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ABSTRACT.  This study investigates the existence and uniform local attractiveness of solutions for a class of
fractional y-Hilfer hybrid differential equations within Banach algebras. Utilizing advanced hybrid fixed-point
theory, we derive results that not only establish conditions for the existence of solutions but also demonstrate their
uniform local attractiveness. Our findings offer valuable insights into the behavior of these fractional differential
equations and provide a solid theoretical foundation for future research and applications in this field.
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1. INTRODUCTION

The idea of derivatives of arbitrary order, which is essential to fractional calculus and provides a great tool for
characterizing the inherent properties of many materials and processes, has maintained its appeal to a large number
of scientists in recent years, one can see [11, 15]. There are several representations and definitions for the derivative
of fractional order; the most widely used ones are Riemann-Liouville and Caputo. In [13], Hilfer discussed fractional
time development in physical processes and presented an extension of the Riemann-Liouville fractional derivative and
Caputo fractional derivative. It was called a generalized derivative by the author, but the Hilfer fractional derivative
was given to it later recently. This operator has two parameters, @ and 8, which can be reduced to the definitions of
the Riemann-Liouville fractional derivative and Caputo fractional derivative, respectively, if 8 = 0 and 8 = 1, respec-
tively. Sousa and de Oliveira [26] introduced the new version of the Hilfer fractional derivitive with respect to another
function ¢. They presented a generalization concerning these derivatives in which they combined several formulations,
including the traditional Caputo and Riemann-Liouville operators, and proposed a new fractional differential operator,
known as the fractional y-Hilfer operator.

Fractional differential equations involving the y-Hilfer fractional derivative have received a lot of attention recently.
Various properties of these equations, such as the attractivity of solutions, Ulam-Hyers stability, and the existence and
uniqueness of solutions, have been thoroughly investigated by researchers. For instance, Ahmad et al. [3] studied the
existence, uniqueness, and stability of implicit switched coupled y-Hilfer fractional differential equations, while Abdo
et al. [1] investigated Ulam-Hyers-Mittag-Leffler stability for y-Hilfer problems with fractional order and infinite delay.
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Moreover, for coupled systems including the Hilfer fractional Langevin equation with non-local boundary conditions,
Hilal et al. [12] examined existence and stability results. This study was extended to the Hilfer Langevin fractional
pantograph differential equations, addressing existence and uniqueness, by Lmou et al. [16]. A study of the stability
of fractional differential equations with impulsive conditions was presented by Shah et al. [23] in a related work. Si
Bachir et al. [24] investigated y-Hilfer hybrid fractional differential equations in more detail, as well as the existence
and attractivity of solutions; Sousa and Capelas Oliveira [25] constructed a Gronwall inequality and used the Hilfer
operator to study the Cauchy-type problem.

Researchers have also looked on hybrid fractional differential equations. The fractional derivative of an unknown
function hybrid with nonlinearity dependent on it is included in this class of problems. A brief history of fractional
differential equations and hybrid differential equations will be given, (see [2,4,5,8-10, 14, 17-22]).

In [6], Dhage and Lakshmikantham initiated the study of the first-order hybrid differential equation

4 (7e95) = g w), e 0,T],
w(0) = wy €R,

where f € C([0,T] xR,R*) and g € C([0, T] X R, R).
Zhao et al. [27] discussed the following hybrid fractional initial value problem

O (2405) = gL w(w), L€ [0,T],
w(0) = wp € R,

where D” is the Riemann-Liouville fractional derivative of order 0 < p < 1, f € C([0,T] X R,R*), and g € C([0, T X
R,R).

In [5], an initial value problem was discussed for hybrid fractional differential equations involving y-Hilfer fractional
derivative of the form

{ Hprad (202 = e, w(), 1€ [0,T],

Slfy;tﬂ( w(0) ) =wy €R,

0% \f(O,w(0))

where #DP4Y is the y-Hilfer fractional derivative with 0 < p < 1,0 < g < l,p<y=p+q-pg <1, f €
C(0,T] xR,R*), and g € C([0, T] X R,R).
In this work, we study the existence and attractivity of solutions to the following problem

Ao (”@533?2;”’% + fie, w@))) = hLw@), L€R, :=[0,+0),

w(0)
7y, 1.1
G0, w(0) (1)
~1=r1-p2y w(0) _
\50+,L (—g (0’ W(O))) = W, wo € R,

where ?5(1):3‘_” ¥ and Dgi’ff";w, i = 1,2 represent the Riemann—Liouville fractional integral and the y-Hilfer fractional
derivative in order p; and type g; respectively. 0 < p; < 1,0< ¢; < 1; 1 <p;+p2 <2. fi,fo : Ry XR = Rand
G : R, xR — R" are given functions.

This work is divided into five sections. Basic definitions of y-Hilfer fractional calculus, essential lemmas, and certain
fixed-point theorems are given in Section 2. In Section 3, we derive the formula of solution for problem (1.1). During
Section 4, we discuss whether or not problem (1.1) has an existence of solutions. Section 5 discusses how attractivity
of solutions can be achieved in the above problem.

Special Cases:

e For q1,q, = 1 and ¢/(¢) = ¢, we get hybrid Caputo fractional differential equation of the form

Com %m% £ AW = Hlow),

w(Wl= = 0.
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e For q1,q> = 0 and y(1) = «, we get the hybrid differential equation involving Riemann-Liouville fractional
derivative of the form

RLpyp1 (RLDMQ(& + fi(, w(L))) = fo(t,, w(v)),

w, w(l))
w()=g = 0.
e For p; =0,9, =0, f; =0, and y(t) = ¢, we obtain the following problem
R (%) = /w0
w(W)l=o = 0,
which is studied in [27].

For p, = 1, we obtain

d{ wo \_
de (m) = f(L, w(),

W(L)|l=() = O’
which is investigated in [6] by Dhage and Lakshmikantham.

e Also, a natural consequence of problem (1.1), if we take fi(¢, w(t)) = Aw(t), we obtain the famous fractional
Langvin equation
Hopprai¥r [ Hyprarw w() ) = A .
0t 0ty g(t’ W(L)) W(I’) fZ(L W("))
w(0)

7 ___o,
G0, w(0)

-y [ WO\

Yo (g(o, w(0>>) o woe R

2. PRELIMINARIES

Lety = y; + p». Define on [a, b], (0 < a < b < o) the weighted space
Croyy(la, b)) = {w : [a,b] = R : @) = p(0) "w(0) € C([a, b])},

with the norm
Iwlle,_,, = sup | = w(0)' 7 w)|.
L€la,

Let 8C := BC(R,) be the Banach space of all bounded and continuous functions from R, to R. By 8C_, =
BCi-y (R,), we denote the weighted space of all bounded and continuous functions defined by

BCy ={¢: Ry = R: @) - w(0) ") € BCY,

with the norm

Iglizc,., = sup W@ - w)' 7 ¢0).

Let X = (BC 1R, - ||g;cl_7) be a Banach algebra where (wz)(t) = w(t)z(1), ¢ € R, is the definition of the product of
vectors.
Additionally, we recall some results and properties from the y-fractional calculus.

Definition 2.1 ( [26]). For p > 0,w € L'([a, b],R), additionally ¥ € C"([a, b], R), the fractional y-Riemann-Liouville
operator with order p of w can be written as

1
I'(p)

<P —
\Sauw(L) =

f W ()W) — Y()P ' w(s)ds,

in which ¢/ (¢) > 0, V¢ € [a, b].
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Definition 2.2 ( [26]). For 0 < p < 1 and w,y € C" '([a,b],R) with ¥’(t) > 0, V¢ € [a, b], the fractional y-Hilfer
derivative operator with order p and type 0 < ¢ < 1 of w is represented as

1 d
ng;qw — <~q(1 P “ c‘«(l q)(l 12 )
are WO =35, VO w(v)
Lemma 2.3 ([26]). LetO<p<1,0< g <1, we C'([a,b],R), then

WO - y(a)*” 1(\1

C‘PII/HDIH[‘//W(L)_ w(t) — T‘ —Qlfl w(a),

where o = p+q (1 — p).

Lemma 2.4 ( [25,26]). Let p,q > 0,6 > p and w € C([a, b],R). Following that Vi € [a, b] there is
(i)3 <~§+¢[S(1 W w(t) = <~P+6I WW(L)
(ii) 1D th‘”pww(L) = w(v),
(iii) S () = @)™ = W) - (@),

WO-y(@)
‘(1) = W,

(iv) 3 \s
() FDPI (1) = @) = 532 W) - yl@)’
i) TRV () — (@)1 =0, 0<<1.
Lemma 2.5 ([24]). LetO <y <l and f € C\_yla, bl. Then,
I fla) = lim I fW =0, 0<1-y<p.

Theorem 2.6 ( [7]). Assume that the Banach algebra X has a non-empty closed, convex, and bounded subset S. Take
A:X - Xand B: S — X be two operators in which

(i) A is Lipschitzian with a Lipschitz constant «;

(ii) B is completely continuous;

(ii)w=AwBz = we Sforallz € S;

(iv) aM < 1 where M = sup{||Bw|| : w € S}.

Hence, one exists w € S, in which w = AwBw.

3. FORMULA OF SOLUTIONS

Lemma 3.1. Take hy,h, € C(J,R); J :=[0,d], d > 0. Then, it follows that the problem :

Hpprat (%g&fmﬂ M0, hl(L)) = hy().ae. L€,

G (L, wQ)
% =0, 3.1
Sg’:ﬂ(g<<v)i(3)<0>>) S yEne
is equivalent to the equation
w(0) = G (Lw()) {ﬁ W@ = )" + Iy (1) — I “’hlm}. (3.2)

Proof. Taking the fractional integral operator of order p; on each side of (3.1). Then, utilizing Lemma 2.3, we arrive
at

-1
Hpypq W) w() + () = C‘I’l '//hz(L) +e M 3.3)

0 G Lw) L)
Utilizing again Lemma 2.3, we can get by taking fractional integral operator of order p, on each side of (3.3)
WO _ spipw P (w(o - y(0)"! W@ = Oy~
— =3 hy(1) — h (W) +e +e )
Glw) 1 () T

34
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where e| and e, are arbitrary constants.
In (3.4), the boundary condition w(0) = 0 leads to e, = 0, and therefore we get

wl — ey ~pz v W) — ()
Gl o 1O Se O+ e

~1- yw( w(0)
Sore \GoOwoy

(3.5)

In addition, if we combine the condition J
We substitute ¢; in (3.5), we obtain

) = wq with the value of (3.5), we obtain ¢; = wy.

wwgmw%ﬁﬂw>ww” SR WO “%m}

On the other hand, suppose w can be the unique solution satisfying (3.2). Then, (3.2) may expressed as

mﬁ%»_ﬁjwo O + S ) = S5 o). (3:6)

Taking the fractional y-Hilfer derivative operator
HpyPraisy
a‘tyu

Hph Efw on both sides of (3.6), and using Lemma 2.4. Then, taking

fractional y-Hilfer derivative operator again, we otain

HDplvqu(/ HDpz‘qz;w w(t) iy prl e abh ]
e R PR )) AN ©

So, it follows

H%@Wﬁwﬂw—19—+mm}wthe&.

G Lw)
Now, we will show that w satisfies the boundary conditions. To do this, we have g((v)v (V(V)()O)) = 0, and from (3.6) and
<~1 )'w w(0) _
Lemma 2.4, we get J ( g(o,w(o») = wy.
Hence, the proof is complete. O

4. EXISTENCE RESULTS

We present the following hypothesis in order to show the existence, and attractivity of solution.
(Hy): G : Ry xR — R” is continuous and bounded with bound [|GI| = sup, e, xz G (¢, W)l Additionally, there exists
a function w € C(R,,R) with
G, w) = G(1, 2| < wOlw — 2,
teR,andw,z € R.
(H»): f1, f> : Ry X R — R fulfill the condition of caratheodory ( i.e. continuous in w for all € R and mesurable in ¢
for all w € R) and wy, w; : R, — R are continuous functions achieving the following requirements

|f1(t, w)| < wi(v) and |/ (e, w)| < wa (1), Y(L, w) € Ry X R.

Further, assume that

Em @) —w(O)' 7 (3117 w2) 0 = 0

" = sup((®) = y(0)' 7 (357 ws) (1) < oo,

1—00

and

im@(© —y(O)' 7 (35 wi)o = 0,

Wi’ = sup(Y() = ()7 (3 wr) ) < oo,

1—00

Using Theorem 2.6, we will now discuss the existence result.

Theorem 4.1. Suppose that (Hy) and (H3) are valid. Further if ||wl|| {lr(y)| +wi*+ ws } < 1. Then, there is at least one
solution to problem (1.1) on X.
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Proof. Define S = {w € X : |wllsc,_, < n}, where [|G]| {|%| +w* + a)z*} < n. We have that S is a bounded subset of
X which is closed and convex.
Define A: X — Xand 8: S — X by

(AW) (1) = G (L, W), 4.1)
and

(Bw) (1) = m(w@ YO+ I (L w(@) = A (L w(). 4.2)

The problem (1.1) is thus equivalent to the operator equation.
w(t) = Aw()Bw(), Ve € R,.

Now, we demonstrate that A and B fulfill all requirements of Theorem 2.6 on X.
Step 1: A is Lipschitz condition.
Take w,z € X and ¢ € R.. By (H1), we get

| = w (0D (AW — AzW)| = W) — ¥(0))' 7 (G W) — G, z)))|
< w® | = y(0)' (w©) - 2()|
< llwllliw - zllsc,..,-

Therefore,
lAw — Azllsc, ., < llwllllw - zllsc, - (4.3)
The next step is to demonstrate the completely continuous of 8: S — X.
To do this, we will demonstrate the continuity, uniform boundedness, and equicontinuousness of 8.
Step 2: B is continuous.

Consider a sequence w, — w in S. Then, for each ¢ € R, we have

|(Bwn)(©) = (Bw)(©)| Sm fot NP1, ) 1o (5, Wa(9) = fo (s, w(s))| ds

* r(l’z) fo N ) Ufi (s.wa(s) = fi (s, w()] ds,
where N(,'f(t, $) = ' ()W) — ()P, p=pspi+po.
Then,

— (0 1-y L N
% f N2 )1 (5, wa(5)) — fo (5, w(s)l ds

_ I-y
L YOOy 7 f N2, 5) fs (5, w(5) = fi (5, W)l d.
)

Case 1: c € [0, €], € > 0. fj and f, are continuous by using the Lebesgue dominated convergence theorem and w,, — w
asn — oo. Eq. (4.4) gives us

| @) = ()7 (Bw,)(®) = (Bw)(W)| <
4.4)

IBw, — Bwllgc,, = 0 as n— co.
Case 2: ¢ € [€, 00). Then, based on the hypotheses and (4.4), we obtain

— 1- ‘
[(p2)

1Bwn — Bwllge,, <

prz(L Sw(s)ds.

It follows that
18w, = Bwllsc, , <20 = w(O)'™ (3537 ws) 1)
+ 20 = pON'™ (35 1) o).

Since w, — was n = oo, (Y1) — Y(0)' (357 wy) 1) - 0 ast — oo, and W) — Y(0)' ™ (357 wy) 1) - 0 as
Lt — oo, it follows from (4.5) that

4.5)

IBw, — Bwllgc,, = 0 as n — oo.
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Step 3: B(S = {Bw : w € S} is equicontinuous and uniformly bounded on every compact subsets [0, €] of R,, € > 0.
Firstly, we show the uniform boundedness of 8.
Take w € S, we have

w - 1 ' 1+p2

[(Bw)(VI < F)O/) W@ —y©O) | + mj(; NP2, 8) 12 (s, w(s))l ds
1 L
+ sz)fo N2 (1, 9) 1 fi (s, w(s)) ds.
Then,
o o | WO—O)'T (M,
100 =)' B0 <| |+ CE IO [N syonos
_ 1-y L
+% fo NP (1, 5)ar ()ds.

By using (H,) and taking supremum over ¢, we arrive at

wo
1Bwlsc,, < '—

r(y) +w; twy. (46)

Hence, B(S) is uniformly bounded.
It can now be shown that B(S) is equicontinuous. Take, t1,¢; € [0,€],¢1 <tz andw e S

| (2) = w(0) Y (Bw)(w2) — W(n) — Y(0)' 7 (Bw)(1))

1- L) _ 1-
< W) —yO) 7 yf N5‘+p2(Lz,s)f2(s,w(s))ds——(w(“) po)”
0

jo‘“ Nj”pz(tl, )fr (s,w(s))ds

[(p1 + p2) I(p1 + p2)
— w2 — (0
+ ('p(LZ)r(p(!;() )) j(: N([;Z(Lz’ S)fl (S, W(S)) ds — % f(; N;z(“, S)fl (S, W(S)) ds

1 4 N ) .
< T+ 1) +p2)f0 (l//(tz)—l!/(O))l_yNj‘ (12, 8) = () = (0)' 7 NJ! pz(Ll,S)| I (s, w(s))|ds

_ I-y (5
% f Ny @, 9) 1> (s, w(s)lds

1 4
+— f |(¢’(L2) —y(0)' Ngz(tz, 5) = () — g(0)' Nf(tl, S)| |f1 (s, w(s)lds
I'(p2) Jo

, W) —wO)"
T(p2)

f N (2, 9) Ifi (s, w(s)l ds.

Then,
|(2) = w(0) 7 (Bw)(t2) — W(1) — w(0)' 7 (Bw) ()|
1 " + — +p2
SR fo |e) = gD N 212, 5) = W) = YO)' T N (w1, )| wn(s)ds

’ I_‘(171 + pz) j;] Nl// (LZ’ S)(U2(S)ds

I
“Tow fo |@@) = $O) 7 NP2 (ea, 5) = @er) = O N, 9)| wn(5)ds

L W) - w(0)'™7

I'(p2) j[: NAZZ (t2, w1 (s)ds.
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Then, based on the continuity of the functions w; and wy, by defining w1 = sup,¢jy ¢ w1(1) and wa, = sUp (g W2(0),
we obtain

|W(2) = w(0) " (Bw)(12) — W(wr) — Y(0)' 7 (Bw)(11))
<o [ (12,5 = W) = WO NP, )| d

L w2 W) - ¥(0)'7
IL(pr+p2+ 1)

W1x f“
+ —_—
I'(p2) Jo

w1 (Y2) = Y(O0)'”
I(p2+1)
the Arzela-Ascoli theorem thus shows that B(S) is relatively compact, and hence a compact operator. From the conti-
nuity and compactness of 8 : S — X, it is completely continuous.
Step 4: To prove w € X,w = AwBz = we Sforallz € S.
Take w € X and z € S such that w = AwBz.

| @@ = ()7 (B =l () = $(0)' 7 (AwB) (V)|

W(2) = Y™

P20, 9) = W) = YO N (wr, )| ds

W) —yY)* — 0, as ¢ — 1,

= '(W) - (0)'77 G(t, wt)) {ﬁ ZORXZ()) i

f N”l*’% )fs (s, 2(s8)) ds +

F(p1 + p2)
L Wo- w(0)'™7
'ga W) {F( P T

1
AOVONT [y s sonas)]
['(p2)

fN”Z(L )1 (s, Z(S))dS}

L(p2)
j(; NP (@, 5)f2 (5,2(9) ds

Then,

0 1—y L .
W) - $O)' 7 B <16, W(‘))l{‘r() O [ A anoids

—_ 1= e ‘

_||g||{‘r( )

Taking supremum over ¢, we arrive at

+ (W) = O)' (I w)) ) + (@) — () (32w ) L)}

1Bwllsc,.. < IG] {'r( )

= wesS.

+w” +w2*}Sr]

Step S: In conclusion, we demonstrate that for M = sup{[|Bwllsc,_, : w € S}, we have aM < 1.
Using (4.6), we get
M =sup{l|Bwligc,_, : w € S}

= {‘r(;

with the aid of (4.3), we arrive at @ = ||w||. Thus, as a result of [|w]| {|m)| F Wt +w } <1, we get

+0.)1 + wy },

aM < llIM < ||w||{\%|

+ 0.)1* +0.)2*} < 1.
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Since all of the requirements of Theorem 2.6 are satisfied, the operator equation w = AwSBw hence has a solution in
S. o
5. ATTRACTIVITY OF SOLUTIONS

In this part, the Attractivity of solutions to problem (1.1) will be discussed. To show that, we need the following
definition

Lemma 5.1 ( [24]). Solutions of equation (Kw)(t) = w(t) are locally attractive if a ball B (wy,n) exists in the space
BC in which, any solutions 7 = z(1) and o = o (1) to the above equations belonging to B (wy,n) N A, can be written as
follows

[lirg(w(L) —-o() =0. 5.1

The solutions are considered uniformly locally attractive if the limit (5.1) is uniform with respect to B (wg, ) N A, where
¢ # A C BC. (or that the solutions are locally asymptotically stable; equivalent).

Theorem 5.2. Under the hypotheses of Theorem 4.1. Then, the solutions of the problem (1.1) are uniformly locally
attractive on R,.

Let us now show that the solution is uniformly locally attractive on R.

Proof. Define the operator K : S — X as

L(y)
1
b [ NP@oR G dS} .

Keep in mind that Kw(t) = Aw()Bw(r), Vi € R, where A and B are given in (4.1) and (4.2), respctively.
Given the conditions of this theorem, we suppose that w, is a solution to problem (1.1).

Take w € B (w*, 2|6l {

1 ¢ +
(Kw)(©) =G, W(L)){—(w(t)—l/f(o))1 T f NP 9) 1o (s, w(s)) ds
L(p1+p2) Jo

+ 21" + 2wy }), we get

| @@ = ()7 (Kw)(0) = (@) = $(0)' 7 w0

- 1- L 1
‘gu W )){ W, WO-¥O) 7 f NP 9y (sow(s)) ds + LTV
0

T T+ p) ['(p2)

WO - yO)'” pi+p2
~6t. W*(‘)){r() ot [ A o ds

—yOpr
+% fo N, $)fi (5, w2(5) ds} :

f N )i (5,w(5) ds}

Then,
| () = Y(O)' (Kw)(@) — @@ — y(0) ™ w. ()

— 0 1-y .
{H) o | Mmoo ds

(@) = (o)
['(p2)

fl N./’jz (, $)f1 (s, w(s)) ds}

—wont-r . ) L4
~60. w*u)){r() WOt [ g raspswends+ LY [Inpa s s w(s))ds}
W= WO [ i WO - [
6w )){F() WObO [ apraspswnds+ PO (e s w(s))ds}

L WO - yop
~Gw) {r< Y T+ )

0) R
+% fo NP 9)fi (s, w*(s»ds} :

fl NP, 5) fr (5, wa(s)) ds
0
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Then,
L (W) = w(O)' 7 (Kw)(©) — W) — w(0)' ™ w. ()|
(W) = g(0)'”
<G w©) = Gl w.( ))I{‘F( ) WJ;Nf P 9)1f (s, w(s)lds
- I-y
SOOI [Nl oo ds}
— (0 1-y L N
+1G(t, W*(L))|{Mf N(Zl P21, ) 1o (s, w(s)) — fo (5, wi(5))| ds
Lpr+p2)  Jo
— (0 1-y L
OO (NP1 Gow(s) - f <s,w*<s)>|ds}.
[(p2) 0
Therefore,

[0 = wO)! (Kw)0) ~ W) ~ (0 .0
1
||g||{' P LOZBDL [ spantds

I(pi+p2) Jo
WO g™ [\ WO = 6O [ pon,
+Tf Np ( S)U)I(S)ds} +2||g||{wj(; N; P2(¢, s)wa(s)ds
@) = y(O)'” ,,2
+Tf Ny (@ s)wl(s)ds}

<2ligll {'

Taking supremum over ¢, we arrive at

+ 20 = pON' (S5 w,) () + 2 (@) — p(0)' ™ (sgfj:”wl)(t)}.

15w — wallse, . < 2||§||{'r( |20+ 20y }

Consequently, we deduce that K is a continuous function such that

7<( (W* 2||g||{ 0 + 2w, + 2w," })) CB(W*,ZHQH{‘%' + 2w, +2w2*}).

Moreover, if w is a solution of problem (1.1), then
W) = w. (] = [(Kw)(©) — (Kw.) (O

<G, w©) — G, w. (V) {(lﬂ(t) 0 ' f NP, 8) 12 (5, ws))l ds

1“(191 + p2)

1 L
T fo N @ )11 (s, ws)) ds}
1 -
+I§(L,w*(t))l{mf NP, ) | fa (5, w(s) = fo (s, wa(s) ds

T f NG )1 (5,w() = i (s, w*(s)>|ds}

<2||g||{<¢(o—w<0>>y- ] + 2307 ) () + 2 (I3 wl)u)}

Therefore,
W) = w0
WO =y (37 wa) WO -y (35 w) @ (5.2)
—1 wo
= {W) o ’Tw W@ - pO)'~7 N AT '
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Using (5.2) and the fact that
Hm () = p(0)' 7 (3117 w2) ) = 0
and
m@© - w(0)' 7 (3 wi) ) = 0.
It follows that
Iim w() — w.()| =0
Lemma 5.1 implies that solutions of problem (1.1) are uniformly locally attractive. O
6. EXAMPLES
Example 6.1. Taking the following problem
Hopypraids [ Hgypataw w© " = A cR
BT ey M) = Alew@), e R,
w(0)
—— =0, 6.1
G0.w(0) ©D
(o0 )
0\ G (0,w(0))
where p1 = i,pz = %’ q1 = %, g = 1, and l//(L) = L2.
We take .
_ et
Jew) = B apa s
¢ sin(e) Y
R = e apa
2
Il
Guwl) = ——+5+1,
8(1 + [wl)

where fi, f> and G satisfy (H;) and (H;) of Theorem 4.1 with

_2

e
1) = A
Asin(t) 5
©O= T

Moreover, we have

L 20 ‘ -7
lim f 25(% = s D wy(s)ds = 0,
1—00 l"( )
and
;11
i ZSLZ—SZ%}LU s)ds =0
D ( )3 wi(s)

So, by Theorem 4.1 and 5.2 there is at least one solution to problem (6.1). Further, the solutions are uniformly locally

attractive on R,.

Example 6.2. Taking the following problem

Hpp (Hzang” WO +f1<t,wa>>)=fzu,wa»,

G W)
w0

GOWO)

~1-vw w(0) _

Vs (g<o,w(0>>)‘l’

teR,,

(6.2)
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where p; = %,pz = %,ql = %,qz = 110, and Y(¢) = 4+ 1. Let

: el
hew = s ma v )’
_ 3 cos(t) Y
P = s’
2w
G(,wQ)) = 00+ ) +3c+1,

where fi, f>, and G satisfy (H;) and (H;) of Theorem 4.1 with

=t

wi(t) = m,
_Peos(t) s,
@0 =)

Moreover, we verify that

|~

Sl

-0.05 L _
lim (@) — w(0)' 7 (3017 w,) (0 = lim —— f 457 (i = 5*) 7 wa(s)ds = 0,
(1—00 ! 0

)
and
-0.05

. B 1—y (~P2:¥ =1
fmy© 9o (3 en) 0 =l oy

Thus, by Theorem 5.2, the solutions of the problem (6.2) are uniformly locally attractive on R,.

¢ _2
f 45 (t4 - s4) *wi(s)ds = 0.
0

CONCLUSION

In this work, we developed and validated certain conditions guaranteeing the existence and uniform local attractive-
ness of solutions for a class of -Hilfer fractional differential equations. Our findings provide an important theoretical
advance by utilizing a sophisticated hybrid fixed point theory framework within Banach algebras. This method not only
offers a strong basis for the study of fractional differential equations, but it additionally generates novel possibilities
for further study. Our results shed light on the possibility of using similar methods in various fields of practical and
mathematical sciences and advance our understanding of the dynamics of these complex problems.
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