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Abstract

This study introduces a model where inventory costs are represented as grey
numbers, rather than traditional crisp or stochastic values. Utilizing grey calculus,
game-theoretic solutions are reinterpreted to address interval uncertainty within
cooperative grey inventory games. Grey equal distribution rules are established
for fair cost allocation. The model parameters are determined to construct a grey
inventory game, which is applied to three shotgun companies in Türkiye. The cal-
culated grey inventory costs and different game-theoretic solutions are presented.
This study extends solutions like the Banzhaf value, CIS-value, ENSC-value, and ED-
solution by incorporating interval uncertainty.
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1. Introduction

Inventory management studies aim to minimize the average total cost per unit time and determine
the optimal order quantity for stocked materials. This problem was first addressed by Harris (1913)
with the introduction of the Economic Order Quantity (EOQ) Model. Inventory management and the
distribution of ordering and holding costs are critical in the business world. When firms place their
orders simultaneously, total costs can be significantly reduced, but distributing these costs among
firms is not straightforward.

Recent studies have focused on cooperative inventory games, where firms collaborate to minimize
joint inventory costs. Recent studies focus on cooperative inventory games, where firms collaborate
to minimize joint inventory costs. Meca (2004) extends inventory management to include cooper?
ative scenarios, introducing proportional division mechanisms for cost sharing. They proposed a
method to allocate costs fairly among participating firms. In another study, Meca (2006) introduced
generalized holding cost games, which extend traditional models and study core?allocation families
like the N?rational solution family, offering a new perspective on holding costs.

Centralized inventory management was discussed by Mosquera et al. (2007), who introduced the
SOC?rule (Share the Ordering Cost) in inventory games. This rule is unique in its immunity to coali?
tional manipulation, ensuring fair cost distribution among cooperating firms. Further exploration
of generalized holding cost games by Meca (2006) presented a new class of inventory games that
further develop the theoretical framework for cost allocation.

The cost allocation procedure for the joint replenishment problem with first?order interaction was
studied by Anily & Haviv (2007), adding to the understanding of cooperative strategies in inventory
management. Dror & Hartman (2011) provided a comprehensive review of cooperative inventory
games and their extensions within deterministic EOQ models, highlighting the evolution and impact
of these cooperative strategies in inventory management.

Leng & Parlar (2009) analyze cost savings from sharing demand information in a three?level supply
chain using cooperative game theory, ensuring stable and fair cost savings allocation. This study
demonstrates the benefits of information sharing in supply chains. In a multi?agent inventory trans?
portation system, Meca et al. (2010) examined cost sharing using an EOQ policy. They explored the
conditions under which cooperation is profitable and how to ensure stable and fair cost allocations,
focusing on the Shapley value and proportional cost sharing rules.

Karsten et al. (2017) analyzed cost allocation rules in cooperative games with elastic cost functions.
They emphasized fairness criteria like coalitional rationality and benefit ordering, comparing various
cost sharing rules such as proportional, serial cost sharing, and Shapley?esque rules. Olgun et al.
(2017) introduced cooperative grey games to manage inventory costs where costs are represented as
grey numbers. Applying grey system theory to shotgun companies in Turkey, the study demonstrates
its effectiveness over traditional methods for handling imprecise information.

Kahraman & Aydemir (2020) developed a dual?objective inventory routing model using grey system
theory to enhance logistics performance in medium?scale industrial distribution planning under
uncertainty. Yang et al. (2021) proposed a coalition game model to promote fair cost distribution
through the cooperative use of energy storage systems. Olgun & Aydemir (2021) introduced a cooper?
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ative game theory model where clients share warehouse space under capacity constraints to reduce
costs and achieve savings. De & Mahata (2020) applied fuzzy game theory to develop an EOQ model
for defective products, offering optimal solutions for inventory management under uncertainty.
Guardiola et al. (2021) analyzed a new core allocation method aimed at providing stable cost?sharing
solutions. Lastly, Liu et al. (2021) created a two?stage supply chain pricing model utilizing interval
grey numbers to optimize collaborative pricing strategies, accounting for demand uncertainty and
inventory costs.

Building on the results of Olgun et al. (2017), this paper focuses on a unified approach to a specific
type of one?point solutions for cooperative games, known as equal surplus sharing solutions. These
solutions include the Banzhaf value, the Centre?of?gravity of the Imputation?Set value (CIS?value),
the Egalitarian Non?Separable Contribution value (ENSC?value), and the Equal Division solution (ED?
solution) as discussed by Brink & Funaki (2008). The primary objective is to extend these solutions
by incorporating interval uncertainty.

The CIS?value represents the individual worth of a player participating in the game as a solitary
entity. The ENSC?value is derived from separable contributions, which are among the various
marginal contributions a player can make. The ENCIS?value, or separable (marginal) contribution,
indicates the value of a player’s participation as a member of the player set. These values are well?
established concepts in game theory literature, as noted by Driessen & Tijs (1985), Driessen (1988),
Driessen & Funaki (1991), Driessen & Funaki (1994), Funaki (1998), Legros (1986), Moulin (1985).

In general, minimizing costs and accurately calculating stock levels in inventory management are
crucial for enhancing operational efficiency within firms. However, in real?world scenarios, the
uncertainty surrounding parameters related to inventory costs necessitates their estimation within
predictable ranges. This study uses grey numbers to model these uncertainties, which forms the
primary motivation for the research. Additionally, firms ordering similar products have the potential
to collaborate to reduce inventory costs. In this context, a system has been developed that examines
how costs can be distributed fairly when companies in the same industry place joint orders, enabling
cost savings through collaboration.

This study offers an innovative contribution to the field by integrating inventory management
and cooperative game theory with grey number theory. Specifically, it proposes three single?point
solution concepts consistent with the Banzhaf value, CIS?value, ENSC?value, and ED?solution for
the equitable distribution of the overall surplus. Three different cost allocation rules are modeled
with grey numbers, providing a new perspective in the literature for fair and stable cost?sharing
under uncertainty. This innovation makes a significant contribution for industries aiming to optimize
cooperative strategies in environments where inventory costs are uncertain.

The real world is filled with various sources of uncertainty, including technological and market uncer?
tainty, observation noise, experimental design limitations, incomplete information, and vagueness
in decision?making processes. To address these challenges, cooperative grey games provide a useful
game?theoretic framework for supporting decision?making in collaborative contexts that involve
interval data.

Uncertain systems often emerge in natural settings, especially where small samples and incomplete
information are present. Grey systems theory offers a powerful approach for handling these uncer?
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tainty problems, particularly with discrete data and incomplete information. Here, random variables
are treated as grey numbers, while stochastic processes are considered grey processes. Thus, a grey
system is one that contains information in the form of grey numbers, and a grey decision is a decision
made within such a grey system.

The concept of grey interval uncertainty aligns naturally with real?world data, making grey interval
numbers a popular structure in both theoretical models and software applications.

2. Preliminaries

2.1. Grey Numbers and Their Operators

In this study, tools for grey number calculations are essential, so we present several grey number
concepts and operators used in this paper (Liu & Forrest, 2010).

A grey number is one whose exact value is not known, but the interval in which it resides is known.
Specifically, a grey number is an element of a closed and bounded interval, meaning each grey
number is within an interval [𝑎, 𝑎] where 𝑎, 𝑎 ∈ ℝ. We denote the set of all closed and bounded
intervals in ℝ as 𝐼(ℝ). A grey number is represented as ⊗ ∈ [𝑎, 𝑎],with 𝑎, 𝑎 ∈ ℝ.

For instance, consider the temperature of a room which is between 20 and 25 degrees Celsius. The
duration of a car trip is between 45 and 60 minutes. These two grey numbers can be written as: ⊗1

∈ [20, 25], ⊗2 ∈ [45, 60], respectively.

Let ⊗1 and ⊗2 be two grey numbers where, ⊗1 ∈ [𝑎, 𝑏], 𝑎 < 𝑏 and ⊗2 ∈ [𝑐, 𝑑], 𝑐 < 𝑑.

Then,
‣ the sum of ⊗1 and ⊗2 is defined by

⊗1 + ⊗2 ∈ [𝑎 + 𝑐, 𝑏 + 𝑑] (1)

‣ the multiplication of ⊗1 with a positive scalar 𝑘 is defined by

𝑘 ⊗1 ∈ [𝑘𝑎, 𝑘𝑏] (2)

From point Eq. 1 and Eq. 2, it is evident that grey numbers exhibit a cone structure.

The whitenization value of a grey number ⊗ ∈ [𝑎, 𝑏] is denoted by ⊗̃ and is defined as

⊗̃ = 𝛼𝑎 + (1 − 𝛼)𝑏, 𝛼 ∈ [0, 1] (3)

Typically, the whitenization value for a grey number is calculated by setting 𝛼 to 1/2. This value is
referred to as the equal weight mean whitenization value (Kose et al., 2011; Liu & Forrest, 2010).

2.2. Classical Cooperative Inventory Games

An inventory scenario is characterized by the triplet (𝑁, 𝑎, 𝑚), where 𝑁 = {1, …, 𝑛} presents the
group of agents who have agreed to jointly place orders for a particular good, a denotes the
fixed ordering cost, and 𝑚 = {𝑚1, …, 𝑚𝑛} signifies the optimal number of orders for the firms. The
inventory game that emerges from this inventory scenario (𝑁, 𝑎, 𝑚) is denoted by < 𝑁, 𝑐 >. Here,
𝑐(𝑆) represents the average inventory cost per unit time for the agents in subset 𝑆 when they place

alphanumeric 12 (3), 215–226 218



Equal Surplus Sharing in Grey Inventory Games | Dönmez et al., 2024

their orders collectively, and is defined by 𝑐(𝑆) = 2𝑎√∑𝑖∈𝑆 𝑚2
𝑖  for each 𝑆. A classical inventory game

is a cooperative game derived from an inventory scenario (Meca, 2004).

An 𝑛?person Economic Order Quantity (EOQ) model involves agents placing orders for goods with
deterministic demand 𝑑𝑖 and holding costs ℎ𝑖. The average inventory cost per unit time, based
on order size 𝑄𝑖 is given by 𝑐(𝑄𝑖) = 𝑎 𝑑𝑖

𝑄𝑖
+ ℎ𝑖

𝑄𝑖
2  the optimal order size �̂�𝑖 is √2𝑎𝑑𝑖

ℎ𝑖
. When agents

form a coalition 𝑆 to minimize costs, the optimal order size for each agent is �̂�∗
𝑖 = √ 2𝑎𝑑2

𝑖
∑𝑗∈𝑆 𝑑𝑗ℎ𝑗

, for

all 𝑖 ∈ 𝑆. The minimum average inventory cost for the coalition is 𝑎𝑑𝑖
𝑄∗

𝑖
+ ∑𝑗∈𝑆

ℎ𝑗𝑄∗
𝑗

2 = 2𝑎√∑𝑗∈𝑆 �̂�2
𝑗 .

Cooperative inventory games can analyze EOQ model cooperation. The Share the Ordering Cost (SOC)
rule, used for cost allocation is (𝑆𝑂𝐶)𝑖(𝑁, 𝑐) = 𝑐2(𝑖)

∑𝑗∈𝑁 𝑐2(𝑗)𝑐(𝑁). This rule allocates costs based on the

contribution of each agent to the total inventory cost.

3. Cooperative Grey Games

A grey cooperative game is defined as a pair < 𝑁, 𝑐′ >, where 𝑁 = {1, 2, …, 𝑛} is the set of players
and 𝑐′ : 2𝑁 → ℝ is the characteristic function assigning a whitenized grey number to each coalition
𝑆 ∈ 2𝑁 . The value of each coalition 𝑆 is given by 𝑐′(𝑆) = ⊗̃𝑆 ∈ [𝑎𝑠, 𝑎𝑠], with 𝑎𝑠, 𝑎𝑠representing the
lower and upper bounds of the grey number in 𝐼(ℝ) such that 𝑐′(∅) = ⊗̃0 ∈ [0, 0].

Example: Consider Example 4 from Alparskan Gök et al. (2011). In this scenario, players 1 and 2
each have a container they wish to store, while player 3 owns a storage facility with a capacity for
one container. If player 1 stores his container, the benefit is ⊗1 ∈ [10, 30] and if player 2 stores his
container, the benefit is ⊗2 ∈ [50, 70]. The situation can be described as a cooperative grey game
< 𝑁, 𝑤′ > with 𝑁 = {1, 2, 3}, and 𝑤′(𝑆) = ⊗̃𝑆 ∈ [0, 0] if 3 ∉ 𝑆, 𝑤′(∅) = 𝑤′(3) = ⊗̃3 = ⊗̃0 = 0, 𝑤′(1, 3) =
⊗̃1,3 = 20, and 𝑤′(𝑁) = 𝑤′(2, 3) = ⊗̃2,3 = 60.

3.1. Cooperative Grey Inventory Games

The main criticism of the deterministic EOQ model is its assumption that parameter values are
precisely known. Both cost parameters and demand rates are often uncertain.

Building on the results of Olgun et al. (2017), we use grey numbers for EOQ model parameters when
they are not accurately known, except for the demand rate. The parameters are defined as:

‣ ⊗𝑎 ∈ [𝑎1, 𝑎2] : grey number for ordering cost
‣ ⊗ℎ ∈ [ℎ1, ℎ2] : grey number for holding cost
‣ �̂�: Deterministic demand rate
‣ 𝐴𝐶 : Average grey total inventory cost
‣ 𝑄 : Order quantity per period

The whitenized total cost function 𝐴𝐶(𝑄) for an order 𝑄 is 𝐴𝐶(𝑄) = (𝑎1 + 𝑎2) �̂�
2𝑄 + (ℎ1 + ℎ2)

𝑄
4 . The

optimum order size �̂� is �̂� = √2(𝑎1+𝑎2)�̂�
ℎ1+ℎ2

.

3.2. Grey ordering and holding situation

Olgun et al. (2017) define a grey inventory ordering situation as triple < 𝑁, ⊗𝑎, {𝑚𝑖}𝑖∈𝑁 > where
𝑁 = {1, 2, .., 𝑛} is the set of agents ordering together. ⊗𝑎 is the the grey ordering cost, and 𝑚 =
{𝑚1, …, 𝑚𝑛} represents the optimal number of orders. For a coalition 𝑆 the optimal ordering cost is
⊗𝑎 √∑𝑖∈𝑆 𝑚2

𝑖 . A grey holding situation is characterized by the tuple (𝑁, ⊗𝑎, {⊗ℎ𝑖
, 𝑑𝑖}𝑖∈𝑁

), where
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𝑁 = {1, …, 𝑛} represents a group of agents agreeing to jointly order a particular good. ⊗𝑎 is the fixed
grey ordering cost, ⊗ℎ is the grey holding cost and 𝑑𝑖 is the demand rate of the 𝑖?th firm. Given a
grey holding situation, the corresponding grey holding game < 𝑁, 𝑐′

ℎ > assigns to a coalition 𝑆 ⊂ 𝑁
a minimal cost of √2 ⊗𝑎 ⊗ℎ𝑠

∑𝑖∈𝑆 𝑑𝑖 and 𝑐′
ℎ(∅) = 0.

If we substitute 𝑄𝑖 = 𝑑𝑖𝑄1
𝑑1

 for all 𝑖 ∈ 𝑆. The cost can be expressed as a function of 𝑄1 : ⊗𝑎
𝑑1
𝑄1

+

∑𝑖∈𝑆 ⊗ℎ𝑠

𝑑𝑖𝑄1
2𝑑1

. The cost is minimized when 𝑄1 = √ 2⊗𝑎𝑑2
1

⊗ℎ𝑠 ∑𝑗∈𝑆 𝑑𝑗
. Finally, the minimal cost per unit time

for coalition 𝑆 equals to √2 ⊗𝑎 ⊗ℎ𝑠
∑𝑖∈𝑆 𝑑𝑖.

4. On Equal Surplus Sharing

In this section, we introduce some game?theoretic solutions using grey calculus. Drawing inspiration
from the works of Brink & Funaki (2008) and Olgun et al. (2017), we will reinterpret interval solutions
with the grey calculus method specifically for the purpose of establishing grey equal distribution
rules within the context of grey inventory games. Our goal, by leveraging these references, is to
develop a comprehensive understanding of how grey calculus can be applied to create fair and
balanced distribution rules in cooperative grey inventory scenarios.

The grey Banzhaf value, the grey CIS?value, grey ENSC?value, and grey ED?value solution, like the Grey
Shapley value, is defined within the (𝑆𝑀𝐺𝐺)𝑁  class. This is because grey marginal operators are
defined within the (𝑆𝑀𝐺𝐺)𝑁  class. Grey Shapley value is defined as 𝜙′ : (𝑆𝑀𝐺𝐺)𝑁 → 𝐺(ℝ)𝑁  and
𝜙′

𝑖(𝑐′) = 1
𝑛! ∑𝜎∈ ∏(𝑁) ∑𝑖∈𝑁 𝑚𝜎

𝑖 (𝑐′) = 1
𝑛!𝑛!𝑐′(𝑁) = 𝑐′(𝑁) ∈ [𝑎𝑁 , 𝑎𝑁]

Definition 4.1. (The Grey Banzhaf value) The Banzhaf value considers each player’s entry into any
coalition with equal probability. The Grey Banzhaf value is defined by 𝛽′ : SMGGN → 𝐺(ℝ𝑁) 𝛽′

𝑖(𝑐′) =
1

2|𝑁|−1 ∑𝑖∈𝑆 𝑐′(𝑆) − 𝑐′(𝑆 \ {𝑖}), (𝑐′) ∈ [𝑎𝑁 , 𝑎𝑁] for all 𝑖 ∈ 𝑁  and for all 𝑐′ ∈ SMGGN.

Definition 4.2. (The Grey CIS-Value) GCIS?value assigns each player their individual grey value and
distributes the remainder of the grand coalition 𝑁 , grey value equally among all players. The
GCIS?value is defined by GCIS′ : SMGGN → 𝐺(ℝ𝑁) and |𝑐′(𝑁)| ≤ ∑𝑗∈𝑁 𝑐′(𝑖)GCIS′

𝑖(𝑐′) = 𝑐′({𝑖}) +
1

|𝑁|(𝑐′(𝑁) − ∑𝑗∈𝑁 𝑐′({𝑗})), (𝑐′) ∈ [𝑎𝑁 , 𝑎𝑁] for all 𝑖 ∈ 𝑁  and for all 𝑐′ ∈ SMGGN.

Definition 4.3. (The Grey ENSC- Value) In a grey game from 𝑐′ to 𝑐′∗ ∈ SMGG𝑁  class assigns to each
coalition 𝑆 ⊆ 𝑁  the grey value lost by the grand coalition 𝑁  when coalition 𝑆 separates from 𝑁 .
For each 𝑆 ⊆ 𝑁 : 𝑐′∗(𝑆) = 𝑐′(𝑆) − 𝑐′(𝑁𝑆). The grey ENSC?value (GENSC?value) assigns the CIS?value
of the dual game 𝑐′∗ each game 𝑐′. GENSC′ : SMGGN → 𝐺(ℝ𝑁) and GENSC′

𝑖(𝑐′) = GCIS′
𝑖(𝑐′∗) =

1
|𝑁|(𝑐′(𝑁) + ∑𝑗∈𝑁 𝑐′(𝑁 \ {𝑗})) − 𝑐′(𝑁), (𝑐′) ∈ [𝑎𝑁 , 𝑎𝑁] for all 𝑖 ∈ 𝑁  and for all 𝑐′ ∈ SMGGN. We find
|𝑐′(𝑁) + ∑𝑗∈𝑁 𝑐′(𝑁 \ {𝑗})| ≤ |𝑁‖𝑐′(𝑁 \ {𝑖})|. Thus, the GENSC?value assigns each player’s grey mar?
ginal contribution to the grand coalition and distributes the remainder equally among the players.

Definition 4.4. (The Grey ED- Value) The Grey ED?value (GED?value) assigns GED′ : GGN → 𝐺(ℝ𝑁)
and GED′

𝑖(𝑐′) = 𝑐′(𝑁)
| 𝑁|, (𝑐′) ∈ [𝑎𝑁 , 𝑎𝑁] for all 𝑖 ∈ 𝑁  and for all 𝑐′ ∈ GGN.

5. An Application

In this section, we begin by determining the problem parameters to establish the foundational
data for our analysis, subsequently utilizing these parameters to obtain a grey inventory game that
models the cooperative interactions between the involved firms. Olgun (2017) define the weapon
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factories under consideration source their required barrels from the same supplier. Consequently,
the annual ordering costs for the firms are identical and represented as the grey number 𝑎′

1 ∈
[380, 400]. The annual barrel demands for the firms are defined as follows: firm 1′s demand 𝑑′

1 ∈
[2500, 3000],firm 2′s demand 𝑑′

2 ∈ [1800, 2100] and firm 3′s demand 𝑑′
3 ∈ [1700, 1900]. The annual

holding costs are specified as follows: for firm 1 ℎ′
1 ∈ [0, 7, 0, 75], for firm 2 ℎ′

2 ∈ [0, 8, 0, 9] and for firm
3 ℎ′

3 ∈ [1, 1, 15]. The grey holding cost parameters related to this study are summarized in Table 1.

Table 1. Grey inventory cost parameters

Firm?1 Firm?2 Firm?3

Demand Rates (items/per year) 𝑑′
1 ∈ [2500, 3000] 𝑑′

2 ∈ [1800, 2100] 𝑑′
3 ∈ [1700, 1900]

Ordering Costs (TL/year) 𝑎′
1 ∈ [380, 400] 𝑎′

2 ∈ [380, 400] 𝑎′
3 ∈ [380, 400]

Holding Costs (TL/year) ℎ′
1 ∈ [0, 7, 0, 75] ℎ′

2 ∈ [0, 8, 0, 9] ℎ′
3 ∈ [1, 1, 15]

Source: Olgun et al. (2017)

The costs that the firms are responsible for individually, without cooperation, as well as the costs for
when two firms and eventually all three firms collaborate, have been calculated and are presented
in Table 2.

Table 2. Grey inventory costs of coalitions

{𝑆} 𝑐′({𝑆})

{1} 𝑐′({1}) ∈ [1153, 3; 1341, 6]

{2} 𝑐′({2}) ∈ [1046, 1, 1229, 6]

{3} 𝑐′({3}) ∈ [1136, 7, 1322, 1]

{12} 𝑐′({12}) ∈ [1512, 5, 1749, 3]

{13} 𝑐′({13}) ∈ [1494, 8, 1714, 6]

{23} 𝑐′({23}) ∈ [1458, 8, 1697, 1]

{123} 𝑐′({123}) ∈ [1786, 6, 2049, 4]

The Grey Banzhaf value of the game is illustrated as

𝛽′
𝑖(𝑐′) = 1

2|𝑁|−1 ∑𝑖∈𝑆 𝑐′(𝑆) − 𝑐′(𝑆 \ {𝑖})(𝑐′) ∈ [𝑎𝑁 , 𝑎𝑁]

𝛽′
1(𝑐′) = 1

22 ∑1∈𝑆 𝑐′(𝑆) − 𝑐′(𝑆 \ {1})

= 1
22 (𝑐′(1) + 𝑐′(12) − 𝑐′(2) + 𝑐′(13) − 𝑐′(3) + 𝑐′(123) − 𝑐′(23))

= [576.4, 651.525]

𝛽′
2(𝑐′) = 1

22 ∑2∈𝑆 𝑐′(𝑆) − 𝑐′(𝑆 \ {2})

= 1
22 (𝑐′(2) + 𝑐′(12) − 𝑐′(1) + 𝑐′(23) − 𝑐′(3) + 𝑐′(123) − 𝑐′(13))

= [504.8, 586.775]

𝛽′
3(𝑐′) = 1

22 ∑3∈𝑆 𝑐′(𝑆) − 𝑐′(𝑆 \ {3})

= 1
22 (𝑐′(3) + 𝑐′(13) − 𝑐′(1) + 𝑐′(23) − 𝑐′(2) + 𝑐′(123) − 𝑐′(12))

= [541.25, 615.675]

Then, The Grey Banzhaf value is
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𝛽′(𝑐′) = ([576.4, 651.525], [504.8, 586.775], [541.25, 615.675]).

The GCIS?value of the game is illustrated as

GCIS′
𝑖(𝑐′) = 𝑐′({𝑖}) + 1

|𝑁|(𝑐′(𝑁) − ∑𝑗∈𝑁 𝑐′({𝑗}))

GCIS′
1(𝑐′) = 𝑐′(1) + 1

3(𝑐′(123) − (𝑐′(1) + 𝑐′(2) + 𝑐′(3))

= [636.8, 726.967]

GCIS′
2(𝑐′) = 𝑐′(2) + 1

3(𝑐′(123) − (𝑐′(1) + 𝑐′(2) + 𝑐′(3))

= [529.6, 614.967]

GCIS′
2(𝑐′) = 𝑐′(3) + 1

3(𝑐′(123) − (𝑐′(1) + 𝑐′(2) + 𝑐′(3))

= [529.6, 614.967]

Then, the GCIS?value is

GCIS′(𝑐′) = ([636.8, 726.967], [529.6, 614.967], [529.6, 614.967]).

The GENSC?value of the game is illustrated as

GENSC′(𝑐′) = −𝑐′(𝑁 \ {𝑖}) + 1
|𝑁|(𝑐′(𝑁) + ∑𝑗∈𝑁 𝑐′(𝑁 \ {𝑗}))

GENSC′(𝑐′)
1 = −𝑐′(23) + 1

3(𝑐′(123) + 𝑐′(12) + 𝑐′(13) + 𝑐′(23))

= [625.433, 706.367]

GENSC′(𝑐′)
2 = −𝑐′(13) + 1

3(𝑐′(123) + 𝑐′(12) + 𝑐′(13) + 𝑐′(23))

= [589.433, 688.867]

GENSC′
3(𝑐′) = −𝑐′(12) + 1

3(𝑐′(123) + 𝑐′(12) + 𝑐′(13) + 𝑐′(23))

= [571.733, 654.167]

Then, the GENSC?value is

GENSC′(𝑐′) = ([625.433, 706.367], [589.433, 688.867], [571.733, 654.167]).

The GED? value of the game is illustrated as

GED′
𝑖(𝑐′) = 1

|𝑁|𝑐
′(𝑁)

GED′
1(𝑐′) = 1

3𝑐′({1, 2, 3}) = [595.533, 683.133]

GED′
2(𝑐′) = 1

3𝑐′({1, 2, 3}) = [595.533, 683.133]

GED′
3(𝑐′) = 1

3𝑐′({1, 2, 3}) = [595.533, 683.133]

Then, the GED? value is

GED′(𝑐′) = ([595.533, 683.133], [595.533, 683.133], [595.533, 683.133]).
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Table 3. Cooperative game model solution results for grey inventory costs of coalitions

Firm 1 Firm 2 Firm 3

𝛽′(𝑐′) [576.4, 651.525] [504.8, 586.775] [541.25, 615.675]

GCIS′(𝑐′) [636.8, 726.967] [529.6, 614.967] [529.6, 614.967]

GENSC′(𝑐′) [625.433, 706.367] [589.433, 688.867] [571.733, 654.167]

GED′(𝑐′) [595.533, 683.133] [595.533, 683.133] [595.533, 683.133]

6. Conclusion

In this study, we introduce some game?theoretic solutions using grey calculus. Drawing inspiration
from the works of Brink & Funaki (2008) and Olgun (2017). We reinterpret interval solutions with the
grey calculus method specifically for the purpose of establishing grey equal distribution rules within
the context of grey inventory games. By leveraging these references, along with the dual?objective
inventory routing model based on grey system theory developed by Kahraman & Aydemir (2020) and
the coalition game model proposed by Yang et al. (2021) for fair cost?sharing in energy management,
we aim to develop a comprehensive understanding of how grey calculus can be applied to create
fair and balanced distribution rules in cooperative grey inventory scenarios. The literature review
shows that various approaches have been shown to reduce costs, enhance performance, and ensure
fair cost?sharing in industrial and logistics planning processes under uncertainty.

Building on the findings of Olgun & Aydemir (2021), who successfully applied cooperative game
theory to achieve cost savings among customers facing capacity constraints. Building on the results
of Olgun et al. (2017), this paper focuses on a unified approach to a specific type of one?point
solutions for cooperative games, known as equal surplus sharing solutions. These solutions include
the Banzhaf value, the Centre?of?gravity of the Imputation?Set value (CIS?value), the Egalitarian
Non?Separable Contribution value (ENSC?value), and the Equal Division solution (ED?solution) as
discussed by Brink & Funaki (2008). The primary objective is to extend these solutions by incorpo?
rating interval uncertainty, as seen in methods like the EOQ model based on fuzzy game theory by De
& Mahata (2020), which provides reliable solutions for inventory management of defective products
under uncertainty. The CIS?value represents the individual worth of a player participating in the
game as a solitary entity. The ENSC?value is derived from separable contributions, which are among
the various marginal contributions a player can make. The ENCIS?value, or separable (marginal)
contribution, indicates the value of a player’s participation as a member of the player set. These
values are well?established concepts in game theory literature, as noted by Driessen & Tijs (1985),
Driessen & Funaki (1991); Driessen (1988), Driessen & Funaki (1994), Funaki (1998), Legros (1986),
and Moulin (1985). The egalitarian division of the surplus from the overall profits results in three
one?point solution concepts that correspond to the Banzhaf value, the CIS?value, ENSC?value, and
ED?solution. This study aims to enhance these solutions by addressing interval uncertainty, thereby
contributing to the broader understanding and application of these concepts in cooperative game
theory.

We begin by determining the problem parameters to establish the foundational data for our
analysis, subsequently utilizing these parameters to obtain a grey inventory game that models the
cooperative interactions between the involved firms. The study by Guardiola et al. (2021), which
proposes a new core allocation method for stable cost?sharing solutions, alongside the two?stage
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supply chain pricing model developed by Liu et al. (2021) for collaborative pricing under demand
uncertainty, further enriches our approach in modeling these interactions under uncertainty. Olgun
et al. (2017) define the weapon factories under consideration source their required barrels from
the same supplier. Finally, an application is performed for three shotgun companies in Turkey. The
calculated grey inventory costs for each firm and different game?theoretic solutions are presented
in Table 3.

For future research, some possible model extensions may be considered, such as grey purchasing
cost, grey allowance for stock outs, grey defective goods, and grey quantity discount situations. The
applicability of these methods across various industrial fields confirms the effectiveness of grey
system theory and game theory methods in uncertainty management. Future research could offer
more advanced cost?sharing solutions by evaluating the performance of grey system and game
theory models in broader uncertainty scenarios.
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