Some Inequalities for Positive Linear Maps of Operators

İbrahim Halil GÜMÜŞ ${ }^{1, *}$, Xiaohui FU ${ }^{2}$
${ }^{1}$ Adlyaman University, Faculty of Arts and Sciences, Department of Mathematics, 02040 Adlyaman, Türkiye, igumus@adiyaman.edu.tr
${ }^{2}$ Hainan Normal University, School of Mathematics and Statics, Haikou, P.R. China, fxh662@sina.com

Abstract

Drawing inspiration from Lin [3], we generalize some operator inequalities due to Mond et al. [1] as follows: Let A be positive operator on a Hilbert space with $0<m \leq A \leq M$. Then for $2<p<\infty$ and every normalized positive linear map Φ,

$$
\Phi^{p}\left(A^{2}\right) \leq\left(\frac{\left(M^{2}+m^{2}\right)^{p}}{4 M^{p} m^{p}}\right)^{2} \Phi(A)^{2 p}
$$

Let A be positive operator on a Hilbert space with $0<m \leq A \leq M$. Then for $1 \leq p<\infty$ and every normalized positive linear map Φ,

$$
\Phi^{p}\left(A^{-2}\right) \leq\left(\frac{1}{4(M m)^{p}}\left(M+m+\frac{(M-m)^{2}}{4(M+m)}\right)^{2 p}\right)^{2} \Phi(A)^{-2 p}
$$

Keywords: Positive Operators, Operator Inequalities, Normalized Positive Linear Maps.

[^0]
Operatörlerin Pozitif Lineer Dönüşümleri için Bazı Eşitsizlikler

Özet

Lin'in [3] teki çalışmasından ilham alarak, Mond ve Pecaric'in [1] deki çalışmasında verilen bazı operatör eşitsizliklerinin genelleştirilmesi şu şekilde yapıldı: A, Hilbert uzayı üzerinde $0<m \leq A \leq M$ şartını sağlayan bir pozitif operatör olmak üzere, $2<p<\infty$ ve her normalize edilmiş Φ pozitif lineer dönüşümü için

$$
\Phi^{p}\left(A^{2}\right) \leq\left(\frac{\left(M^{2}+m^{2}\right)^{p}}{4 M^{p} m^{p}}\right)^{2} \Phi(A)^{2 p}
$$

eşitsizliği geçerlidir. Yine A, Hilbert uzayı üzerinde $0<m \leq A \leq M$ şartını sağlayan bir pozitif operatör olmak üzere, $1 \leq p<\infty$ ve her normalize edilmiş Φ pozitif lineer dönüşümü için

$$
\Phi^{p}\left(A^{-2}\right) \leq\left(\frac{1}{4(M m)^{p}}\left(M+m+\frac{(M-m)^{2}}{4(M+m)}\right)^{2 p}\right)^{2} \Phi(A)^{-2 p}
$$

eşitsizliği geçerlidir.
Anahtar Kelimeler: Pozitif Operatörler, Operatör Eşitsizlikleri, Normalize Edilmiş Pozitif Lineer Dönüşümler

1. Introduction

Let M, m be scalars and I be the identity operator. We write $A \geq 0$ to mean that the operator A is positive. If $A-B \geq 0(A-B \leq 0)$, then we write $A \geq B \quad(A \leq B) . A^{*}$ stands for the adjoint of A. Other capital letters are used to denote the general elements of the C^{*}-algebra $\mathrm{L}(H)$ of all bounded linear operators acting on a Hilbert space $(H,\langle\cdot, \cdot\rangle) . L_{+}(H)$ is the cone of positive (i.e., non-negative semi-definite) operators. Let $S(\alpha, \beta, H)$ be the totality of all self-adjoint operators on H whose spectral are contained
in an interval (α, β). A (non-linear) transformation which maps $L_{+}(H)$, the set of positive operators on H, into $L_{+}(K)$ will be called positive. The operator norm is denoted by $\|\bullet\|$. A positive linear map Φ preserves order-relation, that is, $A \leq B$ implies $\Phi(A) \leq \Phi(B)$, and preserves adjoint operation, that is, $\Phi\left(A^{*}\right)=\Phi(A)^{*}$. It is said to be normalized if it transforms I_{H} to I_{K} (we use, in both cases, only I). If Φ is normalized, it maps $S(\alpha, \beta, H)$ to $S(\alpha, \beta, K)$.

It is well known that for two positive operators A, B,

$$
A \geq B \Rightarrow A^{p} \geq B^{p} \quad \text { for } \quad 0 \leq p \leq 1,
$$

but

$$
A \geq B \Rightarrow A^{p} \geq B^{p} \quad \text { for } \quad p>1
$$

Let $0<m \leq A \leq M$ and Φ be normalized positive linear map. Mond and Pecaric [1] proved the following operator inequality:

$$
\begin{equation*}
\Phi\left(A^{2}\right) \leq \frac{(M+m)^{2}}{4 M m} \Phi(A)^{2} . \tag{1.1}
\end{equation*}
$$

Lin [3] obtained

$$
\begin{equation*}
\Phi\left(A^{-1}\right)^{2} \leq\left(\frac{(M+m)^{2}}{4 M m}\right)^{2} \Phi(A)^{-2} . \tag{1.2}
\end{equation*}
$$

If we replace A by A^{-1} in (1.1), we get

$$
\begin{equation*}
\Phi\left(A^{-2}\right) \leq \frac{(M+m)^{2}}{4 M m} \Phi\left(A^{-1}\right)^{2}, \tag{1.3}
\end{equation*}
$$

which is

$$
\begin{equation*}
\frac{4 M m}{(M+m)^{2}} \Phi\left(A^{-2}\right) \leq \Phi\left(A^{-1}\right)^{2} . \tag{1.4}
\end{equation*}
$$

Combining (1.2) and (1.4), we have

$$
\begin{equation*}
\Phi\left(A^{-2}\right) \leq\left(\frac{(M+m)^{2}}{4 M m}\right)^{3} \Phi(A)^{-2} . \tag{1.5}
\end{equation*}
$$

Fujii et al. [2] proved that t^{2} is order preserving in the following sense.
Proposition 1.1 Let $0<A \leq B$ and $0<m \leq A \leq M$. Then the following inequality holds:

$$
A^{2} \leq \frac{(M+m)^{2}}{4 M m} B^{2} .
$$

A quick use of the above proposition and (1.1) give the following preliminary result

Proposition 1.2 Let $0<m \leq A \leq M$. Then for normalized positive linear map Φ :

$$
\begin{equation*}
\Phi\left(A^{2}\right)^{2} \leq \frac{\left(M^{2}+m^{2}\right)^{2}}{4 M^{2} m^{2}}\left(\frac{(M+m)^{2}}{4 M m}\right)^{2} \Phi(A)^{4} \tag{1.6}
\end{equation*}
$$

It is interesting to ask whether $t^{p}(p \geq 1)$ for the inequalities (1.1) and (1.5) is order preserving. This is a main motivation for the present paper.

In this paper, we give p-power ($p>2$) of inequality (1.1) and present an operator inequality which is refinement of (1.5). Furthermore, we achieve a generalization of the refinement inequality.

2. Main Results

We give some lemmas before we give the main theorems of this paper:

Lemma 2.1 [6] Let A and B be positive operators. Then for $1 \leq r<\infty$

$$
\begin{equation*}
\left\|A^{r}+B^{r}\right\| \leq\left\|(A+B)^{r}\right\| . \tag{2.1}
\end{equation*}
$$

Lemma 2.2 [5] Let $A, B>0$.Then the following norm inequality holds:

$$
\begin{equation*}
\|A B\| \leq \frac{1}{4}\|A+B\|^{2} \tag{2.2}
\end{equation*}
$$

Lemma 2.3 [4, p. 41] Let $A>0$ and Φ be normalized positive linear map. Then

$$
\begin{equation*}
\Phi(A)^{-1} \leq \Phi\left(A^{-1}\right) . \tag{2.3}
\end{equation*}
$$

Lemma 2.4 Let $0<m \leq A \leq M$. Then for normalized positive linear map Φ :

$$
\begin{equation*}
\Phi\left(A^{-2}\right)^{\frac{1}{2}} \leq \Phi\left(A^{-1}\right)+\frac{(M-m)^{2}}{4 M m(M+m)} . \tag{2.4}
\end{equation*}
$$

Proof : In [1, (14)], we replace A by A^{-1} and have the result.

Now we prove the first main result in the following theorem.
Theorem 2.5 Let $0<m \leq A \leq M$. Then for every normalized positive linear map Φ,

$$
\begin{equation*}
\Phi\left(A^{2}\right)^{p} \leq\left(\frac{\left(M^{2}+m^{2}\right)^{p}}{4 M^{p} m^{p}}\right)^{2} \Phi(A)^{2 p}, \quad 2<p<\infty . \tag{2.5}
\end{equation*}
$$

Proof : The operator inequality (2.5) is equivalent to

$$
\begin{equation*}
\left\|\Phi\left(A^{2}\right)^{\frac{p}{2}} \Phi^{-p}(A)\right\| \leq \frac{\left(M^{2}+m^{2}\right)^{p}}{4 M^{p} m^{p}} . \tag{2.6}
\end{equation*}
$$

Compute

$$
\begin{align*}
\left\|\Phi\left(A^{2}\right)^{\frac{p}{2}}(M m)^{p} \Phi^{-p}(A)\right\| & \leq \frac{1}{4}\left\|\Phi\left(A^{2}\right)^{\frac{p}{2}}+\left(M^{2} m^{2} \Phi(A)^{-2}\right)^{\frac{p}{2}}\right\|^{2} \tag{2.2}\\
& \leq \frac{1}{4}\left\|\left(\Phi\left(A^{2}\right)+M^{2} m^{2} \Phi(A)^{-2}\right)^{\frac{p}{2}}\right\|^{2} \tag{2.1}\\
& =\frac{1}{4}\left\|\Phi\left(A^{2}\right)+M^{2} m^{2} \Phi(A)^{-2}\right\|^{p} \\
& \left.\leq \frac{1}{4} \|(M+m)\right)
\end{align*}
$$

Note that

$$
(M-\Phi(A))(m-\Phi(A)) \Phi(A)^{-2} \leq 0
$$

then

$$
\begin{equation*}
M m \Phi(A)^{-2}+I \leq(M+m) \Phi(A)^{-1} . \tag{2.7}
\end{equation*}
$$

Thus

$$
\begin{align*}
&\left\|\Phi\left(A^{2}\right)^{\frac{p}{2}}(M m)^{p} \Phi(A)^{-p}\right\| \leq \frac{1}{4}\left\|(M+m) \Phi(A)-m M I+M^{2} m^{2} \Phi(A)^{-2}\right\|^{p} \\
& \leq \frac{1}{4}\left\|(M+m) \Phi(A)-m M I+M m\left((M+m) \Phi(A)^{-1}-I\right)\right\|^{p} \tag{2.7}\\
&=\frac{1}{4}\left\|(M+m)\left(\Phi(A)+M m \Phi(A)^{-1}\right)-2 m M I\right\|^{p} \\
& \quad \leq \frac{1}{4}\|(M+m)(M+m) I-2 m M I\|^{p} \quad \quad \text { by (2.3) and }[\tag{2.3}\\
& \quad=\frac{1}{4}\left(M^{2}+m^{2}\right)^{p} .
\end{align*}
$$

That is

$$
\left\|\Phi\left(A^{2}\right)^{\frac{p}{2}} \Phi(A)^{-p}\right\| \leq \frac{\left(M^{2}+m^{2}\right)^{p}}{4 M^{p} m^{p}}
$$

Thus (2.5) holds.
Remark 2.6 We cann't get the inequality (1.6) when $p=2$, but we obtain the relation between $\Phi\left(A^{2}\right)^{p}$ and $\Phi(A)^{2 p}$ for $p>2$ and moreover the form of the inequality (2.5) is simple.

Theorem 2.7 Let $0<m \leq A \leq M$. Then for every normalized positive linear map Φ,

$$
\begin{equation*}
\Phi\left(A^{-2}\right) \leq \frac{1}{4^{2} M^{2} m^{2}}\left(M+m+\frac{(M-m)^{2}}{4(M+m)}\right)^{4} \Phi(A)^{-2} \tag{2.8}
\end{equation*}
$$

Proof : The inequality (2.8) is equivalent to

$$
\left\|\Phi\left(A^{-2}\right)^{\frac{1}{2}} \Phi(A)\right\| \leq \frac{1}{4 M m}\left(M+m+\frac{(M-m)^{2}}{4(M+m)}\right)^{2}
$$

Compute

$$
\left\|M m \Phi\left(A^{-2}\right)^{\frac{1}{2}} \Phi(A)\right\| \leq \frac{1}{4}\left\|M m \Phi\left(A^{-2}\right)^{\frac{1}{2}}+\Phi(A)\right\|^{2}
$$

$$
\begin{align*}
& \leq \frac{1}{4}\left\|M m \Phi\left(A^{-1}\right)+\frac{(M-m)^{2}}{4(M+m)}+\Phi(A)\right\|^{2} \\
& \leq \frac{1}{4}\left(M+m+\frac{(M-m)^{2}}{4(M+m)}\right)^{2} \tag{2.3}
\end{align*}
$$

That is

$$
\left\|\Phi\left(A^{-2}\right)^{\frac{1}{2}} \Phi(A)\right\| \leq \frac{1}{4 M m}\left(M+m+\frac{(M-m)^{2}}{4(M+m)}\right)^{2}
$$

Thus (2.8) holds.
Remark 2.8 It is easy to compute that $\frac{1}{4^{2} M^{2} m^{2}}\left(M+m+\frac{(M-m)^{2}}{4(M+m)}\right)^{4}$ is smaller than $\left(\frac{(M+m)^{2}}{4 M m}\right)^{3}$ in the right side of (1.5). Thus (2.8) is a refinement of (1.5).

In the next theorem, we give a generalization of (2.8).
Theorem 2.9 Let $0<m \leq A \leq M$. Then for every normalized positive linear map Φ and $1 \leq p<\infty$,

$$
\begin{equation*}
\Phi\left(A^{-2}\right)^{p} \leq\left(\frac{1}{4(M m)^{p}}\left(M+m+\frac{(M-m)^{2}}{4(M+m)}\right)^{2 p}\right)^{2} \Phi(A)^{-2 p} \tag{2.9}
\end{equation*}
$$

Proof : The operator inequality (2.9) is equivalent to

$$
\begin{equation*}
\left\|\Phi\left(A^{-2}\right)^{\frac{p}{2}} \Phi(A)^{p}\right\| \leq \frac{1}{4(M m)^{p}}\left(M+m+\frac{(M-m)^{2}}{4(M+m)}\right)^{2 p} \tag{2.10}
\end{equation*}
$$

Compute

$$
\begin{align*}
\left\|(M m)^{p} \Phi\left(A^{-2}\right)^{\frac{p}{2}} \Phi(A)^{p}\right\| & \leq \frac{1}{4}\left\|\left(m M \Phi\left(A^{-2}\right)^{\frac{1}{2}}\right)^{p}+\Phi(A)^{p}\right\|^{2} \tag{2.2}\\
& \leq \frac{1}{4}\left\|M m \Phi\left(A^{-2}\right)^{\frac{1}{2}}+\Phi(A)\right\|^{2 p} \tag{2.2}
\end{align*}
$$

$$
\begin{align*}
& =\frac{1}{4}\left\|M m \Phi\left(A^{-1}\right)+\frac{(M-m)^{2}}{4(M+m)}+\Phi(A)\right\|^{2 p} \quad(\text { by Lemma 2.4 }) \\
& \leq \frac{1}{4}\left(M+m+\frac{(M-m)^{2}}{4(M+m)}\right)^{2 p}, \tag{2.3}
\end{align*}
$$

That is

$$
\left\|\Phi\left(A^{-2}\right)^{\frac{p}{2}} \Phi(A)^{p}\right\| \leq \frac{1}{4(M m)^{p}}\left(M+m+\frac{(M-m)^{2}}{4(M+m)}\right)^{2 p} .
$$

Thus (2.9) holds.
Remark 2.10 When $p=1$, the inequality (2.9) is (2.8). Thus the inequality (2.9) is a generalization of (2.8).

Acknowledgements

The work was supported by the natural science foundation of Hainan Province (No: 114007).

References

[1] Mond, B., Pecaric, J. E., Converses of Jensen's inequality for linear maps of operators, An. Univ. Vest Timis. Ser. Mat. Inform. 31(2), 223-228, 1993.
[2] Fujii, M., Izumino, S., Nakamoto, R., Seo, Y., Operator inequalities related to Cauchy-Schwarz and Hölder-McCarthy inequalities, Nihonkai Math. J. 8, 117-122, 1997.
[3] Lin, M., On an operator Kantorovich inequality for positive linear maps, J. Math. Anal. 402, 127-132, 2013.
[4] Bhatia, R., Positive Definite Matrices, Princeton University Press, Princeton, 2007.
[5] Bhatia, R., Kittaneh, F., Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308, 203-211, 2000.
[6] Ando, T., Zhan, X., Norm inequalities related to operator monotone functions, Math. Ann., 315, 771-780, 1999.

[^0]: * Corresponding Author

 Received: 04 October 2017

