 
results involved calculating p values and adjusted p values (q 
values) using the Benjamini-Hochberg correction in DESeq2. 
DMRs with a calculated p<0.05 were considered significant. 
The GEPIA2 website (http://gepia2.cancer-pku.cn/#index) was 
used to obtain a list of differentially expressed genes. Analysis 

Figure 2. Genomic distribution of DMRs. 
This figure presents a chromosome ideogram plot showing the genomic positions of all 64 identified DMRs across the chromosomes. 
Each DMR is indicated by a red marker along the chromosome, providing insight into the genomic distribution of DNA methylation 
alterations associated with OC. DMR: Differentially methylated region; OC: Ovarian cancer; chr: Chromosome.
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was performed using the LIMMA method, similar to DESeq2, 
but was designed for low-density data sets like microarray 
data. Only genes with a p<0.05 were considered significant. 
To determine the correlation between DMG and DEG levels, 
Spearman’s correlation analysis was performed. 

To conduct the survival analysis, we used GEPIA2, which evaluates 
the relationship between gene expression levels and patient 
survival based on TCGA data (https://portal.gdc.cancer.gov/). 
GEPIA2 employs log-rank tests and Cox proportional hazard 
models to analyze survival outcomes and create survival curves. 
We analyzed gene expression data from 424 ovarian cancer 
samples provided by TCGA. The data cover sample collection 
periods from 1992 to 2014, with survival times ranging from 0 to 
180 months, as shown in the survival plots.

Moreover, we assessed the diagnostic potential of 64 DMGs 
and 18 specific DMG-DEGs by performing Principal Component 
Analysis (PCA) using GEPIA2. PCA is a statistical technique that 
simplifies complex datasets by reducing their dimensionality 
while emphasizing significant patterns. It identifies principal 
components, which are the directions of greatest variance in 
the data. By representing the dataset as a linear combination 
of these components, PCA facilitates the visualization and 
interpretation of the distinctions between OC tumor and 
normal ovarian tissues. This analysis utilized transcriptomic 
data from TCGA ovarian cancer samples to evaluate the efficacy 
of these DMGs can differentiate between tumor and normal 
ovary tissue.

Statistical Analyses and Visualization

Visualization of methylation and gene expression profiles was 
conducted using online tools (https://www.bioinformatics.
com.cn/en, http://www.heatmapper.ca/ and http://cancer-
pku.cn/). The relationship between methylation level changes 
in DMRs and expression levels of genes in these regions was 
analyzed using the nonparametric Spearman correlation test.

RESULTS 

In this study, we identified and analyzed DMRs in cfDNA from 
OC patients compared with HBDs, focusing on elucidating the 
epigenetic alterations associated with OC. Furthermore, we 
assessed the effects of DMRs on methylated gene expression 
using data from TCGA.

Epigenetic Shifts in Ovarian Cancer: Revealing 
Methylation Dynamics

The cfMeDIP-seq bioinformatics analysis demonstrated that 
the total number of unique reads for all samples ranged from 
5 million to 15 million. This coverage depth is considered 
sufficient for robust differential analysis using DESeq2. Analysis 
of cfDNA from OC patients revealed substantial alterations in 
DNA methylation patterns. A total of 811 DMRs between OC 
and HBDs were identified, indicating epigenetic dysregulation 
associated with OC. Among these DMRs, 554 regions 

exhibited hypermethylation, whereas 257 regions showed 
hypomethylation in the OC group compared with the controls. 
Further refinement of the analysis at a significance threshold 
of p<0.05 yielded 64 DMRs (Table 2), with 62 hypermethylated 
and 2 hypomethylated regions meeting this criterion (Figure 
1). We observed that all statistically significant DMRs (p<0.05) 
are in distinct genes across the genome (Figure 2). Only 3% of 
the DMRs were identified as hypomethylated, whereas 97% of 
the significant DMRs were hypermethylated (Figure 3). 

Characterizing Epigenetic Patterns of Ovarian 
Cancer

In our exploration of the epigenetic signature in ovarian cancer, 
we calculated the methylation Z-score for each DMR (p<0.05) 
across all samples. This allowed us to quantitatively assess 
the methylation status of each DMR relative to the overall 
methylation pattern in the dataset. Subsequently, visualization 
of these methylation patterns using a heatmap provided a 
comprehensive overview of the methylation profiles across 
samples and DMRs. Hierarchical cluster analysis employing 
the average linkage method and Spearman rank correlation 
metrics revealed distinct patterns of methylation similarity 
or dissimilarity between samples and DMRs (Figure 4). These 

Figure 3. Volcano plot analysis of the DMRs. 
This figure displays a volcano plot depicting the statistical 
significance (p value) and fold change (log2foldchange) of 
DMRs. DMRs meeting the significance criterion (p<0.05) and 
exhibiting a fold change greater than -1 or less than 1 are 
highlighted. Hypermethylated and hypomethylated DMRs 
are represented by red and blue dots, respectively. DMR: 
Differentially methylated region; OC: Ovarian cancer; HBD: 
Healthy blood donor.

https://www.bioinformatics.com.cn/en
https://www.bioinformatics.com.cn/en
http://www.heatmapper.ca/
http://cancer-pku.cn/
http://cancer-pku.cn/
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results provided insights into sample clustering based on 
epigenetic signatures. As a result, a detailed examination of the 
clusters in the heatmap revealed a clear and strong correlation 
within the HBD group, as evidenced by the very short vertical 
cluster arms on the right side. Additionally, the OC samples 
were distinctly separated, with a strong correlation among the 
three OC samples observed on the left side. 

Integrative Analysis of DMGs and DEGs in OC

To explore the functional implications of the identified DMRs, 
we investigated the differentially expressed genes in OC from 
TCGA data using the GEPIA2 database. We identified 7641 DEGs 
in TCGA OC tissue samples compared to normal ovarian tissue 
from genotype-tissue expression (GTEx). We compared our 
DMGs from cfMEDIP with these DEGs from GEPIA2. This analysis 
identified 18 genes with overlapping differential methylation 
and expression patterns in ovarian cancer (Table 3).

Our correlation analysis, employing Spearman’s rank 
correlation, assessed the relationship between methylation 
status of DMGs and expression level of DEGs in OC samples. 
A p<0.05 was applied to determine statistical significance. The 
analysis revealed two distinct correlation patterns. Ten genes 
exhibited a negative correlation between hypermethylation 

and gene downregulation, indicating a hypermethylation-
downregulation relationship. These genes include PRDM11, 
CAPRIN2, ATN1, POU5F1P3, NR2F2, DYNC1LI2, LYRM9, FMO5, 
CCDC88A, and UIMC1. In contrast, eight genes exhibited a 
positive correlation between hypermethylation and gene 
upregulation, representing a hypermethylation-upregulation 
relationship. These genes were TMC5, SECTM1, NOTCH3, 
B3GNT3, LINC01224, S100A16, LRP8, and WWC1 (Figure 5).

Survival analysis was performed to evaluate the prognostic 
significance of these 18 overlapping genes. Among them, 
B3GNT3, a hyper-up gene, demonstrated a significant 
association with overall survival. Additionally, we explored 
the role of two DMGs identified as cancer driver genes in the 
COSMIC database. Although the expression of one of these 
genes, LRP1B, was not statistically significant when compared 
with normal tissues in the OC TCGA dataset, it approached 
statistical significance for overall survival (p=0.053) and was 
associated with decreased gene expression (Figure 6). 

Principal Component Analysis Reveals Distinct 
Clusters

To further investigate all DMGs and overlapped DMG-DEG, we 
performed a PCA using GEPIA2. For the first PCA, we used 64 

Figure 4. Heatmap of DNA methylation signatures. 
Heatmap showing the methylation status of DMRs in OC samples relative to HBDs. Methylation levels are represented on a scale from 
-2 to 2, with hypermethylation displayed in red and hypomethylation displayed in blue. Using hierarchical cluster analysis with the 
average linkage method and Spearman rank correlation metrics, the heatmap highlights distinct patterns of methylation alterations 
in OC and HBDs. OC: Ovarian cancer; HBD: Healthy blood donor; DMR ID: Differentially methylated region identifier.
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DMGs identified in our cfMEDIP analysis. However, only 51 of 
the DMGs were recognized in the GEPIA2 database. We refined 
our analysis by focusing on 18 DMGs that overlapped with DEGs 
identified in GEPIA2, and included 2 additional DMGs from the 
COSMIC database (LRP1B and CD28), resulting in a total of 20 
DMGs for the second PCA  (Figure 7). In the first PCA analysis, 
PC1, PC2, and PC3 explained 54%, 9%, and 4% of the variance, 
respectively. In the second PCA analysis, similar patterns were 
observed for PC1 (42%), PC2 (18%), and PC3 (8%). 

DISCUSSION

Our study provides a comprehensive analysis of DNA 
methylation alterations in OC by examining cfDNA in plasma 
samples. By comparing the methylation patterns between 
OC patients and HBDs, we identified significant epigenetic 
changes that highlight the potential role of DNA methylation 
in OC pathogenesis. Using cfDNA isolated from 5 OC patients 
and 5 HBDs for cfMEDIP-Seq, bioinformatics analysis identified 
differentially methylated regions (DMRs), revealing significant 
methylation alterations predominantly in OC samples. 
Hierarchical clustering and heatmap visualization highlighted 
distinct methylation patterns in OC and HBDs. Integration with 

TCGA data identified 18 genes with overlapping methylation 
and expression changes, with B3GNT3 emerging as a potential 
prognostic marker. Additionally, LRP1B and CD28 were 
identified as cancer driver genes in the COSMIC database. 
These findings underscore the importance of DNA methylation 
in OC and suggest novel diagnostic and therapeutic strategies.

Our results revealed significant alterations in DNA 
methylation patterns between OC patients and HBDs, with 
62 hypermethylated and 2 hypomethylated DMRs identified. 
The predominance of hypermethylation events aligns with 
the established notion that tumor suppressor genes are 
often silenced by promoter hypermethylation in cancer (16). 
This silencing can disrupt normal cellular functions, such as 
cell cycle regulation, apoptosis, and DNA repair, contributing 
to tumorigenesis (17, 18). The notable predominance of 
hypermethylated DMRs suggests the potential concerted 
efforts of cancer cells to silence tumor suppressor genes and 
activate oncogenes; however, caution is advised in interpreting 
this bias due to technical constraints. These findings underscore 
the complexity of DNA methylation alterations in ovarian 
cancer and provide a foundation for further exploration of their 
functional implications in disease progression and diagnosis. 
The distinguish ability of the identified 64 DMGs between 
OC patients and the HBDs  was assessed using Methylation 
Z-scores obtained from methylation datasets. Heatmap analysis 
provides valuable insights into how OC and HBDs  are clustered 
based on their epigenetic patterns. Further investigation into 
the biological implications of these methylation patterns and 
their association with clinical outcomes in ovarian cancer is 
warranted.

Our integrative analysis using TCGA dataset revealed 18 genes 
exhibiting both differential methylation and expression in 
OC. The majority of these genes demonstrated a negative 
correlation between methylation and expression levels, 
consistent with the epigenetic regulation model in which 
promoter hypermethylation leads to gene silencing. Notably, 
we identified a subset of ten “hyper-down genes” where 
hypermethylation correlated with downregulation, supporting 
their potential role as tumor suppressor genes. Conversely, 
the remaining eight genes exhibited hypermethylation 
upregulation patterns, which may indicate complex regulatory 
mechanisms or context-dependent roles in OC (19). 

PCA analysis, which was conducted using both the 64 DMGs 
and the 20 DMGs overlapping with DEGs or driver gene lists, 
demonstrated a clear separation between OC samples and 
normal samples. The OC samples formed distinct clusters in 
the PCA plots, highlighting significant differences in the DMG-
DEG expression profiles. The observed separation underscores 
the robustness of the identified DMRs and their potential role 
in differentiating between ovarian cancer and normal ovarian 
tissue.

Among the DMGs analyzed, B3GNT3 and LRP1B emerged as 
particularly notable. B3GNT3 was identified as significant in 

Figure 5. Correlation analysis between DNA methylation and 
gene expression.
The results of Spearman correlation analysis examining the 
relationship between levels of DNA methylation and gene 
expression in OC samples versus HBD. Each data point in 
the scatter plot represents a gene, with the x-axis indicating 
the DMG and the y-axis representing the DEG expression 
level. The negative correlation between DMG and DEG levels 
is indicated by a downward trend in the scatter plot. The 
statistical significance of the correlation was assessed using the 
p value, with values below 0.05 considered significant. DMG: 
Differentially methylated gene; DEG: Differentially expressed 
gene; OC: Ovarian cancer; HBD: Healthy blood donor.
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Figure 6. Expression and survival analyses of the B3GNT3 and LRP1B Genes in TCGA.
This figure presents the results of gene expression analysis (left) and survival analysis (right) conducted to assess the expression levels 
and prognostic significance of two genes, B3GNT3 (top) and LRP1B (bottom), in OC. The left panel displays the gene expression levels 
of B3GNT3 and LRP1B in OC samples compared with the normal ovarian tissue samples. Expression levels are depicted on the y-axis, 
with compared groups (legend indicates) on the x-axis. The right panel illustrates the survival analysis results for B3GNT3 and LRP1B 
in ovarian cancer patients. Kaplan-Meier survival curves depict the overall survival probability over time for patients with high and low 
expression levels of B3GNT3 and LRP1B. TCGA: The Cancer Genome Atlas; OC: Ovarian cancer.
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survival analysis, highlighting its potential as a prognostic 

marker. LRP1B, while nearly significant with a p value close to 

the threshold, is recognized for its role as a cancer driver gene. 

We focused on these two genes because of their relevance 

to survival outcomes, as they exhibited more pronounced 

associations than other DMGs. However, we acknowledge that 

other identified genes may have diagnostic value and warrant 

further investigation.

B3GNT3 is a glycosyltransferase enzyme involved in the 
glycosylation of proteins, including programmed death-
ligand 1 (PD-L1), which plays a role in tumor immune 
evasion. In certain cancers, the upregulation of B3GNT3 can 
enhance the glycosylation and stability of PD-L1, contributing 
to tumor progression by helping tumor cells evade the 
immune response (20, 21). Moreover, upregulated B3GNT3 in 
gynecologic cancers correlates with diagnosis, poor prognosis, 
immune infiltration, and NF-κB signaling activation, suggesting 
its role as a carcinogenic factor in these cancers (22). In this 
study, B3GNT3 was identified as a hyper-upregulated gene. 
Its hypermethylation was paradoxically associated with 
its upregulation and poor survival outcomes, suggesting 
a potential oncogenic role. This finding is particularly 
intriguing because it contradicts the typical model in which 
hypermethylation leads to gene silencing. Instead, it indicates 
that B3GNT3 may be activated through alternative regulatory 
mechanisms in OC.

In contrast, LRP1B was identified as a tumor suppressor gene 
with hypermethylation correlated with its downregulation. 
Previous studies have implicated LRP1B in various cancers, where 
its loss of function is associated with increased tumorigenicity 
and metastasis (23, 24). Our results corroborate these findings 
and highlight the potential of LRP1B as a therapeutic target. 
Restoring LRP1B function through demethylating agents or 
other epigenetic therapies could offer a novel approach for OC 
treatment.

It is important to acknowledge the limitations of our study, 
including its relatively small sample size and the need for 
validation in independent cohorts. Additionally, translating 
epigenetic findings into clinical practice poses challenges 
related to standardization of methodologies and integration 
into existing diagnostic and prognostic frameworks. 
Addressing these challenges is crucial for realizing the full 
potential of epigenetic markers in the management of ovarian 
cancer. Despite these challenges, our findings provide valuable 
insights into the epigenetic landscape of ovarian cancer and 
pave the way for further research into personalized therapeutic 
interventions targeting aberrant DNA methylation.
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Figure 7. PCA of DMR Signature in TCGA data.
 3D PCA plot of the distribution of OC and normal ovarian 
tissue samples based on DMR signature. The axes of the plot 
represent the three principal components (PC1, PC2, and PC3), 
with PCA-1 depicted at the top and PCA-2 at the bottom, 
capturing the highest variance in the data. In the first PCA, 64 
DMGs identified in the cfMEDIP analysis were utilized, while 
in the second PCA, a refined set of 20 DMGs, including 18 
overlapping DEGs identified in GEPIA2 and 2 additional DMGs 
from the COSMIC database (LRP1B and CD28), were included. 
The color legend indicates OC and normal ovarian tissue.
PCA: Principal component analysis; DMR: Differentially 
methylated region; DMG: Differentially methylated gene; 
DEG: Differentially expressed gene; OC: Ovarian cancer; TCGA: 
The Cancer Genome Atlas; COSMIC: Catalogue of somatic 
mutations in cancer.



173

Experimed 2024; 14(3): 161-173
 Senturk Kirmizitas et al.
Epigenetic Signature in Ovarian Cancer

Conflict of Interest: The authors declare no conflict of interest.

Financial Disclosure: This study was supported by the 
Scientific Research Projects Coordination Unit of Istanbul 
University, project number 36308. 

REFERENCES

1.	 Feng J, Xu L, Chen Y, Lin R, Li H, He H. Trends in incidence and 
mortality for ovarian cancer in China from 1990 to 2019 and its 
forecasted levels in 30 years. J Ovarian Res 2023; 16(1): 139.

2.	 Balla A, Bhak J, Biró O. The application of circulating tumor cell and 
cell-free DNA liquid biopsies in ovarian cancer. Mol Cell Probes 
2022; 66: 101871.

3.	 Hinchcliff E, Westin SN, Herzog TJ. State of the science: 
contemporary front-line treatment of advanced ovarian cancer. 
Gynecol Oncol 2022; 166(1): 18-24.

4.	 Roque R, Ribeiro IP, Figueiredo-Dias M, Gourley C, Carreira 
IM. Current applications and challenges of next-generation 
sequencing in plasma circulating tumor DNA of ovarian cancer. 
Biology 2024; 13(2): 88.

5.	 Giannopoulou L, Mastoraki S, Buderath P, Strati A, Pavlakis K, 
Kasimir-Bauer S, et al. ESR1 methylation in primary tumors and 
paired circulating tumor DNA of patients with high-grade serous 
ovarian cancer. Gynecol Oncol 2018; 150(2): 355-60.

6.	 Lu H, Liu Y, Wang J, Fu S, Wang L, Huang C, et al. Detection of 
ovarian cancer using plasma cell-free DNA methylomes. Clin 
Epigenetics 2022; 14(1): 74.

7.	 Margolin G, Petrykowska HM, Athamanolap P, Goncearenco A, 
Osei-Tutu A, Annunziata CM, et al. Leveraging locus-specific 
epigenetic heterogeneity to improve the performance of blood-
based DNA methylation biomarkers. Clin Epigenetics 2020; 12: 
154.

8.	 Marinelli LM, Kisiel JB, Slettedahl SW, Mahoney DW, Lemens MA, 
Shridhar V, et al. Methylated DNA markers for plasma detection 
of ovarian cancer: discovery, validation, and clinical feasibility. 
Gynecol Oncol 2022; 165(3): 568-76.

9.	 Peng S, Zhang X, Wu Y. Potential applications of DNA methylation 
testing technology in female tumors and screening methods. 
Biochim Biophys Acta Rev Cancer 2023; 1878(5): 188941. 

10.	 Papanicolau-Sengos A, Aldape K. DNA methylation profiling: an 
emerging paradigm for cancer diagnosis. Annu Rev Pathol 2022; 
17: 295-321.

11.	 Asante D-B, Calapre L, Ziman M, Meniawy TM, Gray ES. Liquid 
biopsy in ovarian cancer using circulating tumor DNA and cells: 
ready for prime time? Cancer Lett 2020; 468: 59-71.

12.	 Govindarajan M, Wohlmuth C, Waas M, Bernardini MQ, Kislinger 
T. High-throughput approaches for precision medicine in high-
grade serous ovarian cancer. J Hematol Oncol 2020; 13: 1-20.

13.	 Sánchez-Herrero E, Serna-Blasco R, Robado de Lope L, González-
Rumayor V, Romero A, Provencio M. Circulating tumor DNA as a 
cancer biomarker: an overview of biological features and factors 
that may impact on ctDNA analysis. Front Oncol 2022; 12: 943253.

14.	 Li Y, Fan Z, Meng Y, Liu S, Zhan H. Blood-based DNA methylation 
signatures in cancer: a systematic review. Biochim Biophys Acta 
Mol Basis Dis 2023; 1869(1): 166583.

15.	 Taiwo O, Wilson GA, Morris T, Seisenberger S, Reik W, Pearce 
D, et al. Methylome analysis using MeDIP-seq with low DNA 
concentrations. Nat Protoc 2012; 7(4): 617-36.

16.	 Geissler F, Nesic K, Kondrashova O, Dobrovic A, Swisher EM, 
Scott CL, et al. The role of aberrant DNA methylation in cancer 
initiation and clinical impacts. Ther Adv Med Oncol 2024; 16: 
17588359231220511.

17.	 Chen YC, Elnitski L. Aberrant DNA methylation defines isoform 
usage in cancer, with functional implications. PLoS Comput Biol 
2019; 15(7): e1007095.

18.	 Rini BI, Zhang J, Hall O, Bergener J, Wang Y, Brown B, et al. 1910P 
evaluation of a genome-wide methylome enrichment platform 
for circulating tumor DNA quantification and prognostic 
performance in renal cell carcinoma (RCC). Ann Oncol 2023; 34: 
S1028.

19.	 Rauluseviciute I, Drabløs F, Rye MB. DNA hypermethylation 
associated with upregulated gene expression in prostate cancer 
demonstrates the diversity of epigenetic regulation. BMC Med 
Genomics 2020; 13(1): 6.

20.	 Ren X, Lin S, Guan F, Kang H. Glycosylation targeting: a paradigm 
shift in cancer immunotherapy. Int J Biol Sci 2024; 20(7): 2607-21.

21.	 Leng X, Wei S, Mei J, Deng S, Yang Z, Liu Z, et al. Identifying the 
prognostic significance of B3GNT3 with PD-L1 expression in lung 
adenocarcinoma. Transl Lung Cancer Res 2021; 10(2): 965.

22.	 Xu J, Guo Z, Yuan S, Li H, Luo S. Upregulation of B3GNT3 is 
associated with immune infiltration and activation of NF-κB 
pathway in gynecologic cancers. J Reprod Immunol 2022; 152: 
103658.

23.	 Príncipe C, Dionísio de Sousa IJ, Prazeres H, Soares P, Lima RT. 
LRP1B: a giant lost in cancer translation. Pharmaceuticals 2021; 
14(9): 836.

24.	 Cowin PA, George J, Fereday S, Loehrer E, Van Loo P, Cullinane 
C, et al. LRP1B deletion in high-grade serous ovarian cancers is 
associated with acquired chemotherapy resistance to liposomal 
doxorubicin. Cancer Res 2012; 72(16): 4060-73.

 


