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ABSTRACT. The notions of ordering filter and left mapping in a GE-algebra are
introduced, and their properties are investigated. Relations between ordering
filters and GE-filters are established. Conditions for an ordering filter to be
a GE-filter, and vice versa, are provided. The conditions under which a left
mapping becomes injective or an identity are explored. The conditions under
which the GE-kernel of a self-mapping will be a GE-filter are provided. It
is confirmed that the sets of all left mappings form a semigroup, and that
the sets of all idempotent left mappings form a subsemigroup. The conditions
under which the sets of all left mappings can be closed with respect to a binary
operation are investigated.

1. INTRODUCTION

Henkin and Skolem introduced Hilbert algebras in the fifties for investigations
in intuitionistic and other non-classical logics. Diego [8] proved that Hilbert al-
gebras form a variety which is locally finite. Later, several authors introduced
many concepts to explore the concept of Hilbert algebras (see [5{7}9,/10L[14-{16]).
Bandaru et al. introduced the notion of GE-algebras which is a generalization of
Hilbert algebras, and investigated several properties (see ) Also, Bandaru et al.
introduced several concepts in GE-algebras and investigated its related properties

(see [2H4}[12][13/[17/[18]). Left mappings is very useful concept and many researchers

have used it in various mathematical fields. For example, Kondo introduced the
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notion of left mapping on BCK-algebras and investigated some properties of it
(see |11]). He showed that in a positive implicative BCK-algebra, if a left mapping
is surjective, then it is also an injective one.

In this paper, we introduce the notion of ordering filter in a GE-algebra and
provide the conditions for an ordering filter to be a GE-filter. Also, we explore
the necessary condition for a GE-filter to be an ordering filter. We introduce the
concept of left mapping on GE-algebras and investigate related properties. We
define the GE-kernel of a left mapping of a GE-algebra and provide the conditions
under which GE-kernel to be a GE-filter. We prove that the set L(X) of all left
mappings of a GE-algebra X is closed under the function composition o and also a
semigroup. We define the operation “®” on L(X) by (f ® g)(z) = f(z) x g(z) for
all x € X and f,g € L(X) and observe that the set L(X) is not closed under ®.
Finally, we investigate the conditions under which L(X) be closed with respect to
®.

This study particularly focuses on ordering filters and left mappings within these
algebras, offering a comprehensive exploration of their properties and interrela-
tions. Ordering filters in GE-algebras serve as critical tools for understanding the
hierarchical structure and organization within these algebraic systems. Ordering
filters help identify and analyze hierarchical relationships and dependencies among
elements in a GE-algebra, offering a clearer picture of the overall structure. Es-
tablishing relations between ordering filters and GE-filters not only bridges the
concepts but also enhances the understanding of how different filters interact and
coexist within the algebraic framework. The comprehensive study of ordering filters
and left mappings in GE-algebras offers valuable contributions to the understanding
of these algebraic structures. By exploring their properties, interrelations, and con-
ditions for specific behaviors, this research paves the way for further advancements
in the field of algebra and its applications in logic, computation, and beyond. The
motivation lies in the quest for deeper knowledge, the development of new math-
ematical tools, and the potential for practical applications arising from a robust
understanding of GE-algebras.

2. PRELIMINARIES

Definition 1 ( [1]). By a GE-algebra we mean a non-empty set Y with a constant
1 and a binary operation x satisfying the following axioms:

(GE1) vy %7, =1,

(GE2) 1%~y =,

(GE3) vy * (w2 * 03) = 71 * (w2 * (71 * 03))
for all v, wq,03 €Y.

In a GE-algebra Y, a binary relation “<” is defined by
(V3,04 €Y) (3 S ps & psxpa=1). (1)
Definition 2 ( [1,214]). A GE-algebra Y is said to be
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o transitive if it satisfies:
(V3,904,905 € Y) (93 % pa < (5 % 93) * (95 * 04)) - (2)
e commutative if it satisfies:
(V3,04 €Y) ((03 * pa) * 1 = (94 * p3) * 03) - (3)
o [eft exchangeable if it satisfies:
(V3,904,905 €Y) (3 * (P4 * 95) = 04 * (93 * p5)) - (4)
o belligerent if it satisfies:
(Vp3, 904, 95 € Y) (93 * (94 % 5) = (3 % pa) * (93 * 05)) - ()
e antisymmetric if the binary relation “<” is antisymmetric.

Proposition 1 ( [1]) Every GE-algebra Y satisfies the following items.

(V1 €Y)(nx1=1). (6)
(V717W2 €Y) (v x (V1 xw2) =7 xw2). (7)
(Vy1, @2 €Y) (71 S w2x7q). (8)
(Vy1,@2,03 €Y) (71 * (w2 * 03) < w2 * (71 x 03)). (9)
(VeY)l<sy = n=1. (10)
(Vy1, @2 €Y) (71 < (w2 %71) *71).- (11)
(Vv @2 €Y) (71 < (71 * w2) * w2) . (12)
(Vyq, 2,03 €Y) (7, S wa*x03 & o <y x03). (13)

If Y is transitive, then
(Vy1,@2,03 €Y) (v, Sy = o3y, < 0o3%wa, wakoz <y, x03). (14)
(V71,@2,08 €Y) (71 % @2 < (w2 % 03) * (71 % 03)). (15)
(Vy1,@2,03 €Y) (v < w3, wa <03 = v, < 03). (16)
Lemma 1 ( [1]). In a GE-algebra Y, the following facts are equivalent each other.
(V3,904,005 € V) (93 % o1 < (95 % 3) * (95 * pa)) - (17)
(Vo3, 04, 05 € Y) (93 % pa < (94 % 95) * (93 * ©5)) - (18)

Definition 3 ( [1]). A subset F of a GE-algebra Y is called a GE-filter of Y if it
satisfies:

1€F, (19)
(V3,01 €Y )(p3*xpa €F, p3 €F = py€F). (20)

Lemma 2 ( [1]). In a GE-algebra Y, every GE-filter F of Y satisfies:
(V3,04 €Y) (3 < g1, p3 € F = ps € F). (21)
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Definition 4 ( [1]). A non-empty subset F' of a GE-algebra Y is called a GE-
subalgebra of Y if p3 % p4 € F' for any p3,p4 € F.

3. GE-FILTERS AND ORDERING FILTERS
In what follows, let Y denote a GE-algebra unless otherwise specified.

Definition 5. A subset F' of Y is called an ordering filter of Y if it satisfies
and
(V3,94 € F)(3ps € F)(ps5 < 93, 95 < 9a). (22)
We denote by OF (Y) the set of all ordering filters of Y. It is clear that {1},Y €
OF(Y) and every ordering filter contains the element 1.

Example 1. We take a GE-algebra Y = {1, py, 3, €4,t5,(q} with the operation
table given by Table[]

Wy

TABLE 1. The binary operation “x

* 1 P2 L3 €4 Ly Cﬁ
1 1 P2 L3 €4 Ly <6
P2 1 1 1 €4 €4 1
L3 1 1 1 Ly Ly Cﬁ
a1 pp 11 1 (g
tis |11 g 1 1 1
Ge| 1 1 w3 15 5 G

Then Fy := {1, py,13,(s} and Fo := {1, py, 13, €4,t5} are ordering filter of Y. But
F3 := {1, py,t3,t5} is not an ordering filter of Y since v5 € F3 and v5 < €4 but
€4 & F3. Also, Fy := {1, py,t3,€4} is not an ordering filter of Y since py, €4 € Fy,
ts < py and 5 < €4 but 15 & Fy.

In general, any ordering filter may not be a GE-filter as seen in the following
example.

Example 2. The ordering filter Fy := {1, py, L3, €4,15} in Ea:ample is not a GE-
filter of Y since py* (g =1 € Fy and py € Fy, but (g5 ¢ Fy.

We provide conditions for an ordering filter to be a GE-filter.
Theorem 1. In a transitive GE-algebra, every ordering filter is a GE-filter.

Proof. Let F' be an ordering filter of Y. Let p3, 04 € Y be such that g3 * p4 € F
and p3 € F. If p3 =1, then p4 = 1 % p4 € F. Suppose that p3 # 1 and g4 # 1.
Then there exists g5 € F such that g5 < p3 * p4 and g5 < p3 by . Using

(GE2), (@), and (9)), we have
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1= g5 (93 % 0a) < 3% (05 % Pa) < (95 * 03) * (95 * (95 * ©4))

= (95 93) * (95 * pa) = 1% (5 * Pa) = 95 * P,
which implies from and that 1 = p5 * g4, i.e., p5 < pq4. Hence o4 € F by
, and hence F' is a GE-filter of Y. |
Corollary 1. FEvery ordering filter is a GE-filter in a belligerent GE-algebra.
Proof. If Y is a belligerent GE-algebra, then

(03 * pa) * (05 * 93) * (05 * 1)) = (P3 * Pa) * (5 * (93 * P4))
= (3 * pa) * (05 * (93 * pa) * (93 * Pa)))
= (p3* pa) * (5 x 1) = (p3 % pa) x 1 =1,
and so 3 * P4 < (5 * E3) * (p5 * p4) for all p3, p4,p5 €Y. Thus YV is a transitive
GE-algebra, and hence every ordering filter is a GE-filter by Theorem O

In the next example, we show there exists a GE-filter that is not an ordering
filter.

Example 3. We take a GE-algebra Y = {1, py,t3,€4,15,Cg} in which the binary

wy

operation “«” is provided in Table[d

Wy ”

TABLE 2. The binary operation “x

x* |1 py 13 € 15 (g
1 1 P2 L3 €4 125 CG
pe| 1 1 1 e e
L3 1 P2 1 Ly Ly <6
€4 1 1 w3 1 1 (s
ti5 | 1 1 1 1 1 ¢
Ce| 1 py 13 € s 1

The set F' := {1,13,(g} is a GE-filter of Y, but it is not an ordering filter of Y
because there does not exist ps € F such that ps < 13 and ps < (4.

We would like to explore the conditions necessary for a GE-filter to be an ordering
filter.
For every elements /iy and hs of Y, we consider the set:

(Y;hg,hl) = {pg ey | ho < hy * pg}. (23)

It is clear that 1,71, h5 € (Y35, h1) and (Y;1,1) = {1}. If (Y;hg, A1) has the
least element, it will be denoted by Ao ® Ay .
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Definition 6 ( [13]). A GE-algebra Y is called an ®-GE-algebra if there exists
hl ® hQ fOT’ all hl,hQ €Y.

Lemma 3 ( [13]). IfY is an ®-GE-algebra, then
(V3,01 €Y)(p3 ® 91 < 03, 03 ® o1 < pa). (24)
Theorem 2. Fvery GE-filter is an ordering filter in an ®-GE-algebra.

Proof. Let F be a GE-filter of an ®-GE-algebra Y, and let p3,p4 € Y be such
that g3 € F and g3 < p4. Then g3 *xpq4 =1 € F, and thus g4 € F by . Let
03,04 € F. Since p3 < py * (p3 ® p4), We get p3 @ pg € F by Lemma 2] and (20).

O

Using Lemma[3] we can see that F is an ordering filter of Y.

4. LEFT MAPPINGS

Definition 7. A self mapping 0 on a GE-algebra Y is called a left mapping of Y
if it satisfies:

(V3,04 € Y)(0(p3 * 94) = 03 * 0(p4))- (25)

It is clear that the identity mapping 0 : Y — Y, p3 — 3, is a left mapping of
Y.

Example 4. We take a GE-algebra Y = {1, pq,t3,€4,t5} with the Cayley table
which is given in Table[3

Wy

TABLE 3. Cayley table for the binary operation “x

1 py 3 € 5

1 1 P2 L3 €4 L5
py | 1 1 1 €4 €
L3 1 1 1 Ly Ly
ea| 1 py py 1 1
tis | 1 py 3 1 1

Let 0 be a self mapping on'Y given as follows:

1 if 03 € {1,64,L5}7

0:Y =Y, p3— { py  otherwise.

It is easy to verify that 0 is a left mapping of Y.

Proposition 2. Given a left mapping 0 of Y, we have

(i) 8(1) =1,
(ii) (Vps €Y) (ps < 0(ps3)),
i ; Vps €Y) (5(?() 1)=1),

(i) (
(Vps, 01 €Y) (p3 < pa = 3 < 0(p4))-

(iv
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«1) = 9(1) *9(1) = L.

Proof. (i) Using (GE1), (6) and , we get 0(1) = 9(d(1)
= 0(p3 * p3) = p3 * (p3),

(ii) Using (GE1) and (i) and (25) induces 1 = 9(1)
that is, p3 < (p3) for all p3 € Y.

(iii) Using (6) and (i) induces d(p3 * 1) = 8(1) =1 for all p3 € Y.

(iv) Let p3,p4 € Y be such that p3 < p4. Then 1 = 9(1) = O(p3 * p4)

93 * 0(p4) by (25), and so p3 < 0(p4). O
Definition 8. The GE-kernel of a left mapping 0 of Y is defined to be the set:
ker(9) := {p3 € Y | 0(p3) = 1}. (26)

Theorem 3. If a left mapping O of Y is injective, then ker(d) = {1}.

Proof. Suppose 0 is an injective left mapping of Y and let p3 € ker(d). Then
d(ps) = 1 = 8(1) by Proposition Pfi), and so p3 = 1 since 9 is injective. Hence
ker(9) = {1}. O

The following example shows that the converse of Theorem [3] is not true, that
is, any left mapping 0 of Y with ker(d) = {1} may not be injective.

Example 5. Consider a GE-algebra Y = {1, py,t3,€4,t5} with the Cayley table
which is given in Table [}

Wy ”

TABLE 4. Cayley table for the binary operation “x

* 1 P2 L3 €4 L5
1 1 py 3 € 5
P2 1 1 1 €4 €4
L3 1 1 1 Ly L5
e | 1 pp pp 1 1
s | 1 py py 1 1

Define a self mapping 0 on'Y as follows:

1 if O3 = 1,

py i p3 € {pa;t3},
€4 if ©3 = €4,

Ly if ©3 = L.

0:Y =Y, ps—

Then O is a left mapping of Y with ker(d) = {1}. But it is not injective since
0(pa) = po = 0(13) but py # t3.

Theorem 4. If a GE-algebra Y is antisymmetric and transitive, then every left
mapping 0 of Y with ker(0) = {1} is injective.

Proof. Let 0 be a self mapping of a transitive and antisymmetric GE-algebra Y
and ker(9) = {1}. Let’s take p3,p4 € Y which satisfies 9(p3) = 9(y). Then
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O(gp3) * d(pa) = 1 by (GE1), and so (3(p3) * p4) = 1 by (25), that is, O(p3) *
pa € ker(d) = {1}. Hence 8(p3) < pa4. It follows from Proposition [fii) that
p3 < 0(ps) < p4. Similarly, we can induce py < g3 for all p3,p4 € Y. Hence
©3 = @4, and 0 is injective. O

Theorem 5. In an antisymmetric GE-algebra, every injective left mapping is the
identity mapping.

Proof. Let 0 be an injective left mapping of an antisymmetric GE-algebra Y. Then
p3 < O(p3) for all p3 € Y by Proposition ii). Using (GE1), (25 and Proposition
(i) induces 8(1) = 1 = (p3) * 0(p3) = 0(D(gps3) * p3) for all p3 € Y. Since D is
injective, we have 0(gp3) * p3 = 1, i.e., 0(p3) < 3. Thus O(p3) = ps3 for all p3 € Y
since Y is antisymmetric. Therefore 0 is the identity mapping. O

In the next example, we claim that if Y is not antisymmetric, then any injective
left mapping may not be the identity mapping.

Example 6. Consider a set Y = {1, py,t3,€4,t5} with the Cayley table which is
gwen in Table 5

[130%2

TABLE 5. Cayley table for the binary operation “x

* 1 P2 L3 €4 Ly
1 1 py 3 e 5
Po 1 1 L3 €4 Ly
L3 1 1 1 1 Ly
€4 1 1 1 1 Ly
sl 1 o py 11 1

Then Y is a GE-algebra which is not antisymmetric. Define a self mapping 0 on
Y as follows:

1 if p3=1,
Py if p3 = po,
6:Y—)Y, 3 — €4 ifp:g:[,g,
vz if p3 = ey,
Ly if ©3 = Lls.
Then O is an injective mapping of Y which is not an identity mapping of Y .

Theorem 6. If0 is a left mapping of Y, then ker(9) and Im(8) are GE-subalgebras
of Y.

Proof. Let ps3, 04 € ker(9). Then 0(p3) = 1 = 9(p4). Hence d(ps3 * p4) = p3 *

O(ps) = p3 1 =1 by (6) and [25), ie., p3 * ps € ker(d). Thus ker(d) is a
GE-subalgebra of Y.
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Let fiy,he € Im(0). Then there exist hg, iy € Y such that d(h3) = Ay and
0(h4) = ha. Now g € Y implies that 8(c) € Y, and so fiy * hig = 0(h3) * 0(hs) =
0(9(hg) * hy) € Im(0). Hence Im(0) is a GE-subalgebra of Y. O

In the following example, we can see that Im(9) is neither ordering filter nor
GE-filter.

Example 7. Let Y = {1, py,t3,€4,t5} be the GE-algebra in Example @ Define a
self mapping 0 on Y as follows:

1 if 3 € {1 €4 L5}
0:Y =Y, — . B
bs { Py if p3 € {pg, 13}
Then 9 is a left mapping of Y with Im(0) = {1,py}. But Im(0) is neither an
ordering filter of Y nor a GE-filter of Y since p, < t3 and py € Im(0) but 13 ¢
Im(0).

Question 9. If 9 is a left mapping of Y, is ker(0) a GE-filter of Y or an ordering
filter of Y 2
The next example shows that the answer to Question [J]is negative.

Example 8. 1. Consider a GE-algebra Y = {1, py, t3, €4, t5} with the Cayley table
which is given in Table[q

Wy ”

TABLE 6. Cayley table for the binary operation “x

* 1 py 3 € 5
1 1 P2 L3 €4 Ly
P2 1 1 1 €4 €4
L3 1 1 1 (259 Ly
|1 pp 11 1
tis | 1 py 3 1 1

Define a self mapping 0 on Y as follows:

1 if 3 € {1, Lg}
pa it 3 = po,
€4 if p3 =€y,
Ly if ©3 = Lls.
Then O is a left mapping of Y and its kernel is ker(3) = {1,t3} which is not a
GE-filter of Y since 13 % py = 1 € ker(0) and 3 € ker(0), but py ¢ ker(D).
2. Consider a set’Y = {1, py,t3,€4,t5} with the Cayley table which is given in
Table [T
Then Y is a GE-algebra. Define a self mapping 0 on'Y as follows:

5:)/_)}/, ng{ 1 lf pSE{lap27647L5}
L3 if ©3 = L3.

0:Y =Y, ps—
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Wy ”

TABLE 7. Cayley table for the binary operation “x

* 1 P2 L3 €4 Ly
1 1 P2 L3 €4 Ly
b1 1 1 e 1
3| 1 py 1 ea py
€4 1 1433 L3 1 1233
L5 1 1 1 €4 1

Then 0 is a left mapping of Y with ker(0) = {1, py, €4,t5}. But ker(0) is not an
ordering filter of Y since py < 13 and py € ker(0) but 13 ¢ ker(0).

We explore the conditions under which a positive answer to Question [0] may
come out.

Theorem 7. If a self mapping @ on Y is an endomorphism, i.e., 0(ps * p4) =
0(p3) * O(pa) for all p3,ps € Y, then ker(0) is a GE-filter of Y.

Proof. Assume that 0 : Y — Y is an endomorphism. Then 9(1) = 0(p3 * p3) =
O(ps3) * (ps3) = 1 for all p3 € Y, that is, 1 € ker(d). Let g3, p4 € Y be such that
p3 * @4 € ker(0) and p3 € ker(d). Since 0 is an endomorphism, it follows that

1 =0(ps3 * p4) = 0(p3) * 0(pa) = 1% 0(p4) = 0(p4),
that is p4 € ker(9). Therefore ker(d) is a GE-filter of Y. O

Corollary 2. Let 3 be a left mapping of Y. If @ is an endomorphism, then ker(0)
is a GE-filter of Y.

Theorem 8. Let 0 be a left mapping of Y which is idempotent, that is, 3(0(ps)) =
O(ps3) for all ps € Y. IfY is commutative, then ker(0) is a GE-filter of Y.

Proof. We first show the following assertion.
(Vps, pa € Y)(ps € ker(D), p3 < pa = p4 € ker(0)). (27)
Let g3, 04 € Y be such that p3 € ker(d) and p3 < p4. Then ps = (p4 * p3) * O3
since Y is commutative. Hence
0(p4) = 0((pa * p3) * P3) = (P * p3) x 0(p3) = (pa x p3) 1 =1,

and so p4 € ker (D). It is clear that 1 € ker (D) by Proposition [2fi). Let g3, 94 € Y
be such that p3 * p4 € ker(9) and p3 € ker(d). Then 1 = 0(p3 * p4) = p3 * 0(p4),
and so p3 < 0(p4). It follows from that 9(p4) € ker(d). Thus 1 = 0(0(p4)) =
0(p4) by the idempotency of @ which shows that g4 € ker(d). Therefore ker(9) is
a GE-filter of Y. O

In Theorem [§] if YV is not commutative, then ker(d) is not a GE-filter of Y as
shown in the following example.
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Example 9. Consider a set Y = {1, py,t3,€4,t5} with the Cayley table which is
gwen in Table[§

Wy

TABLE 8. Cayley table for the binary operation “x

* 1 P2 L3 €4 Ly
1 1 py 3 e 5
pa | 1 1 1 L5 Ly
L3 1 1 1 €4 Ly
e 1 1 1 1 1
Ly 1 P2 L3 1 1

Then Y is a GE-algebra, and it is not commutative since (py * t3) ¥ 13 = 1 % 13 =
L3 # py = 1% py = (13 % py) * py. Define a self mapping 8 on'Y as follows:

1 if p3 e {1,615},

0:Y =Y, p3— { po  otherwise.

Then 0 is the idempotent left mapping of Y, and its kernel is ker(0) = {1,€4,t5}
which is not a GE-filter of Y since €4 x p, = 1 € ker(0) and ¢4 € ker(0) but

pa ¢ her(d).
The next example shows that any left mapping may not be idempotent.

Example 10. Consider a GE-algebra Y = {1, py, 3, €4, 15} with the Cayley table
which is given in Table[9

Wy ”

TABLE 9. Cayley table for the binary operation “x

* 1 py 3 € 5
1 1 P2 L3 €4 Ly
po | 1 1 1 1 1
13| 1 1 1 1 1
€4 1 P2 L3 1 1
tis | 1 py L3 1 1

Define a self mapping & on'Y as follows:

6zy—>Y3 pgl—} 1 ?f p36{1’;)27647L5}7
pe it p3 =13

Then 0 is a left mapping of Y. But it is not idempotent since 8(0(t3)) = 9(py) =
15 py =0(e3).
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Theorem 9. Let 0 be a left mapping of Y. If 0 is idempotent, then

(Vo3 € Y)(0(p3) = p3 < p3 € Im(0)). (28)
ker(d) N Im(0) = {1}. (29)

Proof. Let @ be an idempotent left mapping of Y. It is clear that if 0(p3) =
o3, then ps € Im(9). Let p3 € Im(9). Then there exists g4 € Y such that

O0(p4) = p3. Hence 0(p3) = 9(0(p4)) = O(ps) = ps3, and thus is valid. If
p3 € ker(d) N Im(9), then d(p3) = 1 and d(p4) = ps for some p, € Y. Hence
1 =0(p3) =0(0(p4)) = 0(p4) = g3, and so ker(d) N Im(9) = {1}. O

Lemma 4. FEvery commutative GE-algebra Y satisfies:

(Vos, 04 €Y) (p3s < pa = (3 €Y)(pa = h1 % 03)). (30)
Proof. Let p3,p4 € Y be such that p3 < 4. Then g3 * p4 = 1 and so

P4 = 1% 1 = (p3 % Pa) * Pa = (1 * P3) * P3 = M1 * p3
where hy = @4 * p3. O
Lemma 5. FEvery GE-algebra Y satisfies:

(V3,04 €Y) ((3h1 € Y)(pa = b1 * p3) = 93 < 94) - (31)
Proof. Suppose that o4 = k1 * g3 for some i; € Y. Then

03 % 1 = 3 * (ha * p3) = p3 % (h * (3 x p3)) = P3* (hy * 1) = pgx1=1

by (GE1), (GE3) and (6)). Hence p3 < gu. O

Proposition 3. Let Y be a commutative GE-algebra which satisfies:

(V3,01 € Y)((((93 * 04) * p1) * 1) = 03 * ©a). (32)
If 0 is a left mapping of Y, then
(Vs € Y) (34, p5) € ker (D) x Im(0))(ps = p4 * p3). (33)

Proof. Since p3 < 3(gp3) for all p3 € Y by Proposition [2(ii), it follows from Lemma
that 0(p3) = hy * p3 for some hy € Y. Hence

(0(p3) * 3) * 3 = ((M1 * p3) * P3) * 3 = Ay * p3 = 0(p3)

by ([32). If we take p5 := 3(p3) and g4 := d(g3)* g3, then (pa, p5) € ker(d) x Im(d)
and 5 = o4 * E3. (]

Proposition 4. Let 0 be a left mapping of Y. If O is idempotent, then
(Vo3 € Y) (3 (@4, ps5) € ker(0) x Im(0))(ps = ps5 * ©3)- (34)
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Proof. Suppose that 0 is an idempotent left mapping of Y. Then 9(d(p3)) = 0(p3)
for all p3 € Y, and so

9(9(0(ps)) * p3) = 0(d(p3)) * O(ps) = 1.
Hence 0(p3) * p3 = 0(0(p3)) * ps3 € ker(d). It follows that ps * p3 = g4 for some
p4 € ker(0) and p5 := 0(p3) € Im(9). O
Proposition 5. FEvery left mapping 0 of a commutative GE-algebra satisfies the

condition .

Proof. Let 0 be a left mapping of a commutative GE-algebra Y. Since p3 < 0(p3)
for all p3 € Y by Proposition [2[(ii), it follows from Lemma [4] that 3(p3) = hiy * p3
for some hy, € Y. Hence

0(0(gp3)) = 0(h1 * p3) = hy % 0(p3) = hy * (hy * p3) = T * p3 = O(p3)
for all ps € Y by @ Hence 0 is idempotent. Using Proposition {4, we know that
is valid. O

Denote by L(Y) and IL(Y") the set of all left mappings of ¥ and the set of all
idempotent left mappings of Y, respectively. Define an operation “®” on L(Y") by
@ ®&)(ps) = 0(p3) * E(ps) for all p3 € Y and 9,£ € L(Y).

Proposition 6. L(Y) is closed under the function composition o, that is, if 0 and
& are left mappings of Y, then 00 ¢ is also a left mapping of Y.

Proof. Let 0, € L(Y) and p3,04 € Y. Then

(@ 0&)(p3 * pa) = 0(&(s * pa)) = B3 * £(0a)) = 3 * 0(§(0a)) = p3 * (30 &)(pa),
and so d o ¢ is a left mapping of Y. O

Theorem 10. (L(Y),0) is a semigroup and IL(Y") is a subsemigroup of L(Y).
Proof. Straightforward. |

The following example shows that L(Y) is not closed under the operation “®”,
that is, there are two left mappings 0 and £ of Y such that 0 ® £ is not a left
mapping of Y.

Example 11. Consider a GE-algebra Y = {1, py, 3, €4,t5} with the Cayley table
which is given in Table [10
Define self mappings 0 and & on'Y as follows:

1 if 3 € {1,64,L5}
0:Y =Y, pg—=q po if p3=p,,
€4 if 03 = L3.
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TABLE 10. Cayley table for the binary operation “x

* 1 P2 L3 €4 Ly
1 1 P2 L3 €4 Ly
Pl 1 1 w5 1 s
i3] 1 py 1 1 1
| 1 p, 11 1
1259 1 P2 1 1 1

1 if p3 € {1,e}

pz i p3 = ps,

vz if ps3 =3,

Ly if ©3 = L5.

Then 0 and & are left mappings of Y and 0 ® £ is given as follows:
1 if p3 € {1,py,13, €4}
1y if p3 =t5.

E:Y =Y, pg—

0®EY =Y, pg»—){

We can observe that O ® £ is not a left mapping of Y since
(0®E) (paxes) = (0®E)(15) = 15 # 1 = py*(€axiz) = pox(0(e3)*(£(3)) = pp*(0®E) (13).

We investigate the conditions under which L(Y) can be closed with respect to
the operation “®”.

Theorem 11. Let Y be a belligerent GE-algebra. For every 0, € L(Y'), we have
(i) d®& e L(Y).
(ii) If 00 & =&00 and £ is idempotent, then 0 ® £ € IL(Y).
Proof. (i) For every g3, 04 €Y, we get
(0@ &) (3 * pa) = O(p3 * pa) * E(p3 * 1) = (93 % O(p4)) * (93 * {(a))
= 03 % (0(pa) * E(pa)) = 93 * (0@ £)(pa)-

Hence 0 ® ¢ € L(Y).
(ii) For every g3 € Y, we have

(@& o (@®E))(p3) = @@ (O ®E)(p3)) = (0® &) (D(p3) * {(3)
E

= 0(0(p3) *&(a3)) * §(0(p3) * E(p3)) = (0(p3) * 0(&(p3))) * (0(ps3
= (0(3) * £(0(p3))) * (0(p3) * E(p3)) = E(0(p3) * O(p3)) * (0(ps) * {(ps3))
=&(1) * (0(ps) * E(p3)) = 1% (0(ps3) * E(p3)) = (0(p3) *&(p3)) = (O ® &) (p3)

and thus 9 ® & € IL(Y). O

Proposition 7. Let 9, € L(Y) satisfy (£ ® 0)(p3) = 1 for all ps € Y. IfY is
antisymmetric and 0 is idempotent, then Im(0) C Im(§).
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Proof. If p, € Im(d), then d(p4) = p4 by and hence

() * 1 = &(pa) * O(pa) = (£ ®O)(pa) = 1,
that is, £(p4) < g4. Since p4 < &(p4) by Proposition ii) and Y is antisymmetric,
we have p4 = £(p4) € Im(€). Thus Im(3) C Im(E). O
Theorem 12. For every 3, € L(Y'), we have

(i) If90& =E£00, Im(D) C Im(&) and £ is idempotent, then £ ® 0 is constant
on'Y with the value 1.
(ii) If O is idempotent, then ker(€) N Im(d) C Im({ ® ).

Proof. (1) Assume that 9o & = {00, Im(9) C Im(§) and ¢ is idempotent. Then
Theorem [J] yields (£ 0 0)(p3) = d(p3) for all p3 € Y. Hence
(€ ®0)(p3) = &(g3) * 0(p3) = &(p3) * (£ 0)(p3)
= &(ps) x (00 &)(p3) = 0(&(ps) * E(g0s))
(1) =1

for all p3 €Y.
(i) Suppose that 9 is idempotent and let p4 € ker(§) N Im(d). Then &(py) =1
and 0(p3) = p4 for some p3 € Y. It follows that

P4 = 0(p3) = 1x0(0(p3)) = £(a) * 0(pa) = (£ ®0)(p4) € IM({ ® D).

Thus ker(€) N Im(9) C Im(§ ® 0).
O
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