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Abstract 

Drawing inspiration from Lin [3], we generalize some operator inequalities due to 

Mond et al. [1] as follows: Let A  be positive operator on a Hilbert space with 

0 < .m A M   Then for 2 < <p   and every normalized positive linear map  , 
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Let A  be positive operator on a Hilbert space with 0 < .m A M   Then for 

1 <p   and every normalized positive linear map  , 
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Operatörlerin Pozitif Lineer Dönüşümleri için Bazı Eşitsizlikler 

Özet 

Lin’in [3] teki çalışmasından ilham alarak, Mond ve Pecaric’in [1] deki 

çalışmasında verilen bazı operatör eşitsizliklerinin genelleştirilmesi şu şekilde yapıldı: 

A , Hilbert uzayı üzerinde 0 < m A M   şartını sağlayan bir pozitif operatör olmak 

üzere, 2 < <p   ve her normalize edilmiş   pozitif lineer dönüşümü için 
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eşitsizliği geçerlidir. Yine A , Hilbert uzayı üzerinde 0 < m A M   şartını sağlayan bir 

pozitif operatör olmak üzere, 1 <p   ve her normalize edilmiş   pozitif lineer 

dönüşümü için 
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eşitsizliği geçerlidir. 

Anahtar Kelimeler: Pozitif Operatörler, Operatör Eşitsizlikleri, Normalize Edilmiş 

Pozitif Lineer Dönüşümler 

 

1. Introduction 

Let mM ,  be scalars and I  be the identity operator. We write 0A  to mean that 

the operator A  is positive. If 0 BA  0),( BA  then we write BA   )( BA . *A  

stands for the adjoint of A . Other capital letters are used to denote the general elements 

of the *C -algebra L(H) of all bounded linear operators acting on a Hilbert space 

( , , )H   . ( )L H  is the cone of positive (i.e., non-negative semi-definite) operators. Let 

( , , )S H   be the totality of all self-adjoint operators on H whose spectral are contained 
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in an interval ),(  . A (non-linear) transformation which maps ( )L H , the set of 

positive operators on H, into ( )L K  will be called positive. The operator norm is 

denoted by  . A positive linear map   preserves order-relation, that is, BA   

implies )()( BA  , and preserves adjoint operation, that is, ** )(=)( AA  . It is said 

to be normalized if it transforms HI  to KI  (we use, in both cases, only I ). If   is 

normalized, it maps ( , , )S H   to ( , , )S K  . 

It is well known that for two positive operators ,,BA   

1,0  pforBABA pp  

but 

>1.p pA B A B for p    

Let MAm <0  and   be normalized positive linear map. Mond and 

Pecaric [1] proved the following operator inequality: 
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Lin [3] obtained 
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If we replace A  by 1A  in (1.1), we get 
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Combining (1.2) and (1.4), we have 
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Fujii et al. [2] proved that 2t  is order preserving in the following sense. 

Proposition 1.1 Let BA <0  and MAm <0 . Then the following 

inequality holds: 
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A quick use of the above proposition and (1.1) give the following preliminary 

result 

Proposition 1.2 Let MAm <0 . Then for normalized positive linear map 
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  (1.6) 

It is interesting to ask whether pt  1)( p  for the inequalities (1.1) and (1.5) is 

order preserving. This is a main motivation for the present paper. 

In this paper, we give p -power 2)>(p  of inequality (1.1) and present an 

operator inequality which is refinement of (1.5). Furthermore, we achieve a 

generalization of the refinement inequality. 

2. Main Results 

We give some lemmas before we give the main theorems of this paper: 

Lemma 2.1 [6] Let A and B be positive operators. Then for  <1 r   

 ( ) .r r rA B A B    (2.1) 

Lemma 2.2 [5] Let 0>,BA .Then the following norm inequality holds:  

 
21
.

4
AB A B   (2.2) 

Lemma 2.3 [4, p. 41] Let 0>A  and   be normalized positive linear map. 

Then 

 ).()( 11   AA  (2.3) 

Lemma 2.4 Let MAm <0 . Then for normalized positive linear map  : 
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:Proof  In [1, (14)], we replace A  by 1A  and have the result. 

Now we prove the first main result in the following theorem. 

Theorem 2.5 Let .<0 MAm   Then for every normalized positive linear map 

,  
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:Proof  The operator inequality (2.5) is equivalent to 
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Compute 
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Note that 
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then 
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Thus (2.5) holds. 

Remark 2.6 We cann’t get the inequality (1.6) when 2=p , but we obtain the 

relation between 
pA )( 2  and 

pA 2)(  for 2>p  and moreover the form of the 

inequality (2.5) is simple. 

Theorem 2.7 Let .<0 MAm   Then for every normalized positive linear map 
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:Proof  The inequality (2.8) is equivalent to 
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 (by Lemma 2.4) 
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Thus (2.8) holds. 

Remark 2.8 It is easy to compute that 
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 in the right side of (1.5). Thus (2.8) is a refinement of (1.5).  

In the next theorem, we give a generalization of (2.8). 

Theorem 2.9 Let .<0 MAm   Then for every normalized positive linear map 

  and  <1 p , 
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:Proof  The operator inequality (2.9) is equivalent to 
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Thus (2.9) holds. 

Remark 2.10 When 1=p , the inequality (2.9) is (2.8). Thus the inequality (2.9) 

is a generalization of (2.8). 
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