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On Cayley Graphs with Constant Ricci Curvature
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Abstract. Understanding the geometry of graphs has become increasingly important. One approach utilizes the
Ricci curvature introduced by Lin, Lu, and Yau, which offers a valuable isomorphism invariant for locally finite
graphs. One of the key tools used in calculating curvatures is the matching condition. This paper exploits the
matching condition to construct families of Cayley graphs exhibiting constant Ricci curvature.
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1. Introduction

Traditional Ricci curvature is a cornerstone of Riemannian geometry, quantifying the local bending of a smooth
manifold. Generalizing this notion to graphs requires adaptation due to their discrete nature. One prominent approach
is the Ollivier-Ricci curvature, which is related to the behavior of random walks on metric spaces, including graphs
[10]. In this approach, the transportation distance between probability measures originating from two given points
is compared to the distance between these points. This has led to numerous subsequent studies on the Ollivier-Ricci
curvature on graphs [1–3,5,11], resulting in a wide range of applications in diverse fields such as network analysis, data
analysis, machine learning, and even biology [6, 9, 12, 13]. Lin, Lu, and Yau [7] later modified Ollivier’s definition to
study the properties of the Ricci curvature of general graphs. Although both definitions have some similar properties,
they vary in several aspects. Numerous subsequent studies have explored properties related to the modified definition.

The classification problem of circulant graphs with constant curvature within the Lin, Lu, and Yau framework was
proposed by Smith [14] due to their applications in computer architecture. The matching condition introduced in the
same work served as a crucial tool for constructing families of circulant graphs with constant Ricci curvature in [4]. One
of these constructions utilized the factorization n = p1 · · · pm of the number of the vertices with coprime factors pi > 3.
It was also conjectured that their construction holds if one of the factors is 3. It is noteworthy to acknowledge [8],
which focused on the Ricci curvature of Cayley graphs, including circulant graphs with certain 4-element jump sets.

In this paper, we build upon the work of [4, 15]. Specifically, we use certain subgroup union complements as the
generating sets for Cayley graphs on direct products of cyclic groups to obtain graphs with constant Ricci curvature.
This approach relaxes the requirement for the factors of n to be coprime. We also provide a proof of the conjecture
of [4], and demonstrate that it remains applicable even when only one of the factors of n is 2.
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2. Preliminaries

Let G = (V, E) be simple graph with a vertex set V and an edge set E. For any vertex x ∈ V , we denote its set of
neighbors by N(x), i.e., N(x) = {y ∈ V : xy ∈ E}. Let ε < 1 be a positive real number. The ε-ball centered at x is the
probability distribution defined by

bεx(v) =


1 − ε; v = x,
ε
|N(x)| ; v ∈ N(x),

0; otherwise.
The Wasserstein Distance, also known as the Earth Mover’s Distance, is a metric used to compare probability

distributions on a metric space. It quantifies the minimum cost of transforming one distribution into another. More
formally, consider an edge xy ∈ E. Then the Wasserstein distance W(bεx, b

ε
y) represents the cost of the optimal transport

from bεx to bεy . This cost is calculated by considering the movement of mass between vertices according to these
distributions. For each unit of mass being moved from a source vertex to a target vertex, the distance between the
vertices is multiplied by the probability weight, i.e., the amount of mass being moved. The total cost is then minimized
over all possible transport plans that specify how much mass to move from each source vertex to each target vertex.

Definition 2.1. Let G = (V, E) be a simple graph. The Ricci curvature κ(x, y) of an edge xy ∈ E is defined as

κ(x, y) = lim
ε→0

1 −W(bεx, b
ε
y)

ε
.

The limit κ(x, y) exists for all xy ∈ E. In other words, the Ricci curvature is defined on all edges [7].
The calculation of the Ricci curvature of an edge involves finding the Wasserstein distance between two probability

distributions on a graph. This formulation defines a specific type of optimization problem, often referred to as the
primal problem. In this problem, we aim to find the minimum of∑

(u,v)∈V2

Auvd(u, v) (2.1)

subject to the input constraint
∑

v∈V Auv = bεx(u) and the output constraint
∑

u∈V Auv = bεy(v), where Auv represents the
amount of mass being moved from the vertex u to the vertex v, and d(u, v) denotes the distance between these vertices.

The primal problem has a dual formulation that seeks to maximize the sum of probability distribution differences
weighted by a special function. More formally, the objective of the dual problem is to find the maximum of∑

v∈V

(
bεx(v) − bεy(v)

)
f (v) (2.2)

subject to | f (u) − f (v)| ≤ d(u, v). A function f : V → R satisfying this condition for all u, v ∈ V is called 1-Lipschitz.
To find the Wasserstein distance between two probability distributions, we either need to find the infimum of (2.1)

over the set of all transport plans, or the supremum of (2.2) over the set of all 1-Lipschitz functions. It is noteworthy
that each transportation plan provides an upper bound on the transportation cost (2.1), and each 1-Lipschitz function
offers a lower bound on the sum of weighted differences (2.2). Hence, the optimal solution can be obtained by equating
such upper and lower bounds. In other words, a transport plan solves the infimum problem and a 1-Lipschitz function
solves the supremum problem if and only if the following equation holds:∑

(u,v)∈V2

Auvd(u, v) =
∑
v∈V

(
bεx(v) − bεy(v)

)
f (v).

This observation is used along with the matching condition, defined below, to construct graphs with constant Ricci
curvature [14].

Definition 2.2. Let G = (V, E) be a simple graph. An edge xy ∈ E is said to satisfy the local matching condition if
there is perfect matching between the sets N(x) ∖ (N(y) ∪ {y}) and N(y) ∖ (N(x) ∪ {x}). If every edge of G satisfies the
local matching condition, then G is said to satisfy the global matching condition.

Theorem 2.3. [14, Teorem 6.3] In a graph G = (V, E), suppose that xy is an edge satisfying the local matching
condition. Then,

κ =
|N(x) ∩ N(y)| + 2

δ
(2.3)

where δ is the common degree of x and y.
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Recall that a circulant graph, denoted by Cn(J), is an undirected graph with a vertex set V = Zn and an edge set
defined by

E = {{i, i + j}, i ∈ V, j ∈ J}.
Here, J ⊆ {1, 2, . . . , n − 1} is a non-empty subset of integers, called the jump set or the shift set.

Example 2.4. Consider the circulant graph C10(J) where J = {1, 2, 3, 5}. Let us calculate the curvature κ(0, 1). Note
that N(0) = {1, 2, 3, 5, 7, 8, 9} and N(1) = {0, 2, 3, 4, 6, 8, 9}. Since N(0) ∩ N(1) = {2, 3, 8, 9}, it follows that

N(0) ∖ (N(1) ∪ {1}) = {5, 7} and N(1) ∖ (N(0) ∪ {0}) = {4, 6}.

The subgraph induced on the vertices {4, 5, 6, 7} is isomorphic to K4, the complete graph on four vertices. Hence, there
is a perfect matching between the sets {5, 7} and {4, 6}. Therefore, the edge {0, 1} satisfies the local matching condition.
It follows from (2.3) that κ(0, 1) = 6

7 .

Several constructions of circulant graphs with constant Ricci curvature were presented in [4]. One such construction
utilizes integer factorizations along with the matching condition, as stated below.

Theorem 2.5. [4, Theorem 5.13] Consider a product n = p1 p2 · · · pm of mutually coprime integer factors pi > 3.
Within the cyclic group Zn, let S = ∪m

i=1⟨pi⟩ and J = Zn ∖ S . Then the circulant graph Cn(J) has constant Ricci
curvature

κ =
2 +
∏m

i=1(pi − 2)∏m
i=1(pi − 1)

. (2.4)

Example 2.6. Let n = 20, p1 = 4, and p2 = 5. Consider the union S = ⟨4⟩∪⟨5⟩ and let J = Z20∖S . Then the circulant
graph C20(J) has Ricci curvature κ = 2

3 .

It was conjectured in [4] that the formula (2.4) remains valid if one of the factors of n = p1 p2 . . . pm is 3. We will
prove this conjecture in next section, and show that it holds even when the factors of n are not mutually coprime, or if
one of the factors is 2.

3. Main Results

The Fundamental Theorem of Finite Abelian Groups states that every finite Abelian group is isomorphic to a direct
product of cyclic groups of prime-power order. In this context, the cyclic group Zn is isomorphic to

⊕m
i=1 Zpi for

the product n = p1 p2 · · · pm of mutually coprime integer factors. It is easier to display the elements of jump sets of
circulant graphs in

⊕m
i=1 Zpi rather than in Zn if the jump set is a complement of subgroup unions. Motivated by this

observation, Daǧlı et al. [4] investigated the Ricci curvature for mutually coprime integer factors pi > 3 in [4]. In the
following, we will show that graphs with constant curvature can be constructed with the same jump set, but without
mutually coprime factors. But let us recall the definition of Cayley graphs first.

Definition 3.1. Given an additive group H and a generating set S ⊆ H with 0 < S and S = −S , the Cayley graph
Cay(H, S ) of H is the simple graph with vertex set H and edge set defined such that two vertices h and h′ are adjacent
if and only if h − h′ ∈ S .

Remark 3.2. An arbitrary edge of Cay(H, S ) has the form {h, s+h} = {0, s}+h for some h ∈ H and s ∈ S . The function
R+(h) : H → H defined by x 7→ x + h is an automorphism of Cay(H, S ) for any h ∈ H. Hence, κ(h, s + h) = κ(0, s).
This means that it is enough to calculate the curvature near the vertex corresponding to the identity element.

Example 3.3. Let p and q be integers strictly greater than 2 that are not necessarily coprime. Consider the Cayley
graph Cay(H, S ) where H = Zp ⊕ Zq and S = {(s1, s2) : s1 , 0, s2 , 0} ⊆ H. Note that S is the complement of the
union of the subgroups H1 = Zp ⊕ {0} and H2 = {0} ⊕Zq, and it has the cardinality |S | = (p− 1)(q− 1). Since ⟨S ⟩ = H,
the Cayley graph Cay(H, S ) is connected. Moreover, it can be shown that any edge satisfies the matching condition.
Hence, Cay(H, S ) has constant curvature κ = (p−2)(q−2)+2

(p−1)(q−1) .

The previous example shows that coprime factors in Theorem 2.5 are not necessary for constant curvature in certain
Cayley graphs. The following theorem formalizes this relaxation. Its proof closely follows the proof of Theorem 2.5.

Theorem 3.4. Consider the additive group H =
⊕m

i=1 Zpi with each pi > 3. Let S = {(s1, . . . , sm) : ∀i, si , 0} ⊂ H.
Then the Cayley graph Cay(H, S ) has constant Ricci curvature, given in (2.4).
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Proof. Let us denote the vertices (0, . . . , 0) and (s1, . . . , sm) of Cay(H, S ) by 0 and s, respectively. Then it can be seen
that N(0) = {(a1, . . . , an) : ∀i, ai , 0} and N(s) = {(a1, . . . , an) : ∀i, ai , si}. Hence,

N(0) ∩ N(s) = {(a1, . . . , an) : ai , 0, si}.

Therefore, |N(0) ∩ N(s)| = (p1 − 2) · · · (pm − 2). To finish the proof, it is sufficient to show that the edge {0, s} satisfies
the matching condition. In other words, we need to establish a one-to-one correspondence between the sets

N(0) ∖ (N(s) ∪ {s}) = {(a1, . . . , am) : ∃i, ai = si; ∀ j, a j , 0} ∖ {s}, (3.1)

and
N(s) ∖ (N(0) ∪ {0}) = {(b1, . . . , bm) : ∃i, bi = 0; ∀ j, b j , s j} ∖ {0}, (3.2)

where 1 ≤ i, j ≤ m. For a subset ∅ ⊂ I ⊂ {1, . . . ,m}, define

XI = {(a1, . . . , am) : ∀i ∈ I, ai = si; ∀ j < I, a j , 0, s j} ∖ {s},

and
YI = {(b1, . . . , bm) : ∀i ∈ I, bi = 0; ∀ j < I, b j , 0, b j} ∖ {0}.

Then, for any distinct subsets I1 and I2 of {1, . . . ,m}, we have XI1 ∩ XI2 = ∅ and YI1 ∩ YI2 = ∅. Moreover,

N(0) ∖ (N(s) ∪ {s}) =
⊎

∅⊂I⊂{1,...,m}

XI ,

and
N(s) ∖ (N(0) ∪ {0}) =

⊎
∅⊂I⊂{1,...,m}

YI .

Now, consider the subgraph of Cay(H, S ) induced on XI ∪ YI . For any (a1, . . . , am) ∈ XI and (b1, . . . , bm) ∈ YI , it can
be seen that |N(a1, . . . , am)| = |N(b1, . . . , bm)| =

∏
i<I(pi − 3). Hence, the induced subgraph is a

∏
i<I(pi − 3)-regular

bipartite graph. The proof then follows since regular bipartite graphs satisfy the matching condition. □

Next, we give a proof of the conjecture stated in Remark 5.14 of [4].

Theorem 3.5. Let H = Z3
⊕m

i=2 Zpi with each pi > 3. Then, the Cayley graph Cay(H, S ) has constant Ricci curvature
for S = {(s1, . . . , sm) : ∀i, si , 0} ⊂ H.

Proof. Let us denote the vertices (0, . . . , 0) and (s1, . . . , sm) of Cay(H, S ) by 0 and s, respectively. In the group of
integers modulo 3, if s1 is any nonzero element, then its additive inverse, −s1, is the other nonzero element. Hence, we
can write the disjoint unions N(0) ∖ (N(s) ∪ {s}) = A1 ⊎ A2 ⊎ A3 and N(s) ∖ (N(0) ∪ {0}) = B1 ⊎ B2 ⊎ B3, where

A1 = {(s1, a2, . . . , am) : ∀i, ai , 0, si},

A2 = {(s1, a2, . . . , am) : ∃i, ai = si; ∀ j, a j , 0} ∖ {s},
A3 = {(−s1, a2, . . . , am) : ∃i, ai = si; ∀ j, a j , 0},

and

B1 = {(0, b2, . . . , bm) : ∀i, bi , 0, si},

B2 = {(0, b2, . . . , bm) : ∃i, bi = 0; ∀ j, b j , s j} ∖ {0},
B3 = {(−s1, b2, . . . , bm) : ∃i, bi = 0; ∀ j, b j , s j},

with 2 ≤ i, j ≤ m. Let us start with constructing a matching between A2 and B3 ∖ {(−s1, 0, . . . , 0)}. Consider the group
H′ =

⊕m
i=2 Zpi with each pi > 3, and the generating set S ′ = {(s2, . . . , sm) : ∀i, si , 0} ⊂ H′. Within Cay(H′, S ′), there

is a matching between the sets

{(a2, . . . , am) : ∃i, ai = si; ∀ j, a j , 0} ∖ {(s2, . . . , sm)}

and
{(b2, . . . , bm) : ∃i, bi = 0; ∀ j, b j , s j} ∖ {(0, . . . , 0)}

due to Theorem 3.4. Since the first entries of elements in A2 are always s1 and those in B3 are always −s1, this matching
naturally induces a one to one correspondence between elements in A2 and B3 ∖ {(−s1, 0, . . . , 0)}. A similar matching
can be constructed between elements in A3 ∖ {(−s1, s2, . . . , sm)} and B2.
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On the other hand, the subgraph induced on A1 ∪ B1 in Cay(H, S ) is a (p2 − 3) · · · (pm − 3) regular bipartite graph,
and therefore it satisfies the matching condition. Let the vertex u of A1 and the vertex v of B1 be matched in this setting.
Since (−s1, s2, . . . , sm) is adjacent to every vertex in B1, and (−s1, 0, . . . , 0) is adjacent to every vertex in A1, we can
first remove the matching between u and v, and then match u with (−s1, 0, . . . , 0), and v with (−s1, s2, . . . , sm) to obtain
a matching between A1 ∪ {(−s1, s2, . . . , sm)} and B1 ∪ {(−s1, 0, . . . , 0)}.

In conclusion, the edge {0, s} satisfies the matching condition, and therefore Cay(H, S ) has constant curvature. □

In the following, we show that Theorem 3.4 holds even if only one of the factors of n = p1 p2 · · · pm is 2.

Theorem 3.6. Let H = Z2 ⊕ Z3
⊕m

i=3 Zpi with each pi > 3. Then, the Cayley graph Cay(H, S ) has constant Ricci
curvature for S = {(s1, . . . , sm) : ∀i, si , 0} ⊂ H.

Proof. Let us denote the vertices (0, . . . , 0) and (s1, . . . , sm) of Cay(H, S ) by 0 and s, respectively. Then, we can write
the disjoint unions N(0) ∖ (N(s) ∪ {s}) = A1 ⊎ A2 and N(s) ∖ (N(0) ∪ {0}) = B1 ⊎ B2, where

A1 = {(1, a2, . . . , am) : ∀i, ai , 0, si},

A2 = {(1, a2, . . . , am) : ∃i, ai = si; ∀ j, a j , 0} ∖ {s},

and

B1 = {(0, b2, . . . , bm) : ∀i, bi , 0, si},

B2 = {(0, b2, . . . , bm) : ∃i, bi = 0; ∀ j, b j , s j} ∖ {0},

with 2 ≤ i, j ≤ m. Note that the subgraph of Cay(H, S ) induced on A1∪B1 is a (p2−3) · · · (pm−3) regular bipartite graph.
Hence, we can perfectly match each vertex in A1 with a unique vertex in B1. To construct a matching between A2 and B2,
consider the Cayley graph Cay(H′, S ′) where H′ =

⊕m
i=2 Zpi with each pi > 3, and S ′ = {(s2, . . . , sm) : ∀i, si , 0} ⊂ H′.

There exists a matching between the sets

{(a2, . . . , am) : ∃i, ai = si; ∀ j, a j , 0} ∖ {(s2, . . . , sm)}

and
{(b2, . . . , bm) : ∃i, bi = 0; ∀ j, b j , s j} ∖ {(0, . . . , 0)}

within Cay(H′, S ′) due to Theorem 3.4. Since the first entries of elements in A2 are always 1 and those in B2 are always
0, this naturally induces a matching between the vertices in A2 and B2.

In conclusion, the edge {0, s} satisfies the matching condition, and therefore Cay(H, S ) has constant curvature. □

Remark 3.7. If two or more of the factors of n is 2, then the matching condition does not hold.

Example 3.8. Let us calculate the curvature κ ((0, 0, 0), (1, 2, 3)) on the Cayley graph Cay(H, S ) for H = Z2 ⊕ Z4 ⊕ Z5
and S = {(s1, s2, s3) : ∀i, si , 0} ⊂ H. First, we list the sets defined in the proof of Theorem 3.6:

A1 = {(1, 1, 1), (1, 1, 2), (1, 1, 4), (1, 3, 1), (1, 3, 2), (1, 3, 4)}
B1 = {(0, 1, 1), (0, 1, 2), (0, 1, 4), (0, 3, 1), (0, 3, 2), (0, 3, 4)}
A2 = {(1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 4), (1, 3, 3)}
B2 = {(0, 0, 1), (0, 0, 2), (0, 0, 4), (0, 1, 0), (0, 3, 0)}.

The subgraph induced on A1 ∪ B1 in the Cayley graph Cay(H, S ) is a 2-regular bipartite graph, as shown below.
Hence it satisfies the matching condition. The bold edges indicate a sample matching between A1 and A2.

(1, 1, 1) (1, 1, 2) (1, 1, 4) (1, 3, 1) (1, 3, 2) (1, 3, 4)

(0, 1, 1) (0, 1, 2) (0, 1, 4) (0, 3, 1) (0, 3, 2) (0, 3, 4)

A1 :

B1 :

Now, consider the Cayley graph Cay(H′, S ′) where H′ = Z4 ⊕ Z5, and S ′ = {(s2, s3) : ∀i, si , 0} ⊂ H′. Let us
show the edge {(0, 0), (2, 3)} satisfies the matching condition in Cay(H′, S ′). According to (3.1) and (3.2), we can write
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the disjoint unions N(0, 0) ∖ (N(2, 3) ∪ {(2, 3)}) = X{1} ⊎ X{2} and N(2, 3) ∖ (N(0, 0) ∪ {(0, 0)}) = Y{1} ⊎ Y{2} where
X{1} = {(2, 1), (2, 2), (2, 4)}, X{2} = {(1, 3), (3, 3)}, Y{1} = {(0, 1), (0, 2), (0, 4)}, and Y{2} = {(1, 0), (3, 0)}. In Cay(H′, S ′),
the subgraph induced on X{1} ∪ Y{1} is a 2-regular bipartite graph, and the subgraph induced on X{2} ∪ Y{2} is a 1-regular
bipartite graph, as shown below. Sample matchings in both graph are indicated with bold edges.

(2, 1) (2, 2) (2, 4)

(0, 1) (0, 2) (0, 4)

X{1} :

Y{1} :

X{2} :

Y{2} :

(1, 3) (3, 3)

(1, 0) (3, 0)

Since the first entries of elements in A2 are always 1 and those in B2 are always 0, the above matching naturally
induces between the vertices in A2 and B2 in Cay(H, S ), as shown below.

(1, 2, 1) (1, 2, 2) (1, 2, 4) (1, 1, 3) (1, 3, 3)

(0, 0, 1) (0, 0, 2) (0, 0, 4) (0, 1, 0) (0, 3, 0)

A2 :

B2 :

In conclusion, the edge {(0, 0, 0), (1, 2, 3)} satisfies the matching condition. Hence, its curvature is κ = 1
6 by (2.3).
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