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Makale Bilgisi 

 
Özet 

Bu çalışma, HAM10000 veri kümesini ve evrişimli sinir ağı (CNN) modellerini kullanarak cilt 
hastalığı sınıflandırmasını derinlemesine incelemektedir. Titiz veri hazırlığı ve kapsamlı 
model eğitimi yoluyla, normal ve hastalıklı cilt koşulları arasındaki ayrımı yüksek doğrulukla 
başarıyoruz. SHAP modelini kullanmak, CNN modelinin karar verme sürecine dair değerli 
içgörüler sunarak tahmin yorumlanabilirliğini artırır. 

Çalışmamız, bireyler arasında normal ve hasta olanlar arasında ayırma konusunda umut verici 
doğruluk sergilemektedir. 5000 kişiden 4274'ü doğru şekilde normal olarak sınıflandırılırken, 
5015 kişiden 2962'si doğru şekilde hastalıklı olarak tanımlanmıştır. Ancak, modelimiz önemli 
hatalar göstermektedir, özellikle 726 normal kişiyi hasta olarak yanlış sınıflandırır ve yanlış 
negatifleri azaltmada iyileştirme alanları sunar. SHAP ve LRP analizlerini kullanarak, ortalama 
değerlerinin sırasıyla 2.11251442x10-5 ve yaklaşık olarak 0.032795×10-5 olduğunu 
gözlemledik, bu da özellik önemini ve model davranışını anlamada değerli içgörüler sağlar. Bu 
bulgular, tıbbi uygulamalarda tanı doğruluğunu artırma ve yanlış sınıflandırmaları azaltma 
potansiyelini vurgular. 

Karışıklık matrisleri ve SHAP ve LRP modellerinden elde edilen çıktılar da dahil olmak üzere 
çeşitli görsel temsiller kullanarak, CNN modelinin güçlü yanları ve sınırlamaları hakkında 
kapsamlı perspektifler sunuyoruz ve genel performansı artırmayı amaçlayan potansiyel 
iyileştirmelere rehberlik ediyoruz. 

Normal ve hastalıklı bireyler arasında dengeli sınıflandırma sağlamamıza rağmen, yanlış 
sınıflandırmaları azaltmak ve genel doğruluğu artırmak için daha fazla geliştirme 
gerekmektedir. SHAP ve LRP çıktılarının derinlemesine sayısal analizi, SHAP'ın LRP'den daha 
detaylı bir analiz sunduğunu ortaya koymaktadır, bu da onu bu bağlamda tercih edilen 
metodoloji olarak konumlandırır. 

Bu araştırma, yapay zeka destekli cilt hastalığı teşhisi alanındaki ilerlemeye önemli katkıda 
bulunmaktadır ve özellikle dermatoloji uygulamalarında CNN modellerinin sağlık 
uygulamalarındaki potansiyelini vurgular. Gelecekteki çalışmaların, klinik karar verme 
sürecini güçlendirmeye odaklanması ve böylece dermatolojik uygulamalarda hastaların 
sonuçlarını ilerletmesi gerekmektedir. 

Anahtar Kelimeler: SHAP, Dermatoloji, Layerwise Relevance Propagation (LRP), Açıklanabilir 
YZ, CNN 
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Enhancing Skin Disease Classification Accuracy through CNN Models: 
Insights from SHAP and LRP Analyses 

Abstract 

This study presents an in-depth exploration of skin disease classification utilizing the 
HAM10000 dataset and convolutional neural network (CNN) models. Through meticulous 
data preparation and extensive model training, we achieve high accuracy in distinguishing 
between normal and diseased skin conditions. Employing the SHAP model provides valuable 
insights into the decision-making process of the CNN model, enhancing prediction 
interpretability. 

Our study demonstrates promising accuracy in distinguishing between normal individuals and 
patients, with 4274 out of 5000 correctly classified as normal and 2962 out of 5015 accurately 
identified as diseased. However, our model exhibits significant errors, notably misclassifying 
726 normals as patients and displaying areas for improvement in reducing false negatives. 
Leveraging SHAP and LRP analyses, we observed an average value of 2.11251442x10-5 and 
approximately 0.032795×10-5, respectively, suggesting valuable insights into feature 
importance and model behavior. These findings underscore the potential for enhancing 
diagnostic accuracy and mitigating misclassifications in medical applications. 

Utilizing various visual representations, including confusion matrices and outputs from SHAP 
and LRP models, we give comprehensive perspectives on the strengths and limitations of the 
CNN model, guiding potential refinements aimed at enhancing overall performance. 

Despite achieving balanced classification between normal and diseased individuals, further 
enhancements are warranted to reduce misclassifications and improve overall accuracy. In-
depth numerical analysis of SHAP and LRP outputs reveals differences in interpretation 
capabilities, with SHAP providing a more detailed analysis than LRP, positioning it as the 
preferred methodology in this context. 

This research significantly contributes to the advancement of AI-driven skin disease diagnosis 
and underscores the potential of CNN models in healthcare applications, particularly in 
dermatological practice. Future endeavors should focus on enhancing methodologies to 
bolster clinical decision-making, thereby advancing patient outcomes within dermatologic 
practice. 

Keywords: SHAP, Dermatology, Layerwise Relevance Propagation (LRP), Explainable AI, CNN 
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1 Introduction 

The imperative role of interpretable machine 
learning models in promoting transparency and 
understanding complex decision-making processes 
is paramount. Algorithms like LRP (Layer-wise 
Relevance Propagation) and SHAP (SHapley 
Additive exPlanations) have emerged as formidable 
tools for unraveling the intricacies of black-box 
models, contributing to transparency, reliability, 
and improved decision-making processes in diverse 
domains [1,2]. To demonstrate the practical 
application of these algorithms, we embarked on 
artificial intelligence training using the HAM10000 
dataset in Python, with a specific emphasis on a 
dermatology model. The subsequent sections of our 
code meticulously illustrate how SHAP and LRP 
values decode the decisions of a pre-trained 
dermatology model. This real-world Python 
implementation aims to bridge the theoretical 
understanding and practical application gap, 
offering a tangible perspective on the 
transformative benefits of SHAP and LRP in 
elucidating machine learning models. 

The realm of Explainable AI (xAI) has garnered 
considerable attention across diverse domains, 
particularly in the medical sector, where 
transparency and traceability are imperative for 
opaque AI/ML systems in healthcare[1,2]. A notable 
method in xAI, Layer-wise Relevance Propagation 
(LRP), focuses on elucidating relevant components 
of inputs and representations in neural networks, 
thereby enhancing the interpretability of decision-
making processes [2]. Explainable AI (xAI) is being 
used in medicine for tasks like helping doctors 
diagnose diseases from X-rays, like COVID-19. This 
helps doctors understand how the AI makes its 
decisions. Techniques like LRP and FLRP are useful 
for this. [3,4]. The advent of explainable AI 
addresses the black-box problem in deep learning 
models, with Selective Layer-wise Relevance 
Propagation proposed to generate clearer 
heatmaps for model predictions [5]. These studies 
underscore xAI's significance in medicine and the 
development of methods like LRP and FLRP to 
enhance transparency and interpretability in AI/ML 
systems. 

Chlebus et al. [6] provided an approach to explain 
semantic segmentation networks through layer-
wise relevance propagation, offering a valuable 
means for model validation and improvement. A 
study by Ahmed et al. [7] developed a system to 
automatically analyze medical images. They used a 
special kind of AI model (generative adversarial 
network) to identify polyps and instruments in 
endoscopy images. They also included a method 
(layer-wise relevance propagation) to explain how 
the model makes its decisions. Karim et al. [4] 
presented a transparent deep neural network 
approach for identifying COVID-19 symptoms in 
chest radiography images, utilizing layer-wise 
relevance propagation for human-interpretable 
explanations. Alam et al. [8] investigated the 
application of layer-wise relevance propagation in 
interpreting deep neural networks within the 
medical domain, focusing on specific pathology 
classes. Bassi et al. [9] employed LRP to improve the 
interpretability of deep neural convolutional 
networks for COVID-19 detection using chest X-
rays. Collectively, layer-wise relevance propagation 
has been effectively applied in various medical 
image analysis tasks, highlighting its potential in 
providing human-interpretable explanations for 
predictions made by deep neural networks in the 
medical and healthcare domain [6, 7, 4, 8, 9]. 

The comprehensibility of deep neural networks has 
emerged as a central issue in the medical and 
healthcare sector, especially concerning artificial 
intelligence (AI) and medical imaging. This focus 
arises from apprehensions regarding clarity, legal 
and ethical implications, and the clinical 
significance of predictions produced by deep neural 
networks within clinical decision support systems 
[8]. Explainable Deep Learning has gained traction 
in AI, especially in medical imaging, where accurate 
and interpretable machine learning models are vital 
for effective diagnosis and treatment planning[10]. 
Explainable AI techniques elucidate a machine 
learning model's predictive behavior using human-
interpretable features and predictions, without 
relying on the model's architecture, parameters, or 
training strategies [11]. In multi-instance learning, 
attention pooling helps explain the results for each 
individual image, but some medical uses need even 
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more detail-explanations for each individual pixel 
in the image. Current models are not yet able to do 
this. [12]. Magnetic resonance imaging is crucial for 
prostate cancer detection, and AI systems can assist 
in radiological evaluation by categorizing lesions as 
either clinically significant (csPCa) or nonclinically 
significant (ncsPCa). [13]. These studies underscore 
the potential of Explainable Deep Learning and 
various interpretability methods, such as SHAP, 
Grad-CAM, and LRP, in enhancing the accuracy and 
interpretability of deep learning models in medical 
imaging [8, 10, 12]. They seek to deliver a thorough 
evaluation via both quantitative and qualitative 
analyses, furnishing clinicians with insights to 
enhance their comprehension and confidence in 
decisions made by computer-aided diagnosis 
systems [12]. Furthermore, there's a strong 
emphasis on conducting a comprehensive 
evaluation that encompasses all sub-modules 
within the system, underscoring the importance of 
adopting a multimodal-based approach that 
integrates various sources of information beyond 
medical images to bolster interpretability in the 
medical field. [8, 13].  

2 General methods 

This research deals with the classification of 
different skin diseases. They used a large collection 
of images called HAM10000 to train a model. Then, 
techniques such as SHAP and LRP were used to 
understand how the model makes its decisions. The 
steps involved in this process were presented in 
Figure 1.  

 

 

2.1 Dataset 

We have a valuable resource for skin cancer 
research. This collection contains over 10,000 
images of skin growths, including melanoma, a 
serious form of skin cancer. The dataset is like a 
comprehensive encyclopedia of skin conditions, 
meticulously organized for scientists to study. Each 
image captures intricate details of the growths, 
providing a wealth of information for analysis.  
These details include color variations, shape 
characteristics, size measurements, and other 
visual features. 

The HAM10000 dataset, introduced by Tschandl, 
Rosendahl, and Kittler in 2018 [14], encompasses a 
vast array of dermatoscopic images portraying 
common pigmented skin lesions. Subsequent to the 
release of this dataset, scholars such as Nugroho, 
Slamet, and Sugiyanto in 2019 employed 
convolutional neural networks (CNNs) for 
discerning skin cancer within the HAM10000 
dataset [15]. Additionally, Khan, Javed, Sharif, Saba, 
and Rehman proposed a methodology focused on 
deep neural networks for feature extraction and 
optimality selection in dermatological skin lesion 
classification, as outlined in their publication from 
April 2019 [16]. These endeavors underscore the 
ongoing commitment within the scientific 
community to harness advanced computational 
techniques for enhanced diagnosis and 
comprehension of skin conditions.  

2.2 CNN - Convolutional neural network 

Li et al. (2021) conducted a comprehensive survey 
of CNNs, analyzing their evolution, applications, and 
future prospects [17]. Their study not only 

Figure 1. The advancement of the article 
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summarized the key findings from previous 
research but also identified emerging trends and 
potential directions for further exploration. The 
study highlighted how CNNs are used for many 
things, like recognizing images, understanding 
language, diagnosing diseases, and even self-driving 
cars. 

CNNs are a powerful type of deep learning model, 
especially good at making sense of pictures and 
videos. Albawi et al. (2017) provided a foundational 
understanding of CNNs, outlining their architecture 
and operation principles [18]. They came up with 
three key building blocks for CNNs: fully connected 
layers, convolutional layers and pooling layers. 

Subsequent research, as exemplified by Gu et al. 
(2018) [19], delved into advanced techniques and 
algorithms that have significantly improved the 
performance of CNNs. These advancements include 
novel convolutional operations, regularization 
methods, and optimization algorithms tailored 
specifically for CNN architectures. Gu and his team 
explored these developments, providing insights 
into the latest trends and breakthroughs in CNN 
research. 

In sum, these studies add to our comprehensive 
comprehension of Convolutional Neural Networks 
(CNNs) and their extensive array of applications. By 
automatically learning hierarchical representations 
from raw data, CNNs excel at feature extraction and 
pattern recognition tasks. As CNN technology 
continues to evolve and integrate with other 
disciplines, such as reinforcement learning and 
generative modeling, they hold tremendous 
promise for addressing complex real-world 
challenges and driving innovation across various 
domains. 

2.2.1 CM – The confusion matrix 

The CM-confusion matrix acts as a one-stop shop for 
assessing how well a classification model performs. 
It provides a clear breakdown of the model's 
predictions compared to the real results.  This 
breakdown is captured in four key categories, each 
revealing a different aspect of the model's strengths 
and weaknesses. 

 

TP – True Positive: The model correctly guesses 
something is positive, and it actually is positive (like 
catching a spam email). 

TN – True Negative: The model correctly guesses 

something is negative, and it actually is negative 
(like letting a real email through). 

FP – False Positive: The model mistakenly guesses 

something is positive, but it's actually negative (like 
flagging a normal email as spam). This is also called 
a Type I error. 

FN – False Negative: The model mistakenly guesses 

something is negative, but it's actually positive (like 
missing a spam email). This is also called a Type II 
error. 

This table, called a confusion matrix, is a powerful 
tool for evaluating how well a classification 
algorithm performs. It helps us calculate the recall, 
precision, accuracy and F1 score as important 
measures. By breaking down the model's 
predictions into these categories, we can gain a 
clearer picture of the classification system's 
strengths and weaknesses. These metrics provide a 
more detailed understanding of how well the model 
makes accurate predictions, finds positives and 
negatives in true types, and identifies their effects of 
errors and types. This allows us to make better 
choices about how to improve and optimize the 
model. Figure 2 shows a confusion matrix with it’s 
values. 
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Figure 2. An example of a confusion matrix 

 

2.3 XAI – Explainable artificial ıntelligence 

XAI research is committed to advancing the 
visibility and interpretive capabilities of artificial 
intelligence (AI) systems, enabling humans to 
understand the decisions and processes underlying 
their functioning. In this section, we offer a 
comprehensive overview of seminal studies that 
have significantly contributed to the advancement 
of XAI. Confalonieri et al. [20] provide an insightful 
historical analysis of XAI, tracing its evolutionary 
journey and elucidating key milestones that have 
shaped its trajectory over time. Their study not only 
provides valuable insights into the origins of XAI but 
also offers a roadmap for guiding future research 
endeavors in this domain. Angelov et al. [21] offer a 
comprehensive analytical review of XAI, critically 
examining the latest developments and emerging 
trends in the field. By synthesizing existing 
literature, their study provides a nuanced 
understanding of the current state of XAI and 
identifies potential avenues for future exploration. 
Furthermore, Došilović et al. [22] conduct an 
extensive survey on XAI, meticulously cataloging 
various explainability techniques and 
methodologies employed in the field. The 
meticulous scrutiny of these outputs emerges as a 
pivotal resource for practitioners and researchers 
endeavoring to navigate the intricate realm of 

eXplainable Artificial Intelligence (XAI) and devise 
effective strategies for enhancing explainability in 
AI systems. Additionally, Tjoa and Guan [23] focus 
specifically on the application of XAI in the medical 
domain, exploring its potential implications for 
healthcare delivery and patient outcomes. Through 
their in-depth investigation, they shed light on the 
unique challenges and opportunities associated 
with integrating XAI into clinical practice, offering 
insights that can inform the development of 
ethically sound and clinically relevant AI-driven 
solutions. Collectively, these seminal studies 
illuminate the multifaceted nature of XAI and 
provide valuable guidance for future research 
efforts aimed at advancing the field and realizing its 
full potential in real-world applications. 

 

2.4 SHapley additive exPlanations (SHAP) 

SHAP is a methodology employed for elucidating 
the predictions made by machine learning models 
[24]. It assesses the contribution of individual 
features or variables to a prediction, serving to 
comprehend these contributions. SHAP elucidates 
the rationales behind a prediction through the 
computation of a SHAP value corresponding to each 
feature [24]. This value indicates why the model's 
output deviates from the expected value. 

SHAP employs the concept of "shapley values" to 
make these explanations. The shapley values 
measure the contribution of each player in a group 
to win or lose a game while representing different 
scenarios [24]. Similarly, SHAP determines how 
much each feature or variable contributed to a 
prediction. This is used to assess the importance of 
each feature or variable in a prediction and to 
understand the behavior of the model. 

SHAP can be used with various machine learning 
models, but it is particularly useful in complex 
models, especially those referred to as black-box 
models [24]. SHAP functions as a vital instrument 
for grasping the internal operations of the model 
and producing trustworthy predictions. 
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𝑆𝐻𝐴𝑃𝐺(X) = ∑ 𝜆𝑘𝑆𝐻𝐴𝑃𝐹𝑘
(𝑋)

𝑘
 (1) 

 

As seen in equation 1: 

𝑆𝐻𝐴𝑃𝐺(𝑋) = The SHAP value (𝑆𝐻𝐴𝑃𝐺(𝑋)) for a 
specific data point (X) shows how much each 
feature affects the model's final prediction.  

Σ𝑘 = This symbol signifies an addition over a group 
of values, particularly over diverse SHapley values. 

𝜆𝑘 weights show how much influence each SHAP 
value has on the overall SHAP value (𝑆𝐻𝐴𝑃𝐺(𝑋)). 
They basically act like importance scores for the 
features. 

𝑆𝐻𝐴𝑃𝐹𝑘
(𝑋)  denotes the SHapley value allocated to 

a certain feature or collection of features, calculated 
using a designated SHapley value estimation 
methodology. It assesses the discrepancy in the 
predicted outcome of the model (E[F]) from the 
actual output (F(x)). 

 

𝜙𝑖(𝑓) = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖} − 𝑓(𝑆)]

𝑆⊆𝑁\{𝑖}
 (2) 

 

As seen in equation 2: 

𝜙𝑖(𝑓)  is the i  Shapley value for the relevant  in  
model f. 

∑𝑆⊆𝑁\{𝑖}   is a summation over all subsets S of the 

set N, excluding i. This element incorporates every 
possible arrangement of characteristics, barring 
feature i. 
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!
 binomial coefficient, denoting the 

selection of |S| elements out of |N| elements, 
ensures a fair distribution of contributions. 

[f(S ∪ {i}) − f(S)]  is representing the disparity in the 
model's forecast when feature i is encompassed in 
the subset |S| versus when it is excluded. It 
measures the additional influence of feature i on the 
model's outcome. 

Figure 3 is showing SHAP analysis along with the 
original image of a random data extracted from the 
dataset. 

 

 

Figure 3. SHAP analysis for a randomly selected 
image from the dataset 

 

2.5 Layer-wise Relevance Propagation (LRP) 

In the world of Explainable Artificial Intelligence 
(XAI), Layer Relevance Propagation (LRP) is an 
important detective that sheds light on the decision-
making process of complex machine learning 
models, especially neural networks. LRP works by 
assigning importance scores to individual pieces of 
information fed into the model, revealing how much 
each one influences the final outcome. It does this 
by meticulously backtracking through the layers of 
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the model, taking into account the influence of each 
"neuron" and its connections. This allows us to see 
inside the "black box" of the model, making it more 
reliable, especially in sensitive areas such as 
healthcare where transparency is crucial.  LRP is a 
versatile tool, compatible with a variety of neural 
network designs, from those that recognize images 
(convolutional neural networks) to those that 
understand language (recurrent neural networks). 
As a result, LRP is a driving force in the exciting field 
of Explainable Artificial Intelligence. 

Figure 4 shows the LRP analysis with the original 
image of a data randomly taken from the dataset. 

 

 

Figure 4. LRP analysis for a randomly selected 
image from the dataset 

𝑅𝑖 = ∑
𝑧𝑖𝑗 . 𝑅𝑗

𝑧𝑗𝑗
 (3) 

𝑅𝑖 is the relevance of the input feature i. 

Σ𝑗represents the sum over all neurons in the layer 

to which the input feature i is connected. 

𝑧𝑖𝑗  is the connection weight between the input 

feature i and the neuron j. 

𝑅𝑗 is the relevance of neuron j in the layer above 

(closer to the output). 

𝑧𝑗 is the total activation of neuron j in the layer 

above. 

3 Results and Discussion 

First, we found a dataset named HAM10000 that 
includes skin diseases. Subsequently, we resized the 
dataset to make it suitable for training. Later on, we 
conducted an analysis of the trained model by 
applying the SHapley model. Using this approach, 
we were able to pinpoint distinct regions within the 
scrutinized images that were projected to be 
afflicted by the condition and those categorized as 
non-pathological. Subsequently, we analyzed the 
model we trained by subjecting it to the SHapley 
model. This strategy facilitated the identification of 
the sections within the scrutinized images 
anticipated to be influenced by the ailment and 
those classified as typical. 

Figure 5 illustrates the SHAP analysis findings for a 
randomly sampled data point extracted from the 
dataset. 

 

 

Figure 5. Shap analysis for a randomly selected 
image from the dataset 
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Figure 6. LRP analysis of the same image 

 

Subsequently, we deployed this approach across 
the entire dataset, generating predictions for all the 
data. As seen in Figure 7, it correctly predicted 4274 
individuals as normal, which is an accurate 
prediction. Unfortunately, it incorrectly classified 
726 normal individuals as patients. However, as we 
proceed, we observe that it correctly predicted 
2962 patients as diseased. On the flip side, it 
erroneously identified 2053 patients as normal 
despite their actual state being diseased. The model 
we trained classified 49.9% of the total 10,015 data 
as normal while 50.1% as diseased. Of the data 
classified as normal, 85.48% were actually normal, 
while the remaining 14.52% were mistakenly 
classified as diseased. For the data classified as 
diseased, 59.06% were correctly classified as 
diseased, while 41.94% were mistakenly classified 
as normal when they were actually diseased. 

 

Figure 7. Confusion matrix of the trained model 

 

In Figure 8, we observe a graphical presentation of 
confusion matrix we generated. As previously 
noted, in the top and left quadrant, our artificial 
intelligence model accurately classified normal data 
as normal. Conversely, in the image on the right 
side, it erroneously classified normal data as 
diseased. Moving to the bottom-left quadrant, it 
misclassified diseased data as normal, while 
adjacent to it, it correctly identified diseased data as 
diseased. 
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Figure 8. Confusion matrix of dataset with images 

 

In Figure 9, we examine the output of the SHAP 
model, indicating potential areas of disease 
presence in the image. In the below, in Figure 10, the 
analysis of the image obtained through LRP can be 
seen. A comparative analysis of these two outputs 
enables us to derive a more precise conclusion. 

 

Figure 9. SHAP analysis for the image 
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Figure 10. LRP analysis for the same image 

 

In Figure 11, we observe an image that the model 
has misinterpreted. The reason for this is the 
presence of different data outside the region where 
the disease is located in the image. As seen in the 
output, the model has indeed examined areas 
beyond where the disease is present. In Figure 12, 
we see the same image after undergoing Layer-wise 
Relevance Propagation. 

 

Figure 11. The SHAP analysis of the data, which has 
been misinterpreted as normal when the patient is 

actually diseased 
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Figure 12. LRP analysis of the same image 

 

In Figure 13, we observe that the model correctly 
interprets a data point as diseased and identifies the 
areas that are considered diseased. In Figure 14, we 
see the output of the same image obtained with LRP. 

 

 

Figure 13. The SHAP analysis of the data, which has 
been interpreted as diseased when the patient is 

actually diseased 
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Figure 14. LRP analysis of the same image 

 

 

In Figure 15, we observe that it correctly interprets 
normal data and identifies the areas that are 
considered normal. In Figure 16, on the other hand, 
we see the output obtained with LRP for the same 
image. 

 

 

Figure 15. SHAP analysis of the data, which has 
been interpreted as normal when the patient is 

actually normal 
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Figure 16. LRP analysis of the same image 

 

SHAP provides a detailed description by coloring 
the areas of healing in blue and the areas of 
deterioration in red, and these colors have a 
numerical equivalent. LRP, on the other hand, only 
identifies the location of the wound by coloring it 
yellow and does not provide a detailed description, 
and LRP, like SHAP, has a numerical equivalent 
according to the shades of yellow color. 

The equivalent of these numerical values in the 
outputs gives an average value of 2.11251442x10-5 

in SHAP. When the same process is done in LRP, the 
result is approximately 0.032795×10-5. 

 

4 Conclusion 

Visual presentations, like the confusion matrix and 
results from the SHAP and LRP models, provided 
insightful perspectives into the model's 
performance and interpretability. These graphical 
representations highlighted the model's 
capabilities and limitations, aiding in potential 
enhancements. 

Our findings revealed a commendable accuracy in 
identifying normal individuals, with 4274 out of 
5000 correctly classified. However, the model 
exhibited a notable margin of error, misclassifying 
726 normal individuals as patients. On the other 
hand, it demonstrated a promising ability to 
accurately predict diseased cases, correctly 
identifying 2962 out of 5015 individuals. 
Nonetheless, it erroneously labeled 2053 patients 
as normal, highlighting areas for improvement. 

While our model achieved a balanced classification 
between normal and diseased individuals, further 
enhancements are warranted to reduce 
misclassifications and enhance overall accuracy. 
Future research could explore incorporating 
additional features or refining existing 
methodologies to bolster the model's predictive 
capabilities. 

In essence, our study contributes to the ongoing 
efforts in leveraging artificial intelligence for skin 
disease diagnosis, underscoring the potential of 
CNN models in healthcare applications. Through 
continued refinement and validation, such models 
hold promise in augmenting clinical decision-
making and improving patient outcomes in 
dermatological practice. 

Looking at the numerical results of SHAP and LRP in 
Results, LRP has a higher numerical value because 
it only uses a darker shade of yellow in the wounds 
when analyzing. SHAP has a lower value than LRP 
because it uses lighter shades of blue in the healing 
part of the wound. It should not be misunderstood 
that LRP has a higher value, SHAP has a lower value 
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because it interprets in more detail and is more 
qualified than LRP's output. 

As a result, it is concluded that the SHAP is better in 
this area as it is more detailed than the LRP in the 
area of health. 
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