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Abstract

In this study, the 1.5-dimensional cutting stock problem with technical constraints is considered. In the
literature, this problem is also defined as a strip packing or open dimension problem. When given a
strip of infinite length and bounded width, the problem is to define a packing of rectangular objects
into a strip that minimizes its final length. Technical constraints, such as the order type and the number
of strips, are indispensable in real life; however, they are often neglected in the literature because
they make the problem difficult to solve. Only one study was reached in the literature that took into
account technical constraints, but in that mentioned study, only a mathematical model was proposed
for the problem. In this context, our aim is to solve the problem with a more effective approach.
The research question in this study is the usability of the column generation technique to solve the
1.5-dimensional cutting stock problem. In this study, the column generation approach was proposed
for the first time for the considered problem. To demonstrate the performance of the proposed solution
method, randomly generated test problems were solved with GAMS/Cplex. As we report the results,
proposed column generation approach (CG) reaches very close (such as 1% and 2% error) solutions to
integrated mathematical model (IM) for small sized problems in a second. On the other hand, while
CG solved all the problems in a reasonable time, IM could not produce a feasible solution to some
problems. Numerical experiments showed that the column generation algorithm outperforms the
integrated mathematical model for the problem.

Keywords: 1.5-dimensional cutting problem; column generation; mixed-integer linear programming
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1 Introduction and literature survey

The essential characteristics to be considered to generate the cutting plans are the number of di-
mensions of the stock material and the order of pieces. Cutting items such as paper rolls and metal
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rods are one-dimensional. The problems, such as pallet placement and cutting small rectangular
order pieces from large rectangular stock materials, are two-dimensional, and problems such as
container insertion and packing into packing boxes, are three-dimensional. Four-dimensional
problems can arise when the time dimension is added to a three-dimensional problem.
One-and-a-half-dimensional problems are a particular case of two-dimensional problems. Such
problems arise when rectangular order pieces are to be placed on very long rolls. Although
rectangular order pieces are being cut, the problem is not two-dimensional because the side waste
along the stock material can be defined by one dimension.
Dyckhoff et al. (1985) made significant contributions to the literature on cutting problems
and named the one-dimensional cutting stock problem in continuous form as one plus half-
dimensional, 1.5-dimensional [1]. This definition in Dyckhoff’s classification has not been included
much in the literature. The related problems are defined as ’one-dimensional and various-sized
stock materials cut-off’ instead of the 1.5-dimensional problem [2]. Moreover, in the following
years, Dyckhoff grouped the problems according to their dimensions as one, two, three, and
N−dimensional (N > 3) problems. This classification does not include the 1.5- dimensional
problems [3].
Song et al. (2006) defined the 1.5-dimensional problem differently. Accordingly, the 1.5- dimen-
sional cutting stock problem is cutting smaller rectangular order pieces from large rectangular
stock materials. In this problem, the order piece requested by the customers can sometimes be
longer than the primary material. In this case, several stock materials are brought together so
that their total length matches the size of the order pieces. This problem is also defined as a
1.5-dimensional problem because of the assumption that the stock materials can be combined [4].
In the definitions above, the 1.5-dimensional problem is the placement of rectangular order pieces
to the stock material, which can be accepted as a fixed width and continuous form. Although this
problem is not mentioned as much as other cutting problems in the literature, it has a significant
area, especially in production environments with inputs such as paper, metal, sheet metal.
Saraç and Özdemir (2003) discussed the 1.5-dimensional cutting stock problem with the limited
number of strips, piece types, and stock material selection. They proposed a two-step approach to
solve the problem. The cutting plans are derived for the first stage, and complete enumeration is
considered under the constraints of the number of strips and the order of piece type. In the second
stage, a bi-objective, nonlinear, mixed-integer mathematical model is proposed to determine which
cutting plans and stock materials will be selected. A genetic algorithm has been developed because
a mathematical model cannot solve real-life problems [5]. Gasimov et al. (2007) developed a new
multi-objective mixed-integer linear mathematical model for the 1.5-dimensional cutting stock and
stock material selection problem. This model requires the cutting plans to be derived in advance
[6]. Kokten and Sel (2022) developed a nonlinear mixed-integer mathematical model for the
1.5-dimensional cutting stock and stock material selection problem. They used a decomposition
method in which the sub-models were solved sequentially to solve the problem [7]. Saraç and Sağır
(2021) developed a mixed-integer linear mathematical model for the 1.5-dimensional cutting stock
problem with limited part type and strip number that does not need to be derived in advance of
cutting plans [8]. Duysak et al. (2022) proposed a metaheuristic algorithm for the 1.5-dimensional
cutting and assortment problem. They considered the due dates of the cutting parts [9]. Vasilyev
et al. (2023) proposed a few mathematical models and two solution algorithms for the problem
[10]. Liu et al. (2023) dealt with two aspects of the problem: the uncertain demand for items and
the need for diverse types of strips to cater to varying customer needs. They proposed a robust
optimization model to cope with these difficulties [11].
The variations of the considered problem have also been referred to in the literature as strip
packing or open dimensional problems. The strip packing problem is defined as follows. Consider
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a set of n rectangular items with dimensions (wj, hj) where wj and hj represent the width and the
height of item j, respectively, and wj is an integer value. Let R be a rectangular object (strip) with
fixed width W and height H large enough (infinite height) to pack all items. The objective of the
strip packing problem is to pack all items without overlapping while minimizing the height of the
strip [12]. On the other hand, according to Wäscher et al. (2007), 2D strip packing corresponds to
the Two-Dimensional Rectangular Open Dimension Problem [13].
A few studies solve the strip packing problem with column generation. In their study, Sugi et
al. (2020) considered the rectangular strip packing problem with a three-stage guillotine cutting
constraint and the limitations of slitter blades. They propose a new algorithm based on the
column-generation technique for this problem [14]. While Cintra et al. (2008) and Bettinelli et al.
(2008) developed solution approaches based on the column generation technique for the classical
two-dimensional level strip packing problem [15, 16], respectively, Cui et al. (2017) suggested
it for the rectangular level strip packing problem [17]. When it comes to level, the structure of
the problem differs significantly from that of the classical problem since the cutting process is
done on a level basis. The problems addressed in these studies are different from our problems.
Order type and strip number constraints were not considered together in any of these studies. In
summary, we have reached only one study [8] in the literature that considers technical constraints.
Furthermore, when considering the 1.5-dimensional cutting problem literature, it becomes evident
that the column generation solution approach has not been applied to this problem previously. In
other words, in this study, the column generation approach was proposed for the first time for the
considered problem.
The following Section 2 presents the problem in detail and gives the mathematical model of
the problem. Section 3 proposes a column generation approach to solve the problem. Section 4
provides experimental results, Section 5 gives the discussion, and Section 6 presents the conclusion.

2 Problem definition and mathematical model

n rectangular order pieces of different dimensions are cut from G-width stock material. The length
(L) of the stock material is long enough to neglect the length restriction when creating cutting
plans. For this reason, cutting plans are created by considering only the ’width’ constraints. Then,
the total lengths are calculated separately for each order piece included in a cutting plan. The
largest of these determines the size of the cutting plan. The number of knives (t − 1) that can
cut the stock material into strips by cutting parallel to the length is limited. Therefore, the stock
material can be cut into a maximum of t strips. In other words, a maximum t order pieces can be
placed on the stock material. While cutting the order pieces, they cannot be rotated; that is, cutting
should be made so that the width of the order piece is parallel to the width and length of the stock
material. Also, the maximum number of order piece types (c) that can be included in a cutting
plan is limited.
An integrated mathematical model (IM) proposed by Saraç and Sağır (2021) generates and selects
cutting plans for 1.5-dimensional cutting stock problems with technical constraints [8]. Table 1
gives the indices of the mathematical model, Table 2 shows the parameters, and Table 3 shows the
decision variables.

Table 1. Indices

r Quantity index with the order piece at the width of the cutting plan r ∈
{

1, . . . , enbj
{

qj
}}

j Order piece index j ∈ {1, . . . , n}
k Cutting plan index k ∈ {1, . . . , m}
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Table 2. Parameters

n number of order pieces
m maximum number of cutting plans that can be derived
ej width of the order piece j (cm)
bj length of the order piece j (cm)
d the demand of the order piece

qj the quantity that the order piece j can fit in the width of the stock material qj =
⌊

G
ej

⌋
G width of the stock material (cm)
L length of the stock material (cm)
t maximum number of strips that can be included in a cutting plan
c maximum variety of order parts that can be included in a cutting plan

Table 3. Decision variables

µjk the total amount of order piece j included in the cutting plan k
yjk the quantity that the order piece j can fit in the width of the kth cutting pattern
zk 1, if kth cutting pattern is used, 0 otherwise

wjk 1, if jth order is included in the kth cutting pattern, 0 otherwise
xk Net amount to be used from the kth cutting pattern (cm)
sjkr 1, if there is an r row of the order j at the width of the cutting pattern k, 0 otherwise
∝jk the quantity of the order piece j can fit in the length of the cutting pattern k
σk amount to be used from the kth cutting pattern (Each cutting plan is assumed as 100 cm.

In the mathematical model, and σk decision variable shows how many times 100 cm cutting
patterns are used. Therefore, the number of uses of the cutting patterns also means how many

meters are used

M ′ a big positive number M ′ =
⌊

G
ej

⌋ ⌊
L
bj

⌋
M ′′ a big positive number M ′′ = max qj

The IM model is given below: ∑
k

µjk ≥ dj, ∀j, (1)∑
j

ejyjk ≤ Gzk, ∀k, (2)

∑
k

xk ≤ L, (3)

µjk ≤ yjk M ′, ∀j, k, (4)

µjk ≥ yjk, ∀j, k, (5)

∝jk ≤
100σk

bj
, ∀j, k, (6)

µjk ≤ r∝jk + (1 − sjkr)M ′, ∀j, k, r| r ≤ qj, (7)

yjk =
∑

r|r≤qj

rsjkr, ∀j, k, (8)

∑
r|r≤qj

sjkr ≤ 1, ∀j, k, (9)
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∑
j

∑
r|r≤qj

sjkr ≤ c, ∀k, (10)

∑
j

yjk ≤ t, ∀k, (11)

∑
j

yjk ≤ σk M ′′, ∀k, (12)

σk ≥ zk, ∀k, (13)

σk ≤ L zk, ∀k, (14)

xk ≥ bj ∝jk, ∀j, k, (15)

xk ≥ 0, ∀k, (16)

yjk ≥ 0 and integer, ∀j, k, (17)

µjk ≥ 0 and integer, ∀j, k, (18)

zk ∈ {0, 1} , ∀k, (19)

wjk ∈ {0, 1} , ∀j, k, (20)

sjkr ∈ {0, 1} , ∀j, k, r, (21)

σk ≥ 0 and integer, ∀k, (22)

∝jk ≥ 0 and integer, ∀j, k. (23)

Objective function

f = enk
∑

k

xk
L

+
∑

k

Zk
m

. (24)

Constraint (1) is the demand constraint. It is ensured by constraint (2) that the total width of
all order pieces placed in a cutting plan does not exceed the width of the stock material. The
constraint (3) is for the total amount of cutting plan used not to exceed the length of the stock
material. The constraints (4) and (5) are the relationship constraints between variables µjk and yjk.
If yjk is zero, they ensure that the variable µjk is also zero. Constraint (6) calculates how many
times the order pieces j are included in the cutting plan k considering only its length. Decision
variable σk indicates how many pieces of the cutting plan are used, and it is multiplied by 100 to
convert to cm. Constraint (7) calculates exactly how many pieces of order j are included in the
total amount of cutting plan k. Constraint (8) calculates how many pieces of order j are included
in a cutting plan considering only its width. Constraint (9) indicates that if an order piece is
used in a cutting plan, the amount that can fit in the end can be a single value. Constraint (10)
indicates that maximum c different order pieces can be included in the cutting plan. Constraint
(11) indicates that there may be no more than t order pieces that can be cut across a cutting plan.
The constraint number (12) is the relational constraint between yjk and σk. Constraints (13) and
(14) are the relational constraints between σk and zk. The constraint number (15) calculates the net
used amount of the cutting plan. (16) - (23) constraints are sign constraints. The objective function
(24) is to minimize the total length and type of cutting plan used. These terms are combined using
the weighted sum scalarization method.

3 Problem-solving with column generation

Although mathematical models are developed to give the best solution for t his problem, they
cannot be solved when the problem size increases. In addition, the problem has some special
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technical limitations that have not been included in the literature by now. Our motivation comes
from this need to solve the model more effectively and quickly by using the column generation
method, as well as to take into account more realistic constraints are aimed, as we explained before.
This section presents the column generation method.

Column generation method

Column Generation is a technique for solving linear programs where the numbers of variables
are hard to enumerate. According to this approach, only a few variables are needed to determine
the optimal solution, as most will assume a zero value [18]. In each step, the master model looks
for the best solution, considering only a certain number of variables (equivalent columns). The
sub-problem (knapsack problem) investigates whether new columns are added to the master
problem in the next increment, reducing the objective function. The objective function of the
knapsack problem is the reduced cost of the columns concerning the optimal dual variables
corresponding to the optimal solution of the current master problem. If there is a column with
a negative reduced cost, that column is added to the master problem and proceeded to the next
iteration; otherwise, optimality is achieved [18].
Figure 1 gives the flow chart of the column generation algorithm.

Figure 1. Main steps of the CG algorithm

According to the algorithm, initial cutting plans are derived. The master model is solved using
these cutting plans. If the dual price (σ) is negative, there is a better cutting pattern. From the
solution of the master model, the dual variable of the related constraint is sent to the knapsack
model. The knapsack model is solved, and the new cutting plan will be added to the master
model. Then, the loop continues until no better cutting plan is derived.
The complexity of column generation depends on the structure of the main problem and the
pricing sub-problems. Because the process involves solving a constrained main problem and a set
of sub-problems iteratively to create new columns, the computational burden is usually incurred
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by solving the sub-problems and can be complex and time-consuming, especially when these
problems involve combinational structures. For the problem considered in this study, a significant
reduction is observed in the complexity of the sub-problem compared to the complexity of the
integrated problem. The solution times given in Section 5 are an indicator of this reduction.
The column generation technique is used to solve many problems in the literature. Kamran et al.
(2020) used a column-generation-based heuristic algorithm and Benders’ decomposition technique
to schedule patients in operating rooms. With the growth in the number of patients, the feasible
sequencing plans grow exponentially. On the other hand, the CG method does not need to price
out all the columns, and this makes it beneficial [19].
Faiz et al. (2019) used a column generation framework to solve large-scale instances of vehicle
scheduling and routing problems. They first suggest various linear programming models for the
problem. According to the experimental results, the column-generation-based approach provides
better solutions in terms of solution time [20].
Changchun et al. (2018) developed a column generation-based distributed scheduling algorithm
for a constrained project scheduling problem. They decomposed the problem into two parts as:
production planning and vehicle scheduling [21].
Section 3 presents the proposed column generation algorithm’s main and sub (knapsack) problems
and the mathematical models developed to solve them.

Master and knapsack models

Master and knapsack models are developed as below, respectively. Since the indices, parameters,
and decision variables are explained in Section 2, only the newly defined ones are included here.
Master model
Parameters

y ′
jk : the quantity that the order piece j can fit in the width of the kth cutting pattern.

Constraints are given by the following equations including Eq. (3),

∝jk ≤ 100xk
bj

, ∀j, k, (25)∑
k

∝jky ′
jk ≥ dj, ∀j, (26)

xk ≥ zk, ∀k, (27)

xk ≤ L zk, ∀k, (28)

xk ≥ bj ∝jk, ∀j, k. (29)

Objective function

f = min
∑

k

xk. (30)

Constraint (25) calculates how many times order piece j is included in the cutting plan k consider-
ing only its length. Decision variable xk indicates how long cutting plans are used in meters, and
it is multiplied by 100 to convert to centimeters. Constraint (26) is demand constraint. Constraints
(27) and (28) are the relational constraints between xk and zk. Constraint (29) calculates the net
amount to be used from the kth cutting pattern (cm).
The objective function (30) minimizes the total net amount used from the cutting patterns.
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Knapsack Model
Parameters

yj : the quantity that the order piece j can fit in the width of the cutting pattern,
wj : 1, if jth order is included in the cutting pattern, 0 otherwise,
φj : dual variables of constraint (26) of main model.

yj ≤ twj, ∀j, (31)

yj ≥ wj, ∀j, (32)∑
j

ejyj ≤ G, (33)

∑
j

wj ≤ c, (34)

∑
j

yj ≤ t, (35)

yj ≥ 0, ∀j, (36)

wj ∈ {0, 1} , ∀j, (37)

f = min

1 −
∑

j

φj yj (
1
bj
)

 . (38)

Constraints (31) and (32) indicate that if an order piece is included in the cutting pattern, at least
one and no more than t order pieces can be cut across the cutting plan. It is ensured by constraint
(33) that the total width of all order pieces placed in a cutting plan does not exceed the width of the
stock material. Constraint (34) indicates that maximum c different order pieces can be included in
the cutting plan. Constraint (35) indicates that there may be no more than t order pieces that can
be cut across a cutting plan. (36) - (37) are sign constraints. The objective function is given in Eq.
(38).

4 Experimental results

An instance taken from the literature with different numbers of orders is solved both with MI and
CG. CPLEX solver of GAMS (version 24.0.2) is used on a PC with 3.60 GHz Intel Core i7 and 16
GB RAM. The time limit of 86,400 CPU seconds is applied for CPLEX runs.
The following section presents the test problems, followed by the toy problem and the test results,
which are introduced in the first and second subsection of Section 4, respectively.

Test problems

The first four samples (problem instances) are taken from [8]. The remaining are obtained by
adapting the examples generated for one-dimensional cutting problems by Kasımbeyli et al. (2011)
[22]. The widths of the order pieces in the one-dimensional problem are multiplied by a parameter,
and the length values are obtained. The parameter values of all samples are given below.

Sample 1.

n = 5, G = 110, e = (10, 20, 30, 40, 60), b = (13, 26, 39, 52, 78), d = (6, 11, 4, 20, 15).
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Sample 2.

n = 10, G = 120,

e = (10, 20, 30, 40, 60, 15, 25, 35, 45, 65),

b = (13, 26, 39, 52, 78, 19, 32, 45, 58, 84),

d = (7, 11, 3, 20, 15, 5, 10, 13, 20, 15).

Sample 3.

n = 20, G = 130,

e = (10, 20, 30, 40, 60, 15, 25, 35, 45, 65, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32),

b = (13, 26, 39, 52, 78, 19, 32, 45, 58, 84, 14, 15, 16, 18, 27, 28, 29, 31, 40, 41),

d = (16, 11, 13, 20, 15, 15, 10, 13, 20, 15, 15, 11, 13, 20, 15, 15, 10, 13, 2, 15).

Sample 4.

n = 30, G = 280,

e = (10, 20, 30, 40, 60, 15, 25, 35, 45, 65, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44, 51,

52, 53, 54),

b = (13, 26, 39, 52, 78, 19, 32, 45, 58, 84, 14, 15, 16, 18, 27, 28, 29, 31, 40, 41, 42, 44, 53, 54, 55, 57, 66,

67, 68, 70),

d = (5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15).

Sample 5.

n = 40, G = 130,

e = (10, 20, 30, 40, 60, 15, 25, 35, 45, 65, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44, 51,

52, 53, 54, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71),

b = (13, 26, 39, 52, 78, 19, 32, 45, 58, 84, 14, 15, 16, 18, 27, 28, 29, 31, 40, 41, 42, 44, 53, 54, 55, 57, 66,

67, 68, 70, 79, 80, 81, 83, 85, 87, 88, 89, 91, 92),

d = (5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15,

5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15).

Sample 6.

n = 40, G = 10000,

e = (732, 1746, 1210, 290, 1212, 715, 1471, 1405, 1974, 344, 1699, 172, 351, 1227, 1739, 272, 1903,

1121, 1326, 107, 726, 1917, 1116, 501, 1599, 439, 821, 485, 361, 860, 1252, 562, 1131, 271, 1075,

987, 1171, 1979, 228, 1370),

b = (951, 2269, 1573, 377, 1575, 929, 1912, 1826, 2566, 447, 2208, 223, 456, 1595, 2260, 353, 2473,

1457, 1723, 139, 943, 2492, 1450, 651, 2078, 570, 1067, 630, 469, 1118, 1627, 730, 1470, 352,

1397, 1283, 1522, 2572, 296, 1781),



344 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 3, 335–350

d = (217, 232, 265, 249, 266, 269, 215, 215, 213, 267, 299, 259, 287, 284, 277, 223, 200, 255, 269, 226,

240, 209, 266, 254, 241, 264, 229, 257, 285, 204, 255, 257, 283, 222, 218, 289, 244, 214, 223, 290).

Sample 7.

n = 100, G = 800,

e = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,

85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100),

b = (1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37,

39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72,

74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105,

106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 122, 123, 124, 126, 127, 128, 130),

d = (5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15,

5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14,

14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16,

16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17).

Sample 8.

n = 20, G = 110,

e = (50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 32, 33, 42, 44, 27, 19, 10, 40, 20, 30),

b = (65, 66, 67, 68, 70, 71, 72, 74, 75, 76, 41, 42, 54, 57, 35, 24, 13, 52, 26, 39),

d = (273, 20, 27, 19, 32, 28, 100, 82, 55, 42, 48, 35, 29, 50, 35, 40, 23, 42, 51, 32).

Sample 9.

n = 200, G = 1400,

e = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,

85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,

109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,

129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,

149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,

169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188,

189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200),

b = (1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37,

39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72,

74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105,
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106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 122, 123, 124, 126, 127, 128, 130, 131,

132, 133, 135, 136, 137, 139, 140, 141, 143, 144, 145, 146, 148, 149, 150, 152, 153, 154, 156, 157,

158, 159, 161, 162, 163, 165, 166, 167, 169, 170, 171, 172, 174, 175, 176, 178, 179, 180, 182, 183,

184, 185, 187, 188, 189, 191, 192, 193, 195, 196, 197, 198, 200, 201, 202, 204, 205, 206, 208, 209,

210, 211, 213, 214, 215, 217, 218, 219, 221, 222, 223, 224, 226, 227, 228, 230, 231, 232, 234, 235,

236, 237, 239, 240, 241, 243, 244, 245, 247, 248, 249, 250, 252, 253, 254, 256, 257, 258, 260),

d = (5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15,

5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14,

14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16,

16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,

17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,

18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,

21, 21, 21, 21, 22, 22, 22).

Two cases are considered for all samples: Cutting plans can be included (1) at most two kinds of
order pieces and eight strips (c = 2 and t = 8) and (2) at most three types of parts and sixteen
strips (c = 4 and t = 16).

Toy problem

Toy problem includes four order pieces, P1, P2, P3, P4, with sizes as 10×13, 20×26, 30×39, 40×52,
respectively. The stock material’s width is 50. Demands are 4, 5, 3, and 2, respectively.
The toy problem was solved with both CG and IM, and the same solution was obtained. However,
while CG achieved this solution in 0.48 seconds, MI runs to the time limit of 86400 seconds.
Obtained cutting plans are presented in the following Figure 2, Figure 3, and Figure 4.

Figure 2. Cutting Plane 1

Figure 3. Cutting Plane 2
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Figure 4. Cutting Plane 3

5 Test results and discussion

Samples have been solved both with IM and CG for two parameter sets: set 1 (c = 2 and t = 8)
and set 2 (c = 4 and t = 16). The results obtained with set 1 are given in Table 4 and set 2 in
Table 5. According to Table 4, IM obtains only the optimum solution for Samples 1 and 2. CG
reaches very close solutions (1% and 2% error) to IM in a second. IM could not achieve any feasible
solution for other problems in reasonable times. On the other hand, feasible solutions are achieved
in reasonable times with CG. For none of the instances in Table 5, an optimum solution is achieved
for IM, but feasible solutions are obtained for Samples 1, 2, and 8. For sample 1, both IM and CG
obtained the same solution. The solution time of CG is only one second, while the solution time of
IM is 86400 seconds (IM stopped by the time limit). For Sample 2, in a second, CG approaches
1% close to the solution obtained by MI in 31288 seconds. For sample 8, on the other hand, CG
achieved a more successful objective function value in a much shorter time than IM. CG obtained
feasible solutions in reasonable times for the rest of the instances. On the other hand, IM has not
obtained a solution within the time limit for these instances. Due to the difference in d values
(much bigger than the other instances’ d values), the zCG value in Sample 6 for CG is obtained
bigger than the other zCG values.

Table 4. Test results for c = 2 and t = 8

IM IM CG CG
zIM tIM zCG tCG

sample1 1248 6244 1261 1
sample2 2531 1181 2587 1
sample3 - 86400 3002 141
sample4 - 86400 2714 822
sample5 - 86400 10980 86400
sample6 - 86400 1672106 28561
sample7 - 86400 3240 1
sample8 - 86400 28239 3
sample9 - 86400 69514 86400
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Table 5. Test results for c = 4 and t = 16

IM IM CG CG
zIM tIM zCG tCG

sample1 1222 86400 1222 1
sample2 2510 31288* 2533 1
sample3 - 86400 2976 4322
sample4 - 86400 2754 288
sample5 - 86400 10948 86400
sample6 - 86400 1661374 86400
sample7 - 86400 9604 86400
sample8 28621 86400 28144 11777
sample9 - 86400 52265 86400

*out of memory.

When Table 4 and Table 5 are examined regarding the effects of different parameter sets on the
objective function and solution times, it is observed that when the c and t parameters are increased,
generally better objective function values can be obtained, but the solution time is prolonged.
When the experimental results are evaluated in general, it is observed that the mathematical
modeling method has some critical limitations for the 1.5-dimensional cutting stock problem with
technical constraints. In particular, it has been determined that as the problem size increases, the
solution times with traditional mathematical models increase dramatically, and even in some
cases, a feasible solution cannot be found. This situation shows that complex constraints and
high-dimensional problem structures are difficult to cope with only using classical mathematical
modeling techniques.
In this context, the proposed Column Generation (CG) solution method has emerged as an effective
alternative, especially for cutting stock problems with large-scale and complex constraints. The
CG method offers an approach that can divide the problem into smaller sub-problems and solve
each of them in reasonable times. In the numerical experiments, it has been observed that this
method produces faster and more successful solutions even for large-sized problems. In particular,
it has been concluded that it is successful in coping with technical constraints and therefore can be
used as a practical solution method in real-world applications.

6 Conclusion

In this study, the 1.5-dimensional cutting stock problem is considered. This problem covers
situations where materials of certain widths and lengths commonly encountered in industrial
production processes need to be cut with minimum waste. Unlike the studies in the literature,
technical constraints such as order type and number of strips are taken into account together
in this study. This approach allows obtaining results closer to real-world applications. In order
to solve the problem, a column generation technique, which has been proven to be effective in
large-scale and complex cutting stock problems, is proposed. This technique was developed to
increase the solution time and accuracy even in high-dimensional problems.
In order to test the accuracy and effectiveness of the study, the test problems and a linear integrated
mathematical model from the literature were used. The numerical experiments revealed that as
the problem size increases, the solution time of the mathematical model increases dramatically,
and even in some cases, a feasible solution cannot be found. However, the proposed column
generation approach produces faster and more successful solutions even for large-sized problems.
The column generation algorithm performed better than the mathematical model. The column
generation approach is not limited to the problem considered in this study but can also be applied
to other cutting stock problems in the future. This approach provides a valuable solution, especially
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for researchers dealing with large data sets and complex production processes.
The CG solution approach may be insufficient when the problem dimensions are very large, such
as in big data. Applying heuristic methods to solve the sub-problem may be a solution in this case.
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