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Abstract

In this paper, we study the congruence of curves in Weyl-Otsuki spaces using Ricci's

coefficients of that congruence in the orthogonal case. We first prove that Ricci’s coefficients
Aqupe determine the regular general connection of an Otsuki space. Then, we give the condition
for these coefficients in Weyl-Otsuki spaces to be skew-symmetric in the first two indices as in

Riemannian spaces. We obtain the necessary and sufficient conditions for the curves of

congruence to be geodesic, normal, and irrotational. Finally, we prove that if a congruence
satisfies the equation, "T/ —2'T,JU, U, +¢, 87 =0, and any two of the conditions to be

geodesic, normal, and irrotational, then it also satisfies the other third one.

Keywords: Weyl-Otsuki spaces; General connections; Ricci's coefficients; Congruence of

curves; Geodesic curves.

* Corresponding Author DOI: 10.37094/adyujsci.1493094 @



Piringci (2024), ADYU J SCI, 14(2), 123-139

Weyl-Otsuki Uzaylarinda Kongriians Egrileri

Oz
Bu makalede Weyl-Otsuki uzaylarinda kongriians egrilerini bu egrilerin ortogonal olmasi

durumda Ricci katsayilarin kullanarak inceledik. [lk olarak, A, Ricci katsayilarmin bir Otsuki

uzaymin regiiler genel koneksiyonunu belirledigini gosterdik. Ardindan Riemann uzaylarda
oldugu gibi Weyl-Otsuki uzaylarinda bu katsayilarin ilk iki indisine gore ters-simetrik olma
kosulunu verdik. Kongriians egrilerinin, sirasiyla, jeodezik, normal ve irrotasyonel olmasi i¢in

gerek ve yeter kosullar1 elde ettik. Son olarak bir kongriians  egrisinin

"Tji = 2' TV Vi, + 7,07 =0 denklemi ile birlikte jeodezik, normal ve irrotasyonel olma

kosullarindan herhangi ikisini saglamasi durumunda diger iiglinci kosulu da sagladigini

kanitladik.

Anahtar Kelimeler: Weyl-Otsuki uzaylari; Genel koneksiyonlar; Ricci Kkatsayilart;

Kongriians egrileri; Jeodezik egriler.
1. Introduction

The theory of Otsuki spaces is based on the notion of regular general connection,
introduced by T. Otsuki [1]. He gave the theoretical foundation for general connections and
showed that they are the generalizations of the classical connections, for instance, the affine,
projective, and conformal connections [2, 3]. The general connections were first noticed by A.
Moor and were linked with Weyl spaces [4]. These spaces are then called Weyl-Otsuki spaces.
Then D.F. Nadj obtained curvatures [5] and the Frenet formulas [6] of the Weyl-Otsuki spaces
and also studied Riemann-Otsuki spaces, which are the special cases of the Weyl-Otsuki spaces
[7-9]. The general connections were also introduced into vector bundles by N. Abe [10, 11], into
general relativity by H. Nagayama [12, 13], and the theory of black holes by T. Otsuki [14-16].

The coefficients of an affine connection on an orthonormal basis are called Ricci’s
coefficients. Since these coefficients can determine an affine connection, they have great
importance in studying some geometric properties of a Riemannian space, such as the parallelism
of the unit tangent vector field of an orthogonal ennuple and the conditions for the curves of an
orthogonal ennuple to be normal or to be irrotational. Moreover, since Ricci’s coefficients with
respect to an affine connection are skew-symmetric with its first two indices, they provide an

easier investigation of the above geometric properties for Riemannian spaces. But this is not the
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case for Weyl-Otsuki spaces. The purpose of the paper is to get some conditions on Weyl-Otsuki
spaces, which will be called co-recurrence conditions, for a proper investigation of the above

geometric properties of these spaces.
2. Preliminaries

In this section, we will introduce the notion of regular general connection and its properties.
Then we will define the co-recurrence condition on Weyl-Otsuki spaces to obtain the geometric
properties of these spaces.

Definition 1. A regular general connection! of an n-dimensional space M is defined as
any cross-section T" of the vector bundle T (M,)®D*(M, ) over M, where T(M,) and

D? (M n) are tangent bundle of order 1 and cotangent bundle of order 2 of M respectively, [1].

In a coordinate neighborhood, T" is written as
I =ou, ®(R*d’u’ +Tdu' ®du’),
where P :( ik) is an isomorphism of T (M,).

If P is the identity transformation, then I" becomes a classical affine connection. So,
general connections? are the generalizations of the classical connections, for instance, the affine,

projective, and conformal connections.

It follows from Definition 1 that there exist a (1,1) -tensor Q = (Qik) such that P =Q,

since det(Pik)qéO. Therefore I" and P determine two affine connections 'T" and "I" which

are called contravariant and covariant part of I", respectively, in the following way:
T§ =Q'Ty and "I =(T}-9,R*)Q.

Using the above equations, we can define the basic covariant differential of a (p,q)-

tensor U :(Uil"{'_'i'jS) with respect to a regular general connection I" by

11t was called Otsuki connection by Nadj [7].
2|If P is only a homomorphism, then I is called a general connection.
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vu ilj%.'.'i',js =V U ilj%.l.-i.,js du* ,
§] JreeJs =0U i Js : ' ij Je JpahipaaeJs l‘ " J1 Js (l)
VU ik =0U +Z Ui Z F U’ g i
p=1 q=1
Using (1), one can easily see that the basic covariant differentiation of the tensor product
of any two tensors obeys the classical rule;
s Js+1 Js+ s sy Js+ s js+1---js+
V (U J1 JVr+1 r+q p) (V U h J )Vr+1 r+q ’ +U h J (vkvir+1---ir+q ' ) (2)
It is well-known that the covariant differentiations and the contractions are commutative
operators in classical differential geometry. This is due to the fact that the covariant derivative of

the identity transformation I is constant. Hence, if we use (1) for the identity transformation

vV 5 :'rk "k (3)

I ]’

Then, we have the relations between basic covariant differentiation and contractions as follows:

8 (VUEE) =V, (UkE6))+Uk v 6. (4)

Now, we will give the curvature and the torsion tensors for the affine connections 'I" and

.Let "Ri, "R} and ‘T, "T, be the components of the curvature and the torsion tensors of

'T" and "I, respectively. Then, we have

'Ry =0,'T -0, Ty +'T'y 'Tj =Ty, 'T

ilj

"Ry, =0,"T—0,"Ty +"Ty "I} "Iy "I} ®)
and
Ty ="T5 =T Ty ="T5 =T (6)
Using the equations (1)-(6), we obtain the following Ricci formulas:
ARAY Lk =V VUL -V v Ul
(7)

S r
NV R deheds N Rh [ dieds _wh i
—Z thIUil...ir ) Z RikuUil...h..S.i, levhUil...i,S
g=1

p=1

A. Moor [4] introduced the concept of Weyl-Otsuki space by associating the theory of

Otsuki space with the Weyl metric as follows:
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Definition 2. Let M be an n-dimensional space with a regular general connection I" and

a Riemannian metric g :(gij). Then M, is called a Weyl-Otsuki space if the covariant

differential of the metric tensor with respect to I" holds the recurrence equation,
Vi9i =49 (8)
for a covariant vector field ¢ = (gok ) In this case, g is also called recurrent metric tensor.

Remark 1. We will denote the Weyl-Otsuki space with regular general connection I,

Riemannian metric g and covariant vector field ¢ =(¢, ) by a quadruple (M,,T,9,¢).

Unlike an affine connection, the co-recurrence equation V,g" =—¢,g" does not hold

for a regular general connection. Now, we will give the condition that the metric tensor satisfies

the co-recurrence equation for regular general connections. In virtue of (2), (4) and (8), we obtain
Vs =V, (gklgli): 9:V,;9" +9,8 —9"9,V 5,

or equivalently
V9" =—0,0" +9"V;5 +0"V,5.

Hence, we have the following lemma:

Proposition 1. Let (M w0, go) be a Weyl-Otsuki space. Then the co-recurrence equation

vig' =-pg" 9
holds in a Weyl-Otsuki space if and only if

9"V, 8! +9"v, 6 =0.

3. Congruence of Curves in Weyl-Otsuki Spaces

In this section, we will show that Ricci’s coefficients determine the connection in Weyl-
Otsuki spaces as well as in Riemann spaces. We will use Ricci’s coefficients to examine the
condition for congruence of curves to be geodesic. Moreover, if the co-recurrence equation is

satisfied, we will provide the properties of these coefficients in Weyl-Otsuki spaces.
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Definition 3. Let U:(Ul,...,U”) be a vector field on a Weyl-Otsuki space

1 n

dx
(M,.T,9,9). The system of differential equations TERRRRRTT admits n—1 independent

solutions ' (Xl,..., X”):C , (i=1...,n—1), where C’s are constants [17]. If we substitute

any point pe€ M, in the last equations, the constants C are determined so that these n—1
equations define a curve through p . Since one can define such a curve through each point, U

determines a family of curves, one of which passes through each point of that space. This family
of curves is called a congruence of curves in a Weyl-Otsuki space®. An orthogonal ennuple in a
Weyl-Otsuki space consists of N mutually orthogonal congruences of curves®,

Let U, %, (a=1...,n), be the unit tangents to the N congruences of an orthogonal
ennuple. The contravariant and covariant components of U will be denoted by U ;‘ and U,

respectively. Since the N congruences are mutually orthogonal, we have the relations

93U U = S or U Uy = S (10)
Since U ;‘ is the cofactor of U, in the determinant ‘U af ‘ divided by the value of that determinant,
we have
DUy =5, (11
a

Definition 4. Let Ua‘, (a=1,...,n), be the unit tangents to the congruences of an

orthogonal ennuple in a Weyl-Otsuki space (M i 8 g,go) [17]. The derived vector of Ua‘ in the

direction of U N has components (VkUi‘ )U ¥ and the projection of this vector on U b is a scalar

q’

invariant, denoted by 77, , so that

M = (VU] U, U (12)

bjj "

3 In the other words a congruence is the set of integral curves determined by a vector field.

4 These definitions are the generalizations of the definitions in Riemannian spaces, [17].

5 The subscript @, followed by a bar distinguishing one congruence from another, and having no significance of
covariance.
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The invariants 77,,. are called Ricci’s coefficients.

Lemmal. Let U a (a =1..., n) , be the unit tangents to the congruences of an orthogonal

ennuple in a Weyl-Otsuki space (M,,I",g,¢) Then the Ricci’s coefficients 77,,, determine a

classical affine connection 'T".

Proof. In virtue of (11) and (12) we have

\% U al _Znabc b\ ck - (13)
Multiplying this equation by UC‘“ , and using (10), we get
uivu) _anbc 'R (14)

Now, if we multiply the equation (13) by U ., and use (1), then we obtain

ali’

Z(V U J\)U ai Z(akug\ +'rlijz:1\)Ua\i = zb:nabcua\iub\uc\k '

a

by summing with respect to a. From the last equation we have
T = —ZUa\iakU;\ + Z Uabcua\ Ub\Uc\k ’ (15)
a a,b,c

which yields us the result. m

Moreover, for a given isomorphism P of T (M ), a regular general connection I" can be

determined by '), = R''T, . Hence, using (15) we have the following theorem:

Theorem 1. Let U ) (a =1.., n) , be the unit tangents to the congruences of an orthogonal
ennuple in a Weyl-Otsuki space (M,,T,g,¢). Then, for any isomorphism P of T (M), the

Ricci’s coefficients 77,,. determine a regular general connection I".
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We note that in Riemannian spaces, Ricci’s coefficients 77,,. are skew-symmetric in the

indices @ and b but this is not the case in Weyl-Otsuki spaces unless the co-recurrence condition
holds. In fact, using (2), (4), and (9), we obtain

Vkuaj\ =Vk (Ua\lgjI ) = gjlvkual +Ua\lvkgjl _Ua\lgjivké‘il

|
= ngVkUaM Y jluau _Ua\|gjivké}l-

Substituting the last equation in (12), we have

Mabc = (gjlvkuau -9 jIUau L V8 )U U,

bl el
= (Utl;\vku al ~ PO _Ua\lug\vké‘il )U:\’
or equivalently
Utll\vkua\l = Zﬂamuc\k + 0y, +Ua\|Uti)\vk5il- (16)

On the other hand, using (2) and (4), we have

j+Uj

a =

V8, =V, (UlUy; ) =Uy V.U

a~blj blj VkU —U'u _Vké‘ijzol

blj 3 bl

Multiplying the last equation by Uck , We get

0=U'U, VU

|~ blj

J+UfU IV .U

a =TT

Ky pi j
blj _Uc\Ua\Ub\jvkéiJ
= Mane +Uck\ (;nbadudk + 00y, +Ub|U;Vké}l]_U:U;Uijké}j
= Nape +77bac +¢k6abU:\
from (12) and (16). Hence, we obtain

Nabe T Moac = _¢k5abu<§ ) (17)

and the following result:

Proposition 2. Let Ua‘, (a=1,...,n), be the unit tangents to the congruences of an

orthogonal ennuple in a Weyl-Otsuki space (Mn,F,g,(o). If the co-recurrence equation is
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satisfied, then Ricci’s coefficients 77,,, are skew-symmetric in the indices @ and b with a=Db,

ie.,
Nave = Mhac » (a * b) (18)

Now, we can give another version of Ricci formulas using Ricci’s coefficients for Weyl-

Otsuki spaces. Let Ua‘, (a =1..., n), be the unit tangents to the congruences of an orthogonal
ennuple in a Weyl-Otsuki space (M i g,(p). Taking the basic covariant differentiation of (13)

with respect to u*, and using (12), (2), (4), (8), we have
Vv Ul=v, (Zf UV, ] - ;(u;’u kOt + 71U 1, VU 7,0V U )
= ;u;’u (1Ot +ezfnaefufk (;nemurjusi};n&efugvi (Vo)
= ;Ug‘u kOt +;naefu " [Znu jusi]

+;naefu;" (9uVU} +U V9, -V ?‘g,kvidh')
= ;u;"u 4O T +;naefu " (Z’]U jusiJ
+;naefug [g,krzs:nmur'usi +U} %y U ?glkvph'J
= ;u;’u 4Ot + ezfnaefu " [Znu jusij
+;naefu ] (;nmurkusi +pU ~U10,Vi5, ]

If we compute VkViUe{" and subtract it from the above equation, we obtain
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vivkug‘—vkviug‘zgug‘ f‘kanaemZnaef fk(Zne,s | j
+z77aef ] (Z%Urk i +oU g, fglkvaJ

Zu U (0t —;nwu " (ZUU juskJ
Zﬂaef q EZm,SUrI kT i~ f‘g,,V 5}

= ZZUE‘ naef +2 z et nersU r\U f [kUs\ i

e, f,r,s

+2277aef e(znfrsurk di] +Uf\[k§0| f\gl[k i] j

Multiplying the last equation by U, Y “‘Ud‘ and summing with respect to i, j,k we get

(ViU -V vl )u,ulu, = 2ub“uck‘ud‘2ue‘u O T

i~ al blj el d T

+2Ub“ c\ d\ Z naefnersur\u f| [k Us\]

+ 2Ub\chk\U(ij\sz7aerej\ [Zﬂfrsu r [kUs\]
+U, 0 -Ul0,Y, 5')
=2U [Id ‘ inabc] + 22 nae[cnebd] + 22 nabfﬂf[cd]

+277abc(pI ZZryabe ) “Ud \V. 5'
Consequently, if we write the Ricci formulas (7) in this equation, then we have

1 1 n 1 i
E( RhJIkU:‘ ka:v Ua\ )Ub\chk\Ud\ U[d ‘ainabc] + Znae[cnebd] + Znabfnf[cd]

|
+277abc¢| d]\ Znabfuf\u[c‘lud]‘v|5'

Now, we will give the condition for congruence of curves to be geodesic in Weyl-Otsuki

spaces. Let S, be the arc-length parameter of one of the curves u =u (Sa) of the ennuple whose

unit tangent is Ua‘ =du/ds, . Then, using (14), we have
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vu/
ds

a

| (v Uj)z_k_u vua‘—Znaba b -

Hence we obtain the following result:

Theorem2. LetU,, (a=1,...,n), be the unit tangents to the congruences of an orthogonal
ennuple in a Weyl-Otsuki space ( M., T,g, go). Then, the curves of the congruence are geodesics

ifand only if 7,., =0, (b=1,...,n).

4. Normal Orthogonal Ennuples

In this section, we will express the condition of an orthogonal ennuple in a Weyl-Otsuki
space in which the co-recurrence equation is satisfied to be normal regarding Ricci’s coefficients.

Definition 5. [17] An orthogonal ennuple that intersects orthogonally with a family of

hypersurfaces, ¢ = const. is called a normal orthogonal ennuple.

Let Ua‘ be the unit tangent to the congruences of an orthogonal ennuple in a Weyl-Otsuki

space in which the co-recurrence equation is satisfied, and ¢ =const. be a family of
hypersurfaces. Then this ennuple is normal when the gradient of ¢ at each point has the direction

of the vector U - This condition is expressed as

But the necessary and sufficient condition for the existence of such a function ¢ is

Uy;(8U, —8U, )+U,, (81U, -8, )+ U, (81, -9,U,, ) =0.

Now, let a congruence of an orthogonal ennuple with unit tangent Un‘ be normal. Using (1) in

the last equation, we have

n-h wi-h
Un\j (viun\k + FkiUn‘h _kan“ -"IU n‘h)
n-h n1h
U, (VU +'TIU,, — VU, =T, )
" h II
+Un\i (VkUn“ + ijUn‘h—VJ—U Ak ijun‘h) 0.
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If we multiply this equation by U;‘Ug‘ , (a,b=12,...,n—1), in virtue of (16), (3), and (6), we

get

ippi ny-h ny-h
0=U, UV (Vjuni+ LU =Vl - FjiUn\h)

\
:Un\k (nnba +(0j5nbuaj‘ +U_U'U jvjé‘ih +"1—‘;U Ulud

nh~"b|~" a| nh™~"a~" b|

|h

e ~ 20Uy ~U U ULV, 8T ~U UL "THU )

na p| nh="a~"b| " i¥j a = b|
i j h n h j i
=U (Unba +Un\hUtl>\U ;\Vj@ +5U .U aJ\U ll)\

j11i h jl i nyh
ey ~UUIU, V.87 —UU, THU )

nh~al~b| " i~] a "~ b|

= Un\k (77nba e T ITijhU u,u )

a = b~ nh

Hence, we have the following result:
Theorem 4. In a Weyl-Otsuki space in which the condition (9) holds, the necessary and
sufficient condition that the congruences Un‘ of an orthogonal ennuple be normal is that

Mnab — Mhnba Z'TijhU jUiU (a,b=l,2,...,n—1). (19)

a = b~ nlh’

If all the congruences of an orthogonal ennuple are normal, all the invariants 77,,, with

three distinct indices must be zero. Using the equation (18) in (19), we have
b
Mabe = Macw + Tij UbJ\U«;\U ajh =

= —Nga — TyU U U, + TUUU

a~ b| b~ ¢~ a)h

Moy + 'Tij“u Uy

b~ ¢~ ah
\
= Tloca + ITijh (Ubj\uci\ua\h _U;\Uti)\uc\h)

¢~ a b b~ ¢/~ ah a = b~ ch

= e + TYUJUIU,, + T (UUIU,, U0V, )

= e + Ty (WU, + VUL, U, ).

b~ ¢/~ alh o~ a b\h_ a = b clh

Consequently, we obtain the following result:

Theorem 5. In a Weyl-Otsuki space in which the condition (9) holds, the necessary and

sufficient condition that all the congruences of an orthogonal ennuple be normal is that

b~ ¢~ ah ¢~ a b a ~ b~ ch

1, i i i i i
nabczzTij“(u'uu +UUlU,, —UluU,, ),

(a,b,c=12,...,n; a,b,c unequal).
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5. Curl of an Orthogonal Ennuple

In this section, we will give the condition for an orthogonal ennuple to be irrotational in
Weyl-Otsuki spaces in terms of Ricci’s coefficients. We will also express the relationship between
the geodesic, normal, and irrotational conditions of an orthogonal ennuple in Weyl-Otsuki spaces

in which the co-recurrence equation is satisfied.

Definition 6. [17] The curl of the unit tangent to an orthogonal ennuple is briefly called the
curl of the orthogonal ennuple. If the curl of an orthogonal ennuple vanishes identically, the
ennuple will be described as irrotational.

Consider the n th congruence of an orthogonal ennuple whose unit tangent vector is Un‘ in

a Weyl-Otsuki space in which the condition (9) holds. Putting a =n in (16), multiplying it by

Uy and summing with respect to b , we obtain
V.U i = Zﬂnbcub\iuc\k +¢’kUn\i +Un\|vl<5il- (20)
b,c

Since the curl of the unit tangent to the N th congruence of an orthogonal ennuple is the tensor,

whose components are VkUn‘ i -V,U,, ., then from (20), these components have the values

nlk ?

VU =V U = (e — 1 )y U +2(v[k5;] +¢>[k5;])un“.

b,c

This double sum may be separated into two sums as follows. In the first, let b and C take the

values 1,2,...,n—1; and, in the second, let either or both take the value n. Then we have

LN

n-1 n—.

vkUnU _viun\k = Z (nnbc _nncb)Ub“UC‘k + (nnbn _nnnb)Ub‘jUn‘k

b,c=1 1

o
|

" (21)
| |
+ Z(nnnc ~en )Un\ch\k + Z(V[ké‘]] + ¢[k51] )Un\l '
c=1

Now, we will give the relationship between the geodesic, normal, and irrotational
conditions of an orthogonal ennuple in Weyl-Otsuki spaces where the co-recurrence equation is

satisfied.
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Theorem 6. Let Un‘ be the unit tangent to the N th congruence of an orthogonal ennuple
in a Weyl-Otsuki space (Mn,F,g,go) in which the condition (9) holds. If this congruence

satisfies

T —2'TAUI g + 9,8 =0, (22)

(i n[~ nlk
and any two of the following conditions, then it will also satisfy the other third one;

i) that it be a normal congruence, ii) that it be a geodesic congruence, iii) that it be

irrotational.

Proof. Case 1. Suppose that the N th congruence is both normal and geodesic. Using (19),

we can write the first term on the right-hand side of (21) as

n-1 n-1 .
Z (77nbc _nncb)Ub\ch\k = z ITnhUtI;\Uc\U n\hUb\ch\k
b,c=1 b,c=1

=T (6] -UsU ) (8 ~UiU )Y,

n=n/j = nlk

=T (]6) —UU, —8U U, +U U, VU, U,

[~ nk n~n|j n = n[i 7 n~ nfk

"(23)
TaUU,, + U, U0, U,

i
U n=nlj n=nj = nk

n|

(Ty-Tu

nk -

(Ty = TUIU, + U, U,

i~ nk = nlj

T h T h i
( Tkj -2 Ti[jUn\Un\k])Un\h-
Since the congruence is also a geodesic curve, then we have

nnbn = 77ncn = 0 '

from Theorem 2. So (21) can be written as

n-1
_[h rrhyyi
VU j _Vjun\k _( Ty =2 Ti[jU n\Un\k])Un\h _;nnnbub\jun\k
n-1
| [
+ CZ:;,Unncu n\juc\k + z(v[k5j] + ¢[k5j])un\|

nTh 1 hyyi |
=("Ty 2TV, + 2040 )U,y,

[ nlk

n-1
+bz_1:77””b (un‘ Uy ~Uy Uy, )
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If we use (17) for the last term on the right-hand side of the above equation, then we have

n-1 1 n-1 ;
b:177nnb (UnjUbk_UbjUnk):_Ewiéub (Un\jub\k _Ub\jun\k)
1 i i 1 i i
_Egpiun“(ék—Un‘un‘k)i(piun‘k(éj—Un‘un“) (24)
=AY

So we obtain

nTh 7 h i |
VU -V U, =T -2TUW 0 + 9,8 U

k™~nj i[i = n~nk
Hence, a normal and geodesic congruence that satisfies equation (22) is irrotational.

Case 2. Let the nth congruence be both normal and irrotational. At first, if we substitute
(23) in (21) and use (17), (24) as in case 1, then we get

n-1

nTh T h i |
VU, -V U, :( T -2ThUlU ﬂp[k&"])u"”bz-;‘n"b" (Ub\,-Un\k U, Uy }

k™n|j i[5 0~ nk]

Now, since the congruence is irrotational and satisfies (22), then the last equation yields
n-1

Mo (Ub\jun\k _Un\jUb\k ) =0.
b=1

Then, this congruence is geodesic by Theorem 2.

Case 3. Let the Nth congruence be both geodesic and irrotational. By the definition of

irrotational curve and Theorem 2, (21) takes the form

n-1 n-1
bz_l(nnbc _nncb)ub\juc\k +;77nnb (Un\jub\k _Ub\jun\k)—’_ Z(V[kéh +¢[k§J])Un\I =0.

If we use (3), (6) and (24) in the last equation, then we have

n-1

> (e ~Thes Uy Y +(-lek _Th +¢[k5}])Un“ - 0.

b,c=1

Since the congruence satisfies (22), we obtain
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n-1

Z(ﬂnbc_nncb)ub\juc\k +(T +2' T U \U”\k])u nl =0.

b,c=1

Finally, by multiplying the last equation by V!V ! we get

b| " c]
Mnbe ~ ey = (T +2T[U \Un\k])U s \Uk\
i
=~ (T2 T U, U U,
! i
='T! Ub‘UC‘U -
Hence, this congruence is normal by Theorem 4. m
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