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Abstract 

Advancements in digital technology have driven the rise of biometric security systems, notably in the field of finger vein detection. In 
most of the research on finger vein classification in the literature, achieving high accuracy is the main aim, while aspects such as 
generalization capacity and test distribution are mostly overlooked. In this study, two different datasets (MMCBNU_6000 and FV-
USM) were tested with different test distributions, using a K-Fold structure for unbiased sampling in classification. In experiment 
part, two distinct image enhancement methods, namely Contrast Limited Adaptive Histogram Equalization (CLAHE) and Sobel 
filtering, were utilized on the datasets, and Convolutional Neural Networks (CNN) were used for feature extraction. Furthermore, 
machine learning algorithms were applied for classification, forming a Hybrid Convolutional Machine Learning algorithm. In this 
method, the model, which is fed through two different channels compared to conventional learning algorithms, combines classical 
machine learning classifiers with the CNN model. In the scope of this study, three tasks were outlined. The first two focused on 
implementing various machine learning algorithms for each dataset, while the third involved merging datasets and employing the 
Stacking Ensemble Classifier (SEC). For evaluating the models, accuracy and F1-score metrics were used. The results indicate that the 
highest accuracy rate was achieved in the third experiment, with a score of 98.94%. Additionally, it is also observed that increasing 
the amount of test data (the difference between 20% Test and 50% Test) has a minimal effect in reducing the model's accuracy metric 
compared to previous studies. 
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Öz 

Dijital teknolojinin ilerlemesi, özellikle parmak damarı tespiti alanında biyometrik güvenlik sistemlerinin yükselişine sebep olmuştur. 
Literatürde parmak damarı sınıflandırması üzerine yapılan araştırmaların çoğunda yüksek doğruluk elde etmek ana amaç iken 
genelleme kapasitesi ve test dağılımı gibi konular genellikle göz ardı edilmektedir. Bu çalışmada, farklı test dağılımlarıyla iki farklı 
veri seti (MMCBNU_6000 ve FV-USM) K-Katlamalı yapı kullanılarak tarafsız örnekleme için test edilmiştir. Deney bölümünde, 
Kontrast Sınırlı Adaptif Histogram Eşitleme (KSAHE) ve Sobel filtreleme gibi iki farklı görüntü iyileştirme yöntemi veri setlerine 
uygulanmış ve özellik çıkarma için Evrişimli Sinir Ağları (ESA) kullanılmıştır. Ayrıca, sınıflandırma için makine öğrenimi algoritmaları 
uygulanmış ve Hibrit Evrişimli Makine Öğrenimi algoritması oluşturulmuştur. Bu yöntem, konvansiyonel öğrenme algoritmalarına 
kıyasla, iki farklı kanal ile beslenen model, klasik makine öğrenmesi sınıflandırıcıları ile ESA modelini birleştirmektedir. Bu doğrultuda 
çalışmada üç görev belirlenmiştir: ilk iki görevde her bir veri kümesi için çeşitli makine öğrenimi algoritmalarının uygulanması 
odaklanmışken, üçüncü görev veri kümelerinin birleştirilmesi ve Yığma Topluluk Sınıflandırıcısı (YTS) kullanımını içermiştir. 
Modellerin değerlendirilmesinde doğruluk ve F1-skoru metrikleri kullanılmıştır. Sonuçlar, en yüksek doğruluk skorunun %98.94 ile 
üçüncü deneyle elde edildiğini göstermektedir. Ayrıca test verisi sayısının artmasının (%20 Test ve %50 Test arasındaki fark) modelin 
doğruluk metriğinde önceki çalışmalara kıyasla minimal bir düşürme etkisine sahip olduğu gözlemlenmektedir. 
Anahtar Kelimeler: Evrişimli Sinir Ağları, Makine Öğrenmesi, Yığma Topluluk Öğrenmesi, K- Katlamalı Çapraz Doğrulama, Parmak Damar İzi 

 

1. Introduction 

Today, in our rapidly digitizing world, security has emerged as a 
crucial concern. A system with simple login information like 
passwords is quite weak. In such a situation, biometric security 
systems are rapidly advancing, introducing novel aspects to the 
processes of personal identification and verification [1]. The 
word “Biometrics” is derived from the Greek words “Bios” and 
“Metron”, which means “life” and “measurement”, respectively. 

As the name suggests, it represents measurements related to 
living beings. It is expected to be unique to the individual and 
measurable, as well as repeatable. Biometric data can be 
essentially divided into two categories: physical (fingerprint, 
finger vein, face recognition, etc.) and behavioral 
(speech/speaker recognition, walking pattern, etc.). Among 
physical biometrics, finger vein can generally be examined under 
the vein detection category. The veins in our body have a highly 
complex structure and are uniquely developed for each 
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individual. This uniqueness makes it suitable for use in biometric 
systems. Veins that are not detectable in visible light waves 
(between 360 and 700 nm) become detectable in almost infrared 
wavelengths (800 to 1100 nm). This wavelength is known as 
Near Infrared (NIR). When this light wave enters our body, it is 
absorbed by the red blood cells, hemoglobin, in the blood. 
Therefore, if an image is obtained with a camera, the areas where 
veins are located appear black, while other parts (cell tissue, 
muscle, bone, etc.) are predominantly observed in white. 
Classification can be performed with these images; hence, 
identification and verification systems can be established. The 
labor-intensive process of obtaining this information puts this 
biometric at an advantage over systems that can be easily 
obtained and stolen, such as fingerprints. 

With this study, a new perspective will be brought to finger vein 
classification problems through the developed model. Research 
results will be presented on various topics, including 
generalization capacity, the impact of different test distributions, 
and Feature/Decision level fusion. 

The remaining parts of this paper will be structured as follows: In 
section 1.1 related works will be discussed. In section 2, the finger 
vein databases will be introduced, and the established model will 
be presented. Additionally, the tasks implemented in this study 
will be introduced. In section 3, the obtained results will be 
demonstrated. Lastly, in section 4, conclusion and discussion 
parts will be presented.   

1.1. Related Works 

The acquisition of fast and secure results through finger vein data 
is considered a significant aim. Consequently, computer-assisted 
algorithms are progressively becoming more prevalent and 
actively evolving [2], [3], [4], [5] in this field. As an example, in 
[6], the skeletal structure of finger vein images was formed by 
enhancing them with Gabor filters, followed by the segmentation 
of vascular shapes. Then three different feature types extracted 
from segmented vein images and fused for classification part. The 
first extracted feature type is the local moment feature, obtained 
by sliding windows (70x70) across the image. Through 20 steps 
of this sliding process, 5 new sub-images were generated, and a 
total of (7x5) features were obtained by extracting 7 moment 
features from each. Another feature type is the topological 
features, that derived from the connections between cross-
points. The final feature type is the vein shape feature, obtained 
by extracting statistical features (mean, variance, skewness, and 
kurtosis). The extracted features were classified using a nearest 
cosine classifier. Although they achieved highly successful results 
(Accuracy rate 97.51%, 96.44% and 98.50% for each feature 
type, respectively) with their own experimental data, the 
classification method (nearest cosine classifier) may not perform 
as well for larger feature sets. Additionally, obtaining topological 
features for each test data is laborious. Utilizing more robust 
classification algorithms could enhance the model's 
generalization capacity. Therefore, Convolutional Neural 
Network (CNN) is frequently employed in such problems. It 
utilizes learnable filters in its convolutional layers for feature 
extraction. Subsequently, classification is performed based on the 
weights connected by neural networks within its structure. An 
example of studies employing this method is demonstrated in [7]. 
They use three image enhancement methods, which are CLAHE 
[8], Gabor Filter applied images and fused version two of them in 
Discrete Cosine Transform (DCT), then their models were fed 
with these three enhanced images. In their model, which 
construct from scratch, they tried various parameters and put 
optimum results (accuracy between 70.1% to 99.56% across 
various datasets) forward. Selecting the appropriate image 

enhancement method is very important, and various filters were 
applied in many studies [9], [10].  

In another research [11], they use residual Gabor convolutional 
network (RGCN) which construct by residual Gabor filter in 
convolutional layers, for feature extraction. During their 
experiment they used finger vein mixture (FV-MIX) method for 
data augmentation. They present their result (range of between 
75.83% to 100% accuracy) both augmented and not augmented 
version of each dataset. In the classification process of CNN 
architectures, the choice of the loss function is important. In [12], 
they introduced a new loss function named arccosine center loss, 
which they utilized in their work. Additionally, in this study, they 
integrated this loss function with the efficient channel attention 
residual network they devised and conducted experiments on 
four different sets. They achieved accuracy results ranging from 
99.25% to 99.93%. 

The construction of CNN from scratch can be laborious and 
inefficient in some cases. Also, to construct a deep model makes 
algorithm too complex and it causes forgetting the learnable 
things in first layer which called as vanishing gradient. As a 
solution to the vanishing gradient problem, in [13], observed that 
a CNN structure with two distinct sub-convolutional networks, 
each having different dimensions, increased the success 
compared to a single network of similar size (accuracy increase 
from 91.7% to 95%). However, these methods may still not be 
sufficient for achieving elevated results. Therefore, pre-trained 
deep learning models, that have proven their success on wide 
range of datasets, can be utilized through the transfer learning 
method. This approach not only overcomes the vanishing 
gradient problem but also yields robust results. In some studies, 
these networks can be retrained, or their already trained 
versions can be utilized. For instance, in [14], they employed the 
Densenet-161 architecture with modified version, along with 
matching using two different methods. They achieved an Equal 
Error Rate (EER) of 0.405% on the finger vein dataset. 

Last layer of the CNN architecture, classification is performed 
with neural networks, and during training, it expects a 
substantial amount of data for each class. However, datasets like 
finger vein have a limited number of samples for each individual. 
Hybrid models can be solution for such problems. In these cases, 
the CNN architecture is utilized for the feature extraction process, 
and the final layer is fed into machine learning algorithms. For 
example, in [15] they employ VGG19 and ResNet50 architectures 
with transfer learning as feature extractors, followed by the use 
of a Support Vector Machine (SVM) to classify the extracted 
vectors. 

Transformer models [16], which have become quite popular 
recently, are emerging as an alternative to CNN networks, 
especially after starting to be applied to image problems [17]. 
Numerous studies [18], [19], [20] using these model 
architectures can be found in the literature. However, it is 
important to note that achieving efficiency from such a network 
requires a very large dataset, which is not typically available for 
finger vein problems. [21]. 

In this proposed study, two image processing methods will be 
used. The first one is Contrast Limited Adaptive Histogram 
Equalization (CLAHE), and the other is the Sobel filtering image 
enhancement method. These two images will be fed into a CNN 
algorithm for feature extraction through two separate channels. 
The DenseNet201 architecture will be applied as the CNN model 
with pre-trained weight using Transfer Learning. The dense layer 
will not be added to the model; instead, the DenseNet 201 output 
vector was transferred to the classification algorithms. Machine 
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learning methods, which are SVM, LDA and Multi-Layer 
Perceptron (MLP), have been chosen for classification. Various 
tasks will be identified based on the main motivations of the 
study. The first motivation is to increase the number of test 
samples compared to examples in the literature and achieve 
successful results. The second motivation is to merge both 
datasets and apply the Stacking Ensemble Classifier (SEC) 
algorithm, which is created by successful classifiers in the first 
two tasks. 

2. Materials and Methods  

In this section, detailed explanations will be provided 
sequentially, including a description of the utilized datasets, the 
image processing methods, an overview of the established 
models, and the classification phase. 

2.1. Data Description 

In this study utilizes two distinct datasets. The first dataset, 
MMCBNU-6000[22], which was published by the Multimedia Lab, 
Division of Electronic and Information Engineering, Chonbuk 
National University, comprises a total of 6000 images from a 
community of 100 individuals. For each person, there are 10 
repeated images of 6 fingers, making a total of 600 classes. The 
ROI output, obtained in this [23] study, will be used directly for 
the subsequent image processing step. The second dataset, FV-
USM[24], which was published from Universiti Sains Malaysia 
(Science University of Malaysia), is collected in two parts, 
consisting of 6 repeated vein pattern data for 4 fingers of each 
individual. In total, there are 5904 images from 123 different 
individuals across two sessions. In this study, each finger is 
individually investigated, resulting in a total of 492 classes. The 
ROI images is readily available along with this dataset. Images 
from both datasets are provided in Figure 1 

 

Figure 1. ROI images of Each Dataset (MMCBNU-6000[22], [23], 
and FV-USM[24], respectively). 

2.2. Image Processing & Enchancement 

The image processing and enhancement stage is a crucial step 
before the feature extraction, which is important for improving 
the outcome of classification. In this proposed study, two 
different image enhancement methods will be applied. The 
parameters and application specifics will be explained in the 
following sections. 

2.2.1. Contrast Limited Adaptive Histogram     
Equalization (CLAHE) 

Histogram equalization (HE) methods are visual enhancement 
techniques used to highlight details in an image. However, 
applying this process uniformly across all pixel values may yield 
suboptimal results when different regions exhibit distinct 
lighting conditions.  To address this, the image needs to be 
divided into specific regions for localized equalization. This 
process is known as Adaptive Histogram Equalization (AHE). 
Despite its higher cost due to regional processing compared to 
HE, AHE provides a better solution. One significant drawback of 
AHE is that, depending on regional variations, it can lead to 

excessive contrast changes in some parts of the image compared 
to the overall contrast, disrupting the integrity of the image. 
Therefore, the CLAHE method, which has limited contrast value, 
ensures a more coherent image. Hence, in this study, this method 
will be used to create a base image. 

CLAHE operates with two different parameters: “clipLimit”, 
which determines the contrast limit, and “tileGridSize”, which 
specifies the size of the masking grid. Based on preliminary work 
on the images, different parameters have been selected for both 
sets. For the MMCBNU-6000 dataset, these are determined as 20 
and (5,5), respectively, and for the FV-USM dataset, they are set 
as 20 and (3,3). The CLAHE outputs are illustrated in Figure 2. 

 

Figure 2. CLAHE Enhanced Images of Each Dataset (MMCBNU-
6000 and FV-USM, respectively). 

2.2.2. Sobel Filter Image Enhancement 

The application of a Sobel filter to highlight the border regions of 
the image can enhance the visibility of vascular regions. In this 
proposed study, this process is planned to be conducted on 
images already enhanced with CLAHE. Thus, by initially applying 
CLAHE to enhance the visibility of veins and subsequently 
reinforcing it with Sobel, a more robust enhancement will be 
achieved. The Sobel operation will be performed in two 
dimensions, along the x and y axes, and then combined with a 
50% weight contribution from each to facilitating the detection 
of diagonal veins. The kernel size, determined in preliminary 
experiments, is selected as 7 for both sets. The image enhanced 
with Sobel is illustrated in Figure 3. 

 

Figure 3. Sobel Enhanced Images of Each Dataset (MMCBNU-
6000 and FV-USM, respectively) 

Following this process, both images have been forwarded to the 
next stage. 

2.3. Feature Extraction 

In this section, features will be extracted from the images 
obtained from the previous stage. Convolutional layers of CNN 
networks will be utilized for this process. Various filters are 
applied in each layer by convolutional networks to detect 
features. While in the initial layer, it makes detections such as 
lines and corners, as the model becomes deeper, it begins to 
extract more complex shapes. In this study, it is planned to utilize 
robust CNN models that have been tested on large datasets 
through the transfer learning method. Accordingly, in 
preliminary work, models such as VGG19, EfficientNetB7, and 
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DenseNet201 were tested, and due to the efficient results 
obtained with the DenseNet201 architecture, it has been decided 
to employ it for this feature extraction process. 

Unlike linearly evolving CNNs, DenseNet201 differs by 
feeding the outputs of its layers into subsequent layers, thereby 
preventing data loss in the flow and offering a solution to the 
vanishing gradient problem. This mechanism enables the 
establishment of a deep convolutional network. In this study, the 
proposed feature extraction method utilizes the DenseNet201 
architecture as the feature extractor, and it will be fed with 
enhanced images through two different channels. To achieve this, 
two separate branches will be established, processing CLAHE 
images in one path and Sobel images in the other. The final layer 
outputs will be obtained using the Global Average Pooling 
method, and both outputs will be concatenated. Thus, the initial 
fusion process will be conducted at the feature level at this stage.  

Train and test data were subjected to feature extraction 
separately. Once the features were extracted, they underwent a 
standardization process before proceeding to the classification 
step. 

2.4. Classification 

The classification process of the extracted features will be 
explained in this section. Various classification algorithms have 
been tried for this process. The first of these is the SVM, originally 
introduced by Cortes and Vapnik [25] for binary classification. 
Over time, it has become applicable for multi-class problems. 
SVMs detect the widest margins between classes to separate 
them and generate decision outputs. Both linear kernel and non-
linear Radial Basis Kernel (RBF) can be employed in this study. 
The cost “C” parameter determines the penalty score to be 
applied when misclassification occurs, while the “gamma” 
parameter defines the area for the RBF kernel. 

Another classification algorithm is the Multi-Layer Perceptron. 
Structurally resembling neural networks found in living 
organisms, this classification algorithm fires nodes based on 
weights and generates decision outputs. The number of layers 
determines the depth of the model, and as the number of layers 
increases, more complex shapes are learned. This classifier was 
included to compare proposed model with the conventional CNN. 

The final classifier is the Linear Discriminant Analysis (LDA) 
method. LDA enhances the boundaries between features by 
emphasizing differences and similarities, with creating 
subspaces. 

Parameter selections were made through trial in the preliminary 
study. Accordingly, for the SVM linear kernel, the C parameter is 
set to 0.01, while for the RBF kernel, the C parameter is set to 1, 
and the gamma parameter is set to “auto”. In the MLP classifier, 
the number of hidden layers is set to 300, the solver parameter is 
set to “sgd”, the learning rate is set to “adaptive”, and the 

activation function is set to “relu”. Finally, in the LDA algorithm, 
the solver parameter is set to “svd”, and the shrinkage is set to 
“None”. 

2.5. Ensemble of Classifiers 

The decision level fusion aiming to achieve more robust results 
by combining the models that yield the best outcomes. In 
proposed model, the utilization of the Stacking Ensemble 
Classifier (SEC)[26] method was selected. The SEC algorithm can 
be examined in two steps. The first step involves the selection of 
individual classifiers, known as base models, while the second 
step involves the creation of the decision output, known as the 
meta model. This method fundamentally combines the learning 
algorithms of base models, allowing weak learner classifiers to 
contribute to strong classifiers, leading to more robust results. By 
integrating the perspectives of different experts, learning is 
enhanced. Unlike other ensemble methods, this algorithm 
reclassifies the probability distributions of base model outputs 
using a new classifier, resulting in much more successful 
outcomes than a simple voting process. 

The base models were selected with algorithms that yielded the 
highest results in previous task, then meta model performs 
classification using logistic regression (LR). The SEC algorithm 
initially trains the base models and generates decision outputs. 
Subsequently, based on these outputs, LR undergoes final 
training. In other words, meta model is trained not based on data 
but rather on the output probabilities of the base models. 

All classification algorithms were implemented by using Scikit-
learn library [27]. 

2.6. Experiment and Evaluation 

Stratified K-fold structure has been employed at each stage of the 
experiment. K-fold involves dividing the data and sequentially 
setting each portion as a test and train set. This ensures that the 
analysis is performed not only on a specific subset of the data but 
across the entire dataset. In this study, various values of K 
ranging from 2 to 6 have been employed depending on the tasks 
and data distribution. The study involves three main tasks in 
working with the data: 

Task A: Training MMCBNU_6000 dataset using individual 
classifiers. In the tests within the scope of this task, the K value 
for K-Fold was selected as 2 and 5, as shown in Figure 4. 

Task B: Training FV_USM dataset using individual classifiers. For 
the tests conducted as part of this task, the K value for K-Fold was 
chosen as 6, 4, 3 and 2, as shown in Figure 4. 

Task C: Combining the strongest individual classifiers in the SEC 
algorithm, creating a unified model, and feeding both datasets 
into the SEC algorithm. the K value for K-Fold was chosen as 6, 4, 
3 and 2, as shown in Figure 5.

 

Figure 4. Proposed Model for Task A and B. 
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Figure 5. Proposed Model for Task C (Using the SEC Algorithm in the Combination of Two Different Datasets).  

3. Results  

In this section, the results obtained from the experiment were 
examined for each task. The results were represented with 
different splitting ratio using Accuracy and F1-Score, allowing for 
comparisons. 

3.1. Task A and B Result Performance 

The result table for Task A is as shown in Table 1, containing the 
accuracy and F1-Score results obtained for the MMCBNU_6000 
dataset with the proposed model. Table 2 displays the results for 
Task B obtained with the FV-USM dataset. The outcomes vary 
depending on the different K-Fold applications on both datasets, 
leading to different training and test distributions. The findings 
from the table indicate the superiority of SVM (linear kernel) and 
LDA classifiers. Additionally, it is observed that as the training set 
increases and the test data decreases, higher success rates are 
achieved. In Task A, the highest result was obtained with SVM 
(linear kernel) at %80 Train - %20 Test data distribution, 

reaching 98.1%. In Task B, the highest achievement was obtained 
with the SVM classifier (linear kernel) at %83.3 Train %16.67 
Test data distribution, reaching 98.8%. 

3.2. Task C Results Performance 

The results presented in Table 3 belong to Task C, representing 
the outcomes of the SEC algorithm created using successful 
algorithms (SVM and LDA) from the individual classification 
(Task A and B) section. In this task, the combination of two 
datasets formed a unified dataset, and 2, 3, and 5 K-Fold 
structures were employed. Upon examination of the 
experimental results, it was observed that an increase in the test 
data accompanied by a decrease in the training data negatively 
impacted the model's performance. While a 97.22% accuracy was 
achieved with the 2 K-Fold structure, the 5 K-Fold structure 
yielded results of 98.94%. Combining all available datasets for 
this study has increased the generalization capacity of the data, 
contributing to a more objective result.

Table 1. Accuracy and F1-Score for Task A (with Different Train Test Split Ratio). 

  MMCBNU_6000 Dataset 

  5 K-Fold  
(%80 Train %20 Test) 

 2 K-Fold  
(%50 Train %50 Test) 

 5 K-Fold  
(%20 Train %80 Test) 

  Accuracy F1-Score  Accuracy F1-Score  Accuracy F1-Score 
SVM_RBF  0.9645 0.9638  0.9537 0.9569  0.8601 0.8589 
SVM_LIN  0.9810 0.9794  0.9755 0.9748  0.8911 0.8878 
MLP  0.951 0.9475  0.9548 0.9536  0.8128 0.8053 
LDA  0.9757 0.9741  0.9740 0.9750  0.9279 0.9260 

Table 2. Accuracy and F1-Score for Task B (with Different Train Test Split Ratio). 

  FV-USM Dataset 
  6 K-Fold (%83.3 Train 

%16.67 Test) 
 4 K-Fold  

(%75 Train %25 Test) 
 3 K-Fold (%66.67 Train 

%33.3 Test) 
  Accuracy F1-Score  Accuracy F1-Score  Accuracy F1-Score 
SVM_RBF  0.9758 0.9741  0.9726 0.9717  0.9670 0.9668 
SVM_LIN  0.9880 0.9871  0.9834 0.9826  0.9807 0.9802 
MLP  0.9638 0.9605  0.9588 0.9564  0.9485 0.9468 
LDA  0.9854 0.9845  0.9094 0.9063  0.9707 0.9709 

 

  FV-USM Dataset 
  2 K-Fold  

(%50 Train %50 Test) 
 6 K-Fold (%16.67 Train 

%83.3 Test) 
  Accuracy F1-Score  Accuracy F1-Score 
SVM_RBF  0.9492 0.9492  0.8024 0.8002 
SVM_LIN  0.9687 0.9679  0.8364 0.8310 
MLP  0.9289 0.9263  0.7235 0.7118 
LDA  0.9741 0.9741  0.8750 0.8706 
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Table 3. Accuracy and F1-Score for Task C (with Different Train Test Split Ratio). 

  MMCBNU_6000 & FV-USM Dataset  
  2 K-Fold  

(%50 Train %50 Test) 
 3 K-Fold (%66.67 Train 

%33.37 Test) 
 5 K-Fold  

(%80 Train % 20 Test) 
  Accuracy F1-Score  Accuracy F1-Score  Accuracy F1-Score 
SEC  0.9722 0.9730  0.9861 0.9864  0.9894 0.9891 

4. Conclusion and Discussion 

In the digitally evolving era, biometric data has become highly 
valuable for security systems. Biometric data is characterized by 
its presence in every individual, distinctiveness, and 
measurability. Finger vein is among these biometric features and 
has become increasingly common research topic over time. In 
this study, the models constructed by using finger vein datasets 
which are using in the previous studies. Accordingly, two 
different image processing method, which are CLAHE and Sobel, 
were utilized to enhance images and benefited from CNN 
networks for feature extraction. At this point, DenseNet201 
architecture was added into the model through transfer learning, 
and it was fed with two separate channels. Then, by utilizing the 
feature fusion method, a vector output was obtained. This output 
was fed into the classifiers to generate a decision output. Then the 
model was tested for three different tasks and obtained results 
were reported. The first task involved testing the MMCBNU-6000 
dataset using SVM, MLP, and LDA methods. The SVM function was 
experimented with using both non-linear RBF kernel and Linear 
kernel separately. When the results are examined, it is observed 
that the SVM (linear kernel) function and LDA are characterized 
by quite high performance. Two different interpretations can be 
deduced from this. Firstly, it was revealed that the features are 
linearly separable; secondly, it implies that more advanced 
results can be obtained compared to traditional CNN applications 
with an MLP function in the final layer. These situations are also 
valid for Task B.  

Task C constitutes the main motivation of this study. The merging 
of the dataset resulted in a more comprehensive solution, 
enhancing the model's capacity for generalization. To the best of 
our knowledge, this is the first study to incorporate the merging 
of these two datasets. This allowed for the examination of a more 
extensive dataset. Additionally, the application of the SEC 
algorithm resulted in the combination of the two classifiers that 
individually yielded the highest performance, leading to a more 
robust solution. Examining the results, the accuracy of 98.94% 
obtained for Task C, demonstrates the success of the model. Our 
second motivation was to try this model on a more extensive test 
set and achieve minimal impact on the accuracy rate decrease 
resulting from this. In this context, it can be observed that quite 
successful (%1.7) results were obtained.  

One of the main goals of the study was to increase the average 
success rate through the fusion process performed in the two-
branch CNN network. When examining Figures 6, 7, and 8, it can 
be observed that this goal has been successfully achieved. 

The study demonstrates that feature fusion using two different 
channels contributes to the results (see Figures 6, 7, and 8). 
Therefore, it can be observed that improving the outcomes with 
such a system is possible. Although the results are relatively low 
in classification of using only Sobel or only CLAHE features, it has 
been observed that weak features can complement each other 
and improve the outcome when two channels are used. 

 

 

Figure 6. The Average Scores Between Different Feature Types 

in Task A. 

 

Figure 7. The Average Scores Between Different Feature Types 

in Task B. 

 

Figure 8. The Average Scores Between Different Feature Types 

in Task C. 
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Although the study was generally successful when compared 
with the state of the art, various limitations were encountered 
during its construction. The first one is the considerable amount 
of time spent training the model due to it running on the CPU. 
However, considering that the training process will be performed 
only once, this will not pose such a significant problem. The 
sequential application of image processing, feature extraction 
and classification also repetitively structure like K-fold also 
creates a considerable cost issue. In later systems, using a single 
model for all test operations would significantly reduce the time 
required, making the training cost negligible. 

In further studies, models can be constructed to create a more 
comprehensive system and lighter the processing load. 
Additionally, models that ensure a high level of data security can 
be built by employing federated learning approaches for the 
combining of multiple datasets. Alternatively, synthetic data 
augmentation using generative networks could lead to much 
more successful results. Furthermore, the system can be 
transferred to an embedded structure and tested with real-time 
data, or it can be released as a final product. 

Author Contribution Statement 

Berke Cansız: Writing, Software, Methodology.  

Murat Taşkıran: Writing, Supervision, Conceptualization. 

References 

[1] Shaheed, K., Mao, A., Qureshi, I., Kumar, M., Hussain, S., Zhang, X. 2022. 
Recent advancements in finger vein recognition technology: 
methodology, challenges and opportunities, Inf. Fusion, Vol. 79, pp. 84–
109. 

[2] Lian, F.-Z., Huang, J.-D., Liu, J.-X., Chen, G., Zhao, J.-H., Kang, W.-X. 2023. 
FedFV: A personalized federated learning framework for finger vein 
authentication, Mach. Intell. Res., Vol. 20, No. 5, pp. 683–696. 

[3] Zhang, L., Li, W., Ning, X., Sun, L., Dong, X. 2021. A local descriptor with 
physiological characteristic for finger vein recognition, in: 2020 25th 
International Conference on Pattern Recognition (ICPR), pp. 4873–4878. 
DOI: 10.1109/ICPR48806.2021.9412203. 

[4] Zhang, L., et al. 2022. A joint Bayesian framework based on partial least 
squares discriminant analysis for finger vein recognition, IEEE Sens. J., 
Vol. 22, No. 1, pp. 785–794. DOI: 10.1109/JSEN.2021.3130951. 

[5] Lv, W., Ma, H., Li, Y. 2023. A finger vein authentication system based on 
pyramid histograms and binary pattern of phase congruency, Infrared 
Phys. Technol., Vol. 132, p. 104728. DOI: 
10.1016/j.infrared.2023.104728. 

[6] Yang, J., Shi, Y., Yang, J., Jiang, L. 2009. A novel finger-vein recognition 
method with feature combination, in: 2009 16th IEEE International 
Conference on Image Processing (ICIP), pp. 2709–2712. 

[7] Boucherit, I., Zmirli, M.O., Hentabli, H., Rosdi, B.A. 2022. Finger vein 
identification using deeply-fused convolutional neural network, J. King 
Saud Univ. Comput. Inf. Sci., Vol. 34, No. 3, pp. 646–656. DOI: 
10.1016/j.jksuci.2020.04.002. 

[8] Pizer, S.M. 1990. Contrast-limited adaptive histogram equalization: 
speed and effectiveness, in: Proceedings of the First Conference on 
Visualization in Biomedical Computing, Atlanta, Georgia, p. 2. 

[9] Zhang, L., Wang, X., Dong, X., Sun, L., Cai, W., Ning, X. 2021. Finger vein 
image enhancement based on guided tri-Gaussian filters, ASP Trans. 
Pattern Recognit. Intell. Syst., Vol. 1, No. 1, pp. 17–23. 

[10] Kilic, U., Karabey Aksakalli, I., Tumuklu Ozyer, G., Aksakalli, T., Ozyer, B., 
Adanur, S. 2023. Exploring the effect of image enhancement techniques 
with deep neural networks on direct urinary system (DUSX) images for 
automated kidney stone detection, Int. J. Intell. Syst., Vol. 2023, No. 1, p. 
3801485. 

[11] Wang, Y., Lu, H., Qin, X., Guo, J. 2023. Residual Gabor convolutional 
network and FV-Mix exponential level data augmentation strategy for 
finger vein recognition, Expert Syst. Appl., Vol. 223, p. 119874. 

[12] Hou, B., Yan, R. 2021. ArcVein-Arccosine center loss for finger vein 
verification, IEEE Trans. Instrum. Meas., Vol. 70, pp. 1–11. DOI: 
10.1109/TIM.2021.3062164. 

[13] Zhang, Y., Liu, Z. 2020. Research on finger vein recognition based on sub-
convolutional neural network, in: 2020 International Conference on 
Computer Network, Electronic and Automation (ICCNEA), pp. 211–216. 
DOI: 10.1109/ICCNEA50255.2020.00051. 

[14] Kuzu, R.S., Maiorana, E., Campisi, P. 2020. Vein-based biometric 
verification using transfer learning, in: 2020 43rd International 
Conference on Telecommunications and Signal Processing (TSP), pp. 
403–409. DOI: 10.1109/TSP49548.2020.9163491. 

[15] Tao, Z., Zhou, X., Xu, Z., Lin, S., Hu, Y., Wei, T. 2021. Finger-vein recognition 
using bidirectional feature extraction and transfer learning, Math. Probl. 
Eng., Vol. 2021, p. 6664809. DOI: 10.1155/2021/6664809. 

[16] Vaswani, A., et al. 2017. Attention is all you need, Adv. Neural Inf. Process. 
Syst., Vol. 30. 

[17] Dosovitskiy, A., et al. 2020. An image is worth 16x16 words: transformers 
for image recognition at scale, ArXiv Prepr. ArXiv201011929. 

[18] Zhao, P., et al. 2024. VPCFormer: A transformer-based multi-view finger 
vein recognition model and a new benchmark, Pattern Recognit., Vol. 
148, p. 110170. DOI: 10.1016/j.patcog.2023.110170. 

[19] Li, X., Zhang, B.-B. 2023. FV-ViT: Vision transformer for finger vein 
recognition, IEEE Access. 

[20] Garcia-Martin, R., Sanchez-Reillo, R. 2023. Vision transformers for vein 
biometric recognition, IEEE Access, Vol. 11, pp. 22060–22080. 

[21] An, Z., Ren, X., Tao, Z. 2024. FV-DMHN: Dual multi-head network for 
finger vein recognition, IEEE Access. 

[22] Lu, Y., Xie, S.J., Yoon, S., Wang, Z., Park, D.S. 2013. An available database 
for the research of finger vein recognition, in: 2013 6th International 
Congress on Image and Signal Processing (CISP), pp. 410–415. DOI: 
10.1109/CISP.2013.6744030. 

[23] Lu, Y., Xie, S.J., Yoon, S., Yang, J., Park, D.S. 2013. Robust finger vein ROI 
localization based on flexible segmentation, Sensors, Vol. 13, No. 11, pp. 
14339–14366. DOI: 10.3390/s131114339. 

[24] Mohd Asaari, M.S., Suandi, S.A., Rosdi, B.A. 2014. Fusion of band limited 
phase only correlation and width centroid contour distance for finger 
based biometrics, Expert Syst. Appl., Vol. 41, No. 7, pp. 3367–3382. DOI: 
10.1016/j.eswa.2013.11.033. 

[25] Cortes, C., Vapnik, V. 1995. Support-vector networks, Mach. Learn., Vol. 
20, No. 3, pp. 273–297. DOI: 10.1007/BF00994018. 

[26] Wolpert, D.H. 1992. Stacked generalization, Neural Netw., Vol. 5, No. 2, 
pp. 241–259. DOI: 10.1016/S0893-6080(05)80023-1. 

[27] Pedregosa, F. 2011. Scikit-learn: Machine learning in Python, J. Mach. 
Learn. Res., Vol. 12, p. 2825. 

  


	1. Introduction
	1.1. Related Works
	2. Materials and Methods
	2.1. Data Description
	2.2. Image Processing & Enchancement
	2.2.1. Contrast Limited Adaptive Histogram     Equalization (CLAHE)
	2.2.2. Sobel Filter Image Enhancement
	2.3. Feature Extraction
	2.4. Classification
	2.5. Ensemble of Classifiers
	2.6. Experiment and Evaluation
	3. Results
	3.1. Task A and B Result Performance
	3.2. Task C Results Performance
	4. Conclusion and Discussion
	In the digitally evolving era, biometric data has become highly valuable for security systems. Biometric data is characterized by its presence in every individual, distinctiveness, and measurability. Finger vein is among these biometric features and h...
	Task C constitutes the main motivation of this study. The merging of the dataset resulted in a more comprehensive solution, enhancing the model's capacity for generalization. To the best of our knowledge, this is the first study to incorporate the mer...
	The study demonstrates that feature fusion using two different channels contributes to the results (see Figures 6, 7, and 8). Therefore, it can be observed that improving the outcomes with such a system is possible. Although the results are relatively...
	Although the study was generally successful when compared with the state of the art, various limitations were encountered during its construction. The first one is the considerable amount of time spent training the model due to it running on the CPU. ...
	In further studies, models can be constructed to create a more comprehensive system and lighter the processing load. Additionally, models that ensure a high level of data security can be built by employing federated learning approaches for the combini...

	Author Contribution Statement
	References

