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Branch and End Points Detection in Cerebral Vessels Images 

Using Deep Learning Object Detection Techniques 

Derin Öğrenme Nesne Tespit Teknikleri Kullanılarak Serebral Damar 

Görüntülerinde Dal ve Uç Noktalarının Tespiti 
 

Highlights 

❖ Detection of vessel branching and endpoints using deep learning object recognition methods. 

❖ Creating a branch and end point dataset that can be used for deep learning. 

❖ Comparison of deep learning methods. 

❖ Quantitative characterization of brain vessels. 

Graphical Abstract 

The success of deep learning methods on images of cerebral vessels, which are skeletonized with classical image 

processing methods and have branching and endpoints, is demonstrated in this study. 
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Figure. Scores of Deep Learning Object Detection Methods 

Aim 

To demonstrate that branching and endpoints in vascular networks can be detected with deep learning object 

detection methods and to compare between methods. 

Design & Methodology 

A grand-truth dataset was created from the branches and endpoints detected with the classical image processing 

method, and then the results were revealed by testing deep learning algorithms trained with this dataset. 

Originality 

There is no published grand-truth dataset for the detection of branching and endpoints of two-dimensional brain 

vessels. In addition, detection and comparison with different deep learning object recognition methods has not 

been performed. 

Findings 

Detecting the branching and endpoints of veins, which can be done with image processing, can also be done 

with deep learning object recognition methods with very high success. 

Conclusion 

This work contributes to the advancement of medical imaging analysis by demonstrating the effectiveness of 

deep learning on challenging tasks such as brain vessel detection. The findings have potential implications for 

improving clinical diagnosis and research in neurovascular disorders, paving the way for more efficient and 

accurate analysis of complex biological images in the future. 
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ABSTRACT 

In this study, we introduce a cutting-edge methodology for detecting branching and endpoints in two-dimensional brain vessel 

images, employing deep learning-based object detection techniques. While conventional image processing methods are viable 

alternatives, our adoption of deep learning showcases notable advancements in accuracy and efficiency. Following meticulous 

cleaning and labeling of the raw dataset sourced from laboratory environments, we meticulously convert it into the COCO 

format, ensuring compatibility with deep learning algorithms for both training and testing phases. Utilizing four deep learning 

object detection methods: fast R-CNN, faster R-CNN, RetinaNet and RPN within the Detectron2 framework, our study 

achieves remarkable results. Evaluation using the intersection over union (IoU) method underscores the robust performance of 

our deep learning approach, boasting a success rate surpassing 90%. This breakthrough not only enhances neuroimaging 

analysis but also holds immense potential for revolutionizing diagnostic and research practices in neurovascular studies. 

Key Words: Object Detection, Deep Learning, Branch and End Point Detection. 

Derin Öğrenme Nesne Tespit Teknikleri Kullanılarak 

Serebral Damar Görüntülerinde Dal ve Uç 

Noktalarının Tespiti 

ÖZ 

Bu çalışmada iki boyutlu beyin damarı görüntülerinde dallanma ve uç noktaları tespit etmek derin öğrenme tabanlı nesne 

algılama tekniklerini kullanıldığı,son teknoloji bir metodoloji tanıtıyoruz. Geleneksel görüntü işleme yöntemleri geçerli 

alternatifler olsa da, derin öğrenme kullanarak uyguladığımız yöntem doğruluk ve verimlilik açısından kayda değer başarım 

sergilemiştir. Laboratuvar ortamlarından aldığımız ham veri setini titizlikle temizleyip etiketledikten sonra COCO formatında 

veri seti oluşturarak, hem eğitim hem de test aşamalarında derin öğrenme algoritmalarıyla uyumluluk sağlıyoruz. Derin 

öğrenme nesne tespiti için kullandığımız, Detectron2 çerçevesinde bulunan fast R-CNN, faster R-CNN, RetinaNet ve RPN ile 

dikkat çekici sonuçlar elde ettik. Birleşim üzerindeki kesişim (IoU) yöntemini kullanarak yaptığımız değerlendirmeyle 

modelleri karşılaştırdık ve %90'ı aşan bir başarı oranına sahip olan derin öğrenme model performanslarının altını çiziyoruz. 

Çalışma sadece nörogörüntüleme analizini geliştirmekle kalmıyor, aynı zamanda nörovasküler çalışmalarda teşhis ve araştırma 

uygulamalarında devrim yaratma konusunda da büyük bir potansiyel taşımaktadır. 

Anahtar Kelimeler: Nesne Algılama, Derin Öğrenme, Dal ve Uç Nokta Algılama.  

 

1. INTRODUCTION 

Advances in medical imaging technology have 

enabled the acquisition of high-resolution two-

dimensional brain vessel images [1][2][3]. Accurate 

examination of blood vessels is crucial for 

characterizing alternations in vascular structure due to 

disease. This analysis can provide crucial insight into 

the state of the disease, its progression or the 

effectiveness of potential treatments [2][4]. This 

wealth of information inside the images that often 

cannot be analyzed manually by humans in biological 

studies [5]. Critical tasks in analyzing such images 

include detecting branching and end points within the 

vasculature, as these features have significant 

diagnostic and research value [6][7]. Traditionally, this 

process has relied on conventional image processing 

techniques, which often require extensive manual 

intervention and lack the scalability needed for large-

scale analysis. 

Unlike traditional object detection methods, deep 

learning leverages the power of neural networks to 

automatically identify relevant features from raw data, 

potentially offering improved accuracy and efficiency 

in detecting vascular structures. If we don’t take 

scalability into account and there is no trainable 
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dataset, classical object detection may be a better 

approach. For all that deep learning approaches have 

outperformed image processing approaches in terms of 

performance as the amount of information increases 

[8][9].  

A paper presents a computational tool designed for the 

quantitative analysis of vascular networks [10]. 

Leveraging advanced mathematical models or 

machine learning techniques, the tool enables precise 

measurement and characterization of vascular 

structures, aiding researchers in understanding 

vascular morphology, function, and pathology.  The 

tool computes various morphological and spatial 

parameters, such as the area covered by a vascular 

network and the number of vessels. 

A 2012 study presented an innovative method for the 

automatically detecting and classifying bifurcation and 

branching points in retinal vessel images, which are 

crucial for the diagnosing diseases like diabetic 

retinopathy. The approach combines morphological 

operations with local gradient information to 

accurately identify and classify vascular network 

structures [8].  

Another study [11] uses a multi-tasking network 

architecture to facilitate the detection of connections in 

the retinal vasculature, enabling multiple tasks to be 

performed simultaneously within a unified framework. 

This approach optimized the efficiency and accuracy 

of identifying critical features in retinal images, 

facilitating effective disease diagnosis and treatment 

planning. 

In a study of cerebral vessels, the "Vessel Metrics" 

software tool uses Python-based techniques to perform 

automated analysis of vascular structures in confocal 

imaging [5]. The application enables efficient and 

precise measurement of vascular properties, 

facilitating research in various fields such as biology 

and medicine. 

There are many deep learning object detection 

algorithms [9]. In particular, we use the popular four 

deep learning object detection method within the 

Detectron2 framework a state-of-the-art technique 

known for their robust performance in detecting 

objects in images [12]. 

By leveraging sophisticated algorithms, it has achieved 

accurate segmentation and characterization of brain 

blood vessels, providing valuable insights for clinical 

diagnosis and research. The work has employed a 

convolutional neural network (CNN) for automated 

analysis of whole brain vasculature, demonstrating its 

efficacy in segmenting intricate vascular structures 

with high accuracy and efficiency [1].  

One research applied machine learning methods, 

specifically convolutional neural networks, for 

analyzing the complete mouse brain vasculature. This 

study utilized deep learning methods, in particular 

convolutional neural networks (CNNs), to 

comprehensively analyze the entire mouse brain 

vasculature. Using CNNs, the research achieved robust 

segmentation and extracted intricate vascular network 

lengths and bifurcation points [13]. 

A comprehensive protocol is presented for 

immunofluorescent labelling of mouse brain vessels 

using tissue sections [14]. Then, the authors made 

unbiased measurements of vessel density, branching, 

and tortuosity using two- or three-dimensional digital 

image processing algorithms, respectively. The study 

utilized advanced image processing algorithms, 

including machine learning and computer vision 

techniques, to conduct an unbiased analysis of mouse 

brain endothelial networks using 2D or 3D 

fluorescence images. 

In this work, we an innovative method employing deep 

learning-based object detection to automate the 

identification of branch and end points in two-

dimensional brain vessel images. In classical object 

recognition, methods were used to find and classify the 

branching and bifurcation points of veins [8].  

There are steps to be followed for object recognition 

with deep learning [15] [16]. For this study to facilitate 

the deep learning model's training and evaluation, we 

firstly preprocess the raw dataset from laboratory 

experiments to ensure cleanliness and accuracy. The 

dataset is then rigorously labelled to provide ground 

truth annotations for training the object detection 

algorithm. To increase compatibility with the deep 

learning framework, the labelled dataset is then 

converted into COCO format, a widely used standard 

for object detection tasks [17]. The evaluation of our 

proposed method is robust, focusing on its 

performance in accurately detecting branching points 

and endpoints in brain vessel images. We employ the 

union over intersection (IoU) metric, a reliable 

measure that quantifies the degree of overlap between 

predicted and ground truth annotations, providing a 

strong indicator of detection accuracy. The findings of 

our study demonstrate the significant success achieved 

by the deep learning-based approach, with detection 

accuracy exceeding 90%. These results emphasize the 

capability of deep learning as a valuable tool for 

automating the analysis of brain vessel images, 

offering improved efficiency and accuracy compared 

to traditional image processing techniques. 

Overall, this work contributes to the advancement of 

the field of medical imaging analysis by demonstrating 

the effectiveness of deep learning in addressing 

challenging tasks, such as brain vessel detection, with 

potential implications for improving clinical diagnosis 

and research in neurovascular disorders. Moreover, the 

findings underscore the promising potential of 

integrating deep learning methodologies into medical 

imaging analysis and offer valuable insights to 

improve diagnostic accuracy and treatment strategies 

in neurovascular disorders. 

 

2. METHODS 

In this research, we introduce an approach to 

automatically detect branches and endpoints in two-



 

 

dimensional brain vessel images by employing object 

detection methods based on deep learning. The 

following sections provide detailed insights into the 

proposed approach.  

 

2.1. Construction of Brain Vessel Dataset 

Raw images need to be transformed into a data set for 

deep learning algorithms to work with them. The data 

preparation process can be divided into three parts: (1) 

image skeletonization; (2) label objects (their location 

and class) on images; (3) convert the images into the 

COCO format. 

2.1.1. Construction image skeletonization 

In microscope images of the mouse brain, the vessels 

are easily visible. In order to be processed by computer 

vision techniques, some pre-processing is required. An 

exemplary image is given in Figure 1.  

 

 
Figure 1. An exemplary image used in the experiments. 

 

Images of the mouse brain taken with a microscope 

have so much noise that it is almost impossible to find 

the vasculature. Firstly, we denoise images and then, 

we perform segmentation and skeletonization 

methods, respectively. Five consecutive pre-

processing steps, as shown in Figure, are performed to 

obtain skeletonized images.  

BM4D 
Noise 

Removing 
Sharpenning Smooting Thresholding Skeletonize

 
Figure 2. Image Pre-Processing Steps 

 

In the pre-processing steps, we first remove the noise 

from the images. Since no reference image exists for 

the noise removal, we use the block matching 

algorithm (BM4D), which takes the reference from 

within itself [18][19]. Then, we sharpen and smooth 

process to make the veins more prominent. The next 

step is to segment the veins. Among there are many 

proposed methods for this process [20][21].  However, 

in order not to shift the focus of the study, we only 

examine Otsu thresholding [22]. Lastly, we convert the 

segmented images into a binary skeleton using the 2D 

thinning algorithm [23]. After all these procedures, the 

images are suitable for finding branch and end points. 

The skeletonized image is shown in Figure 3. The 

image consists of a binary vessel network. 

 

Figure 3: Skeletonized image obtained by the pre-

processing methods. 

 

2.1.2. Object labelling 

To detect the objects (branch points and endpoints), we 

employ the Hit-or-Miss transform algorithm, which is 

a morphological operation used for pattern matching in 

image processing. It aims to detect patterns 

characterized by specific configurations of foreground 

and background pixels. The algorithm identifies 

regions in the input image where the pattern matches, 

using a structuring element that defines the pattern to 

be detected. This process involves performing two 

morphological operations: erosion and 

complementation. This algorithm is particularly useful 

for tasks such as shape detection in binary images, 

object recognition and image analysis. Its efficiency 

lies in its ability to accurately find complex patterns in 

an image [24]. 

The hit-miss algorithm finds branches and endpoints 

accurately and precisely. In this method, 3x3 spatial 

filters are moved over the entire image. Then, we find 

the exact centers of the branch and endpoints of the 

skeletonized vessels accurately.  

Branches and endpoints require different filters. We 

consider 8 filters for endpoints and 16 filters for branch 

points. All these filters are given in Figure 4 and Figure 

5. 

 



 

 

Figure 4: 8 Filters Used for End Points.

Figure 5: 16 Filters Used for Branch Points. 

 

We develop a program using Python that finds and 

visualizes the points by moving the filters spatially on 

the image with the hit-mis algorithm [25]. The 

visualization of the branch points and endpoints of the 

vascular skeleton image in Figure 3 is shown in Figure 

6. In this figure, the endpoints are marked with green 

circles and the branching points marked with red 

circles.  

 

 

Figure 6. Branch points and endpoints in the 

exemplary image 

 

2.1.3. Image conversion to COCO format 

There are many data markup formats for object 

recognition. Some of the most widely used are 

PASCAL VOC (Visual Object Classes), YOLO (You 

Only Look Once), LabelImg XML and Coco 

[26][27][28]. For dataset annotations, we prefer 

Microsoft's Common Objects in Context (COCO) 

format [17]. COCO is a dataset format developed by 

Microsoft for tasks such as object localization and 

semantic segmentation. It is widely used for training 

and evaluating deep learning models. 

Traditional image processing with 3x3 pixel sized 

filters had found all objects correctly. For the deep 

learning object recognition method, these objects 

should not be included in the frame. Therefore, we 

enclose the spatially detected branch and end points in 

each image in a 5x5 pixel frame. "B" and "T" represent 

branch points and end points, respectively. 

It was difficult to observe the accuracy of the markings 

in the Coco formatted dataset, so we saved images of 

the raw branch and end points framed so that we could 

quickly observe the position and type accuracy of the 

markings. In such experiments, we observed that 

objects of two different types in all the data sets we 

used were correctly labeled. 

 

 

Figure 7. Marked branch and end points 

 

The mouse cortex images obtained from cleared mouse 

brain samples processed through the 3DISCO 

procedure [3], namely HFHS13, is used in the 

experiments. This dataset has 96 images with the size 

of 512 × 512, and it is randomly divided into two sets, 

80% of the images as training set and 20% as test set. 

2.1.4. Deep learning object detection algorithms 

We apply 16 and 8 filters to the whole image to detect 

the branch points and endpoints, respectively. The time 

complexity of the hit-miss algorithm is given in 

Equation (1) 

3 × 3

 (
𝐹𝑖𝑙𝑡𝑒𝑟
𝑆𝑖𝑧𝑒 

)𝑥

(

 
 8

(
𝐸𝑛𝑑  
𝑃𝑜𝑖𝑛𝑡 
𝐹𝑖𝑙𝑡𝑒𝑟𝑠 

)
+

16

(
𝐵𝑟𝑎𝑛𝑐ℎ
𝑃𝑜𝑖𝑛𝑡 
𝐹𝑖𝑙𝑡𝑒𝑟𝑠 

)

)

 
 𝑛 × 𝑛

(
𝐼𝑚𝑎𝑔𝑒
𝑆𝑖𝑧𝑒 

)  

216 × 𝑛2 (1) 

𝛰(𝑛2) 

 

As can be seen from the complexity calculation, the 

time complexity increases exponentially as the image 

size grows. 

Traditional image processing methods are often based 

on fixed algorithms and manually defined features. 



 

 

These methods operate on specific rules and thresholds 

that can be effective for certain types of images but are 

usually inadequate when dealing with complex and 

variable structures. In biomedical imaging, for 

example, these methods have notable limitations when 

analyzing tissues such as the rat brain. 

The limitations of traditional methods can be 

categorized as follows: 

Feature Selection: Traditional methods require 

manual definition of features (e.g., edges, textures, 

colors). This requires customized, case-specific 

algorithms and reduces flexibility. 

General Applicability: Fixed rules can be sensitive to 

image changes (e.g., lighting, contrast differences), 

making it difficult to achieve consistent results across 

different datasets. 

Human Intervention: These methods often require 

manual intervention, which is time-consuming and 

error-prone. They also require specialized knowledge, 

which limits their application. 

Complexity and Scalability: Traditional methods 

find processing complex and large datasets 

challenging. They may need help to process large 

amounts of data efficiently[29]. 

Deep learning offers a powerful alternative to 

overcome these limitations. Deep learning models, 

especially Convolutional Neural Networks (CNNs), 

can automatically learn and identify complex image 

features. The main advantages of deep learning are: 

Feature Learning: Deep learning models excel in 

automatically extracting meaningful features from raw 

data, significantly reducing the need for human 

intervention and manual feature engineering. 

General Applicability and Adaptability: Deep learning 

models demonstrate remarkable adaptability to various 

datasets and conditions. When trained on extensive 

and diverse datasets, these models exhibit a more 

general and robust performance. 

High Accuracy: Deep learning generally provides 

higher accuracy than traditional methods in image 

classification, segmentation, and recognition tasks. 

Efficiency and Scalability: Deep learning models 

trained with GPUs and large datasets can process large 

amounts of data quickly and efficiently. 

In this context, deep learning is considered an advance 

in accuracy and efficiency as it addresses the 

limitations of traditional methods. This is particularly 

beneficial in fields such as biomedical imaging, where 

more accurate, efficient, and scalable solutions can 

significantly improve the quality of research and 

applications[30][31]. 

In the investigation, because of its complexity given at 

Equation (1), we employ the deep learning-based 

object detection methods instead of the hit-miss 

algorithm. We consider four object detection methods 

within the Detectron2 framework [12]: Fast Region-

Convolutional Neural Network (fast R-CNN), Fast 

Region-Convolutional Neural Network (Faster R-

CNN), RetinaNet, Region Proposal Network (RPN). 

In the Detectron2 framework, four different models, 

namely fast-rcnn-R-50-FPN-1x, faster-rcnn-R-50-

FPN-1x, retinanet-R-50-FPN-1x, and rpn-R-50-FPN-

1x, are applied. Here, R-50 refers to the ResNet-50 

backbone. ResNet stands for Residual Network, and 

ResNet-50 specifically denotes a variant of the ResNet 

architecture with 50 layers. FPN, Feature Pyramid 

Network, addresses the challenge of detecting objects 

at different scales by constructing a pyramid of feature 

maps with different resolutions and semantic 

meanings. “1x” indicates the training schedule. In 

object detection tasks, ’1x’ typically implies that the 

model is trained for one epoch over the entire training 

dataset. This contrasts with ’2x’ or ’3x’ schedules 

where the model is trained for two or three times over 

the dataset, respectively. The ’1x’ training schedule is 

often used as a standard baseline.  

 

3. EXPERIMENTS 

3.1. Implementation Details  

Our image set contains 96 images with 512x512 size. 

Bounding boxes with 5x5 pixel size are drawn around 

each object in an image inside dataset. This work uses 

four models: fast R-CNN, Faster R-CNN, RetinaNet, 

RPN for object detection. We then presented the 

training and test results separately with the training 

model. 

We trained and tested all models separately using the 

same parameters showing at Table 1 with the same 

dataset. 

Table 1. Hyper-parameters of Model 

Property Value 

BASE-LR  0.0001 

MAX-ITER  10000 

BATCH-SIZE-PER-IMAGE  16 

NUM-CLASSES  2 

PRE-NMS-TOPK-TRAIN  15000 

POST-NMS-TOPK-TRAIN  1500 

 

Base-Lr: This denotes the base learning rate which is 

a hyper-parameter used to determine the rate at which 

weights are updated initially. The learning rate 

controls how much the weights will be adjusted during 

each update. 

Max-Iter: This specifies the maximum number of 

iterations for training. An iteration corresponds to one 

pass of the entire training dataset. The maximum 

iteration count determines how many times the model 

will be trained during the training process. 

Batch-Size-Per-Image: This indicates the batch size 

used per image. Batchsize refers to the number of 

samples used for one update. Larger batch sizes require 

more memory but can reduce training time. 

Num-Clasess: This specifies the number of classes the 

trained model will have. Object detection models are 

trained to detect a predetermined set of object classes. 



 

 

Pre-Nms-Topk-Train: It specifies the top-k highest 

scoring regions to be selected before the pre-NMS 

(Non-Maximum Suppression) step during training. 

This is used to limit the number of candidate regions 

in the region proposal process. 

Post-Nms-Topk-Train: This indicates the top-k 

highest scoring regions to be selected after the NMS 

step during training. It is used to determine the final set 

of candidate regions and limits the number of 

candidate regions used in the multi-object detection 

process. 

 

3.2. Performance Evaluation 

The object recognition methods of joint learning 

provide a confidence percentage for the objects they 

predict, reflecting the model's certainty in its 

predictions. Even if a predicted object with a low 

confidence score is correct, its low accuracy rate 

suggests uncertainty and potential unreliability. To 

ensure robust and reliable results in our study, we 

filtered out predictions below 70%. This means only 

objects with a confidence score above 70% are 

evaluated, effectively excluding low-confidence 

detections that could introduce noise and inaccuracies. 

Each of the evaluated detected objects is then 

rigorously assessed based on the Intersection over 

Union (IoU) overlap rate with the correct object in the 

ground-truth test data. This IoU overlap rate is a key 

factor in determining the correctness of the detected 

object. We used average precision and recall with an 

IoU threshold of 0.5 for model evaluation. An IoU of 

0.5 signifies that a detected object is correct if the 

reference object frame and the predicted object frame 

overlap by at least 50%. If the overlap is below this 

threshold, the detected object is matched with another 

correct object, if available. If no match is found, the 

evaluation is negatively impacted, reflecting in lower 

precision and recall scores. 

This approach ensures our evaluation metrics are 

stringent and meaningful, focusing on high-confidence 

and accurate detections. By setting a high threshold for 

prediction confidence and using IoU-based evaluation, 

we aim to enhance the precision and reliability of our 

object recognition system. This systematic process 

reduces false positives and improves overall 

performance, making our system more effective and 

trustworthy for practical applications where high 

accuracy is crucial. 

We show two types of test results: raw and filtered. In 

object recognition studies, an object can be detected 

and framed more than once. In other words, within an 

image, the same object can be detected and framed 

more than once, or the frames of different detected 

objects can intersect at a certain rate. Therefore, a filter 

is applied afterwards in object recognition studies. The 

raw results are the results of the object recognition 

model that we insert directly into the evaluator without 

any processing and are shown under the "raw" column. 

The filtered result is the object frames with non max 

suppression (NMS) applied to the raw output of the 

model with 0.5 IoU. If two objects of the same type 

overlap at frames above 50%, we ignore one of them. 

You can see these results under the "filtered" column. 

This post-processing step ensures that the final results 

accurately represent the unique objects detected in the 

images, minimizing redundancy and increasing the 

overall precision of the object recognition system. 

 

3.3. Results and Discussion 

Table 2 presents the average precision and recall 

values, while Table 3 gives the numerical values of the 

detected branches and endpoints. In both tables you 

can see raw and filtered values.  

Table 2. Average Precision and Recall Values Obtained by 

Four Models on HFHS13 dataset 

HFHS13  

    

Average 

Precision 

(AP) 

IoU=0.5 

Average 

Recall  

(AR) 

IoU=0.5 

Fast R-CNN 

R_50 

FPN_1x 

Raw 0.921 0.621 

NMS 

IoU 

0.5 

0.950 0.572 

Faster R-CNN 

R_50 

FPN_1x 

Raw 0.903 0.621 

NMS 

IoU 

0.5  

0.939 0.558 

RetinaNet 

R_50 

FPN_1x 

Raw 0.243 0.264 

NMS 

IoU 

0.5  

0.243 0.264 

RPN 

R_50 

FPN_1x 

Raw 0.914 0.626 

NMS 

IoU 

0.5 

0.945 0.575 

 

The average precision values of all models except 

RetinaNet, presented in Table 2, are quite high and 

close to each other. We can also observe that there is 

an improvement in the values with NMS 0.5 applied. 

We can also observe that there is an improvement in 

the values with NMS 0.5 applied. 

In the Table 3 where we give the number of detected 

points, we first give the number of grant-truth branches 

and endpoints. In each row you can see the predictions 

of the four models, raw and filtered. It can be more 

clearly understood on this table that NMS should be 

applied as post-processing in studies with 5x5 pixel 

frame size. 



 

 

Based on the results given in the result tables, the fact 

that the average precision (AP) in object detection is 

higher than the average recall (AR) typically indicates 

that the model is better at precisely identifying and 

describing detailed items than capturing all instances 

in the image. 

 

 

 

Table 3: Branch and End Point Count of Test Images 

HFHS13 

512x512 

      
Fast R-CNN 

R_50_FPN_1x 

Faster R-CNN 

R_50_FPN_1x 

RetinaNet 

R_50_FPN_1x 

RPN 
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z72 97 146 159 99 190 153 170 98 198 152 236 236 257 257 190 106 191 152  

z78 9 70 17 9 104 75 25 10 123 80 65 65 284 284 21 10 122 79  

z65 80 143 135 81 177 148 150 81 199 150 190 190 285 285 145 89 187 150  

z95 62 142 110 59 183 146 122 65 204 147 176 176 285 285 109 61 194 150  

z27 52 118 89 53 143 118 99 52 156 117 172 172 285 285 89 51 162 119  

z16 70 182 133 77 216 178 129 77 247 183 162 162 291 291 128 71 225 182  

z88 0 6 1 1 9 6 0 0 10 8 93 93 428 423 0 0 8 6  

z23 78 163 147 81 201 165 145 80 214 168 187 187 307 307 129 79 218 167  

z35 27 71 52 29 87 72 51 26 108 75 169 169 279 279 49 26 91 73  

z91 41 149 62 38 183 150 82 41 219 158 111 111 336 336 71 40 222 160  

z07 18 46 41 19 63 50 41 21 80 52 217 217 249 249 47 24 75 52  

z47 65 132 117 64 158 134 119 64 183 138 133 133 307 307 114 67 186 138  

z40 53 119 97 53 148 121 98 53 166 123 141 141 307 307 97 53 166 122  

z84 0 6 0 0 6 6 0 0 8 7 131 131 459 452 0 0 6 6  

z11 40 114 88 44 137 113 90 46 167 120 157 157 265 265 83 43 149 114  

z58 88 165 150 91 201 171 165 93 228 175 179 179 275 275 159 89 216 173  

z53 52 167 92 54 207 176 107 54 233 179 101 101 365 365 92 53 216 175  

z10 26 82 58 31 120 85 62 29 135 86 173 173 281 281 55 31 136 87  

z80 1 11 1 1 13 11 2 1 14 11 137 137 394 391 2 1 12 11  

z62 141 114 240 144 153 121 281 149 155 120 323 323 200 200 244 145 156 123  

Precision-Recall Trade-off: Precision indicates the 

accuracy of the model’s positive predictions, while 

recall measures the coverage of positive samples in the 

data set. Typically, there is a trade-off between 

precision and recall. Even if a model needs to include 

some positive samples in the data set, it can achieve 

high accuracy by making fewer, more accurate, 

optimistic predictions, which can be done with a lower 

recall. 

Thresholding: Object detection models often use 

confidence thresholds to determine when a predicted 

object will not be considered positive. By setting this, 

you can adjust the model's sensitivity and refractive 

operations. A higher light leads to higher sensitivity 

but lower recall as the model becomes more 

conservative when making positive predictions. 

Detection Difficulty: Some objects in the dataset may 

be more challenging to detect than others due to size, 

occlusion, or variability in appearance. The model may 

prioritize accurately detecting and locating easier-to-

detect objects, leading to higher precision but 

potentially lower recall if it needs to include some 

harder-to-detect samples. 

Class Imbalance: If the dataset is unbalanced, with 

many more negative examples than positive examples, 

the model may prioritize minimizing false positives to 



 

 

prevent negative examples from being misclassified as 

positive. If the model is conservative in making 

positive predictions, this could lead to higher precision 

but potentially lower recall. 

In summary, the fact that the average precision in 

object detection is higher than the average recall 

indicates that the model is more focused on making 

correct optimistic predictions, even at the expense of 

potentially missing some positive examples in the 

dataset. This trade-off is common in many machine 

learning tasks and must be evaluated based on the 

constraints of the application and specific 

requirements. 

 

3.4. Ablation Study 

We conducted an ablation study using the KUVESG 

dataset containing 512x512, 156 images. The 

KUVESG data set was subjected to the same pre-

processing as the HFHS13 data set, and its skeleton 

was extracted.  

The KUVESG dataset has been tested with our model, 

which was trained with the HFHS13 dataset to 

evaluate its performance on a different dataset. Table 

4 presents the average precision and recall values of 

the test. 

Table 4. Average Precision and Recall Values Obtained by 

Four Pre-trained Models on KUVESG dataset. 

KUVESG  

    

Average 

Precision 

(AP) 

IoU=0.5 

Average 

Recall  

(AR) 

IoU=0.5 

Fast R-CNN 

R_50 

FPN_1x 

Raw 0.916 0.643 

NMS 

IoU 

0.5 

0.955 0.598 

Faster R-CNN 

R_50 

FPN_1x 

Raw 0.904 0.613 

NMS 

IoU 

0.5  

0.941 0.549 

RetinaNet 

R_50 

FPN_1x 

Raw 0.216 0.261 

NMS 

IoU 

0.5  

0.219 0.260 

RPN 

R_50 

FPN_1x 

Raw 0.909 0.623 

NMS 

IoU 

0.5 

0.954 0.554 

 

Testing the model trained on the HFHS13 dataset with 

the KUVESG dataset gives the same result. This shows 

that our model can work with different datasets. 

3.5. Time Comparison 

Our aim in this section is to compare the application 

times of different deep learning models and traditional 

image processing techniques. This comparison serves 

to provide insights into the efficiency of these models 

in terms of application times.  

In the methodology for comparison, we give the 

training time for the HFHS13 dataset and the total 

object detection time for all test data. Then, we give 

the test times we did with the KUVESG dataset. The 

results are shown in Table 5 and Table 6 (TIP – 

Traditional Image Processing ).  

Table 5. HFHS13 (20 images) Train and Test Time 

Comparison. 

Model 
Training  

Time 

Test Time  

(HH:MM:SS:MS) 

Fast R-CNN 2:22:44 00:00:03:781 

Faster R-CNN 2:19:14 00:00:03:762 

RetinaNet 0:36:48 00:00:01:788 

RPN 2:21:38 00:00:03:726 

TIP N/A 00:00:00:780 

 

Table 6. KUVESG (156 images) Test Time Comparison. 

Model 
Test Time  

(HH:MM:SS:MS) 

Fast R-CNN 00:00:23:225 

Faster R-CNN 00:00:22:729 

RetinaNet 00:00:09:263 

RPN 00:00:22:740 

TIP 00:00:01:116 

 

According to the results, Fast R-CNN, Faster R-CNN, 

and RPN give similar training and testing times. There 

is little difference in time when using these models. 

Although RetinaNet solves in a shorter time, as we 

have seen before, the prediction scores of the 

RetinaNet model are pretty bad. 

The traditional method showed the lowest 

performance time in object detection. We interpret this 

as a small dataset. The performance time of the 

traditional method, for which we have given the 

complexity formula before, is expected to increase 

exponentially. 

The comparison highlights the trade-offs between deep 

learning models and traditional image processing 

techniques. Deep learning models offer scalability and 

accuracy but have higher training times and 

complexity. Traditional image processing is faster for 

small datasets and more straightforward to implement 

but needs help with scalability and accuracy for larger 

or more complex datasets. The choice between these 

approaches should consider the specific requirements 



 

 

and constraints of the application, balancing speed, 

accuracy, scalability, and resource availability. 

4. CONCLUSION 

This study presents a new ovel approach to automate 

the detection of branches and endpoints in two-

dimensional brain vessel images using deep learning-

based object detection techniques. Traditional methods 

for analyzing such images often rely on manual 

intervention and lack scalability for large-scale 

analysis. However, by leveraging deep learning, this 

work demonstrates significant advances in automating 

these critical tasks. 

The proposed approach utilizes deep learning models 

within the Detectron2 framework to accurately detect 

branching and endpoint features in brain vessel 

images. Through rigorous pre-processing, labelling, 

and conversion of the dataset into COCO format, deep 

learning models are trained and evaluated with a focus 

on achieving high detection accuracy. 

The experimental results show promising results, with 

detection accuracy exceeding 90% for various deep-

learning models. The study demonstrates the 

effectiveness of deep learning in overcoming the 

challenges associated with cerebrovascular analysis, 

offering improved efficiency and accuracy compared 

to traditional image processing techniques. 

Furthermore, the study highlights the importance of 

post-processing techniques such as non-maximum 

suppression (NMS) to improve detection results and 

overall performance. This study demonstrates 

improvements in precision and recall metrics by 

applying NMS with an intersection-over-union (IoU) 

threshold of 0.5, contributing to more robust object 

detection results. 

Overall, this work contributes to the advancement of 

medical imaging analysis by demonstrating the 

effectiveness of deep learning on challenging tasks 

such as brain vessel detection. The discoveries hold 

promise for enhancing clinical diagnosis and 

advancing research in neurovascular disorders, setting 

the stage for enhanced precision and efficiency in 

analyzing intricate biological imagery moving 

forward. 

In future studies, we aim to create a 3D reconstruction 

model of the entire cerebral vasculature from cross-

sectional images of the rat brain by aligning and 

segmenting each slice images. We are also planning to 

find branching and endpoints on the 3D reconstructed 

brain within the scope of the study. This will provide a 

more detailed and meaningful analysis of the brain 

vessels and add depth to the research. Thus, more 

comprehensive and precise results will be obtained for 

neurovascular research. 

 

SYMBOLS and ABBREVATIONS 

GT_BP_C Ground-Truth Branch Point Count 

GT_TP_C Ground-Truth Tip Point Count 

R_BP_C Raw Branch Point Count 

R_TP_C Raw Tip Point Count 

F_BP_C Filtered Branch Point Count 

F_TP_C Filtered Tip Point Count 

TIP Traditional Image Processing 
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