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Abstract 

This study aims to explore the relationship between soil gas radon concentration (CRn) and soil permeability (k). To accomplish this, 
a single linear regression analysis (SLRA) model and an artificial neural network (ANN) model were built from 142 soil gas CRn and k 
measurements collected from the literature. When soil gas CRn values predicted by both models were compared with those measured, 
the ANN model outperformed the SLRA model. Furthermore, several performance metrics, including correlation coefficient, root 
mean square error, relative absolute error, and mean absolute error were determined to examine the prediction capabilities of SLRA 
and ANN models. The metrics obtained demonstrated that the ANN model exhibited superior performance to the SLRA model, thereby 
showing the accuracy and applicability of the ANN model for forecasting soil gas CRn values. The study's findings indicated that the 
developed ANN model may be utilized to forecast soil gas CRn values based on soil k values.  
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Öz 

Bu çalışmanın amacı, toprak gazı radon konsantrasyonu (CRn) ile toprak geçirgenliği (k) arasındaki ilişkiyi araştırmaktır. Bunu 
gerçekleştirmek için, literatürden toplanan 142 toprak gazı CRn ve k ölçümünden bir tek doğrusal regresyon analizi (SLRA) modeli ve 
bir yapay sinir ağı (YSA) modeli oluşturulmuştur. Her iki model tarafından tahmin edilen toprak gazı CRn değerleri ölçülenlerle 
karşılaştırıldığında, YSA modeli SLRA modelinden daha iyi performans göstermiştir. Ayrıca, SLRA ve YSA modellerinin tahmin 
yeteneklerini incelemek için korelasyon katsayısı, kök ortalama kare hatası, bağıl mutlak hata ve ortalama mutlak hata dahil olmak 
üzere çeşitli performans ölçütleri belirlenmiştir. Elde edilen ölçütler, YSA modelinin SLRA modelinden daha üstün performans 
sergilediğini ve böylece toprak gazı CRn değerlerinin tahmininde YSA modelinin doğruluğunu ve uygulanabilirliğini göstermiştir. 
Çalışmanın bulguları, geliştirilen YSA modelinin toprak k değerlerine dayalı olarak toprak gazı CRn değerlerini tahmin etmek için 
kullanılabileceğini göstermiştir.  
Anahtar Kelimeler: Toprak gazı radonu, Toprak geçirgenliği, Yapay sinir ağları 

 

1. Introduction 

Radon, a radioactive gas prevalent in the environment, is a 
potential health concern for humans. The natural radionuclides 
235U, 232Th, and 238U release radon through their decay chains [1]. 
There are three radon isotopes: 222Rn, 220Rn, and 219Rn. The most 
common isotope of radon is 222Rn, which is formed when radium 
(226Ra) decays in the 238U chain. Consequently, the term "radon" 
refers to 222Rn in the vast majority of cases, including this study. 

222Rn is present in all soils and rocks in the Earth surface. The 
disintegration of 222Rn creates alpha particles and other 
radionuclides, which can be breathed by humans. The ionizing 
radiation’s adverse effects on human health are widely known. 
222Rn is a significant natural source of ionizing radiation, 
accounting for approximately fifty percent of the natural 
radiation dosage because of ionizing radiation [2]. Recent 
research has connected long-term exposure to relatively low 
levels of 222Rn concentration (CRn) to an increased risk of cancer 
[3-6]. To prevent human exposure, it is vital to anticipate regions 

with elevated natural radiation levels. Radon potential indicators 
include soil permeability (k) and soil gas CRn, which are especially 
essential in urbanized areas. 

Artificial neural networks (ANNs) are intended to mimic the 
decision-making processes seen in the human brain by 
simulating the functions of biological neurons. ANNs are 
composed of linked neurons, which evaluate information and 
learning patterns from data to make predictions or decisions [7]. 
The intrinsic complexity and nonlinearity of the ANN structure 
facilitate the resolution of complex issues, including those 
involving uncertainties, especially when the fundamental 
relationship of data is very complicated [8]. Therefore, ANNs are 
widely employed and regarded as intelligent tools for solving 
complex issues [9].   

In this work, the use of both a single linear regression analysis 
(SLRA) model and an ANN model to estimate soil gas CRn values 
using the soil k values was investigated. To accomplish this, the 
data of 142 soil gas CRn and k measurements acquired from the 
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literature [1, 10-12] were used. The soil gas CRn values measured 
were compared to those predicted by the ANN and SLRA models 
to assess the efficiency of both models in predicting soil gas CRn 
values from the soil k values. 

2. Materials and Method 

2.1. Artificial Neural Networks 

An ANN is a sort of machine learning model based on the human 
brain’s structure [13]. ANNs are made up of linked neurons that 
collaborate for processing information. Neurons are separated 
into three layers: input, hidden layer(s) and output. The input 
layer receives input data from the outside world and transmits it 
into the network [14]. The hidden layer(s) do different 
computations on the data provided through the input layer, and 
the results are sent to the output layer [14]. The output layer 
transmits the data learned by the network to the outside world 
[15]. Each neuron in a layer is connected to all the other neurons 
in the layer above it via weighted connections. This form of ANN 
is also known as a multi-layer feed-forward perceptron (MLP) 
[16]. 

ANN performance is highly dependent on the number of hidden 
layers [17]. In particular, for complex problems where accuracy 
and the time complexity are the primary limitations, determining 
the hidden layers’ number is an important challenge in the 
construction of ANNs [18]. ANN models with fewer than three 
hidden layers exhibited lower accuracy, whereas those with more 
than three hidden layers were demonstrated to be suboptimal in 
terms of time complexity [18]. Additionally, the hidden neurons’ 
number is also crucial while developing ANN model. This number 
is selected based on the intricacy of the input-output relationship 
[17]. As the relationship develops more complicated, more 
hidden neurons should be used [17]. As observed by Choobasti et 
al. [14], using an excessively large number of hidden neurons 
result in the ANN model's performance in predicting being 
reduced due to overfitting.   

MLP learning is an unconstrained optimization problem that 
attempts to lower overall error values based on the synaptic 
weights of the ANN [16].  Using input-output vectors as training 
data, a learning algorithm iteratively adjusts the synaptic weight 

values in an MLP to approach the desired behavior [19]. This 
technique is generally completed in two phases using the 
backpropagation learning method [17]. To create outputs, data is 
sent into the ANN through the input layer in the first step [17]. In 
the second phase, any discrepancies in the expected and actual 
outputs are communicated from the output layer to the previous 
layers, with the connection weights modified to lower the error 
value [20]. After training, ANNs keep learning weights of each 
neuron in their memory. During the testing phase, a new and 
previously untested dataset is fed into the ANN to provide 
forecasts based on the saved learning weights [20]. Finally, the 
actual values are compared to the predicted values by the ANN to 
evaluate its prediction ability [20]. 

2.2. Development of Artificial Neural Network Model  

In this study, the use of ANNs to determine the relationship 
between the soil gas CRn and soil k values was investigated. To 
accomplish this, the data of 142 soil gas CRn and k measurements 
acquired from the literature [1, 10-12] were used. In creating the 
ANN model, the measured k value was used as an input 
parameter, while the determined soil gas CRn value was used as 
an output parameter. The details of input and output parameters 
used in this study are listed in Table 1. 

Random samples were selected from the dataset for training and 
testing. While training dataset was used to build an ANN model 
and identify its learning weights, testing dataset was used to 
select the best ANN architecture based on the identified learning 
weights. To do this, 142 data sets were divided into 20% and 80% 
sets for testing and training purposes. It has been demonstrated 
that data preparation before network training can enhance the 
ANN performance [17, 21]. Thus, the data in this study was 
normalized from -0.9 to 0.9 using Equation (1) with the ranges 
given in Table 1.  

xnorm = 1.8 × (
x − xmin

xmax − xmin
) − 0.9 

 

(1) 

where xnorm and x denote normalized and actual values, 
respectively, while xmax and xmin denote the experimental data's 
highest and lowest values, respectively. 

Table 1. The details of the input and output parameters used in the ANN model developed. 

Parameters used Minimum Maximum Mean Range Std. Deviation Kurtosis  Skewness 

Input parameter        

Soil k  5.2×10-14 2.4×10-11 3.16×10-12 2.40×10-11 5×10-12 3.48 6.92 

Output parameter        

Soil gas CRn  0.37 319.40 38.96 319.03 58.73 2.10 2.51 

The purpose of an ANN design is to find the optimal architecture 
of ANNs for a given task. The trial-and-error approach was 
employed to examine the optimum design of ANNs. Three 
primary hyperparameters to consider while selecting the best 
architecture for ANNs are the number of hidden layers, the 
number of hidden neurons per hidden layer, and the transfer 
function of each hidden and output layers [22]. These 
hyperparameters have a vital role in improving the network’s 
prediction accuracy [22]. The hidden layers’ number varies with 
the problem’s nature and complexity [23]. When hidden layers’ 

number rises, the ANN model tends to overfit [24]. As a result, in 
this work, ANN models were created with one to three hidden 
layers. As mentioned before, determining the number of hidden 
neurons in the hidden layer(s) is challenging. In this work, the 
number of hidden neurons in each hidden layer(s) varied from 1 
to 5 by one. To obtain optimal ANN performance throughout the 
stages of training and testing, most often utilized transfer 
functions (hyperbolic tangent sigmoid (tansig) and logistic 
sigmoid (logsig) functions) were employed. The Levenberg-
Marquardt back-propagation algorithm was employed during the 
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phase of training. The performance of ANN models was then 
investigated to determine the best ANN structure. Mean absolute 
error (MAE) was used to evaluate each generated network size's 
performance until no appreciable improvement was discovered. 
The best ANN model consists of three hidden layers, each with 
five hidden neurons, a tansig transfer function in the hidden 
layers' neurons and output layer neuron and 78 epochs. 

2.3. Simple linear regression analysis  

Simple linear regression analysis (SLRA) is the most basic form 
of RA and is used to examine the relationship between two 
variables. SLRA was employed in this study to assess the 
relationship between soil gas CRn and soil k values, with the SPSS 
16.0 software program. The 142 data sets utilized in creating the 
best ANN model were additionally employed for developing the 
SLRA model, which resulted in the equation below. 

Soil gas CRn = 25.369 + 4×1012 × soil k             R2=0.134                 (2)                    

In Eq. (2), soil k is in m2 and soil gas CRn is in kBq m-3. 

3. Results and Discussion 

The ANN model's predicted soil gas CRn values were compared to 
those obtained experimentally in Figs. 1 and 2 for training and 
testing samples. Almost all of the forecasts in Figs 1 and 2 are 
close to the perfect prediction line, which is shown as a solid 
diagonal line. The coefficient of correlation (r) measures the 
strength of a linear relationship between two variables.  

The following guideline was proposed by Smith [25] for 
|𝑟| values: 

|𝑟| ≤ 0.2 There is a weak correlation between the variables. 

0.2 < |𝑟| < 0.8 There is a correlation between the variables. 

|𝑟| ≥ 0.8 There is a strong correlation between the variables. 

The r values of 0.84 and 0.88 obtained for the training and testing 
samples in Figs. 1 and 2 demonstrate a significant correlation 
between the predicted and measured soil gas CRn values based on 
Smith [25]. In other words, the predicted and measured CRn 

values are not significantly disparate. The results also 
demonstrate that the soil gas CRn value can be accurately 
predicted using the constructed ANN model, provided that the 
soil k value is known.  

The SLRA model (Eq. (2)) has an R2 value of 0.134, based on the 
SLRA results. The predicted soil gas CRn values from Eq. (2) were 
compared to the experimentally obtained soil gas CRn values in 
Fig. 3 for all samples to evaluate the SLRA model's prediction 
performance. The r value of 0.37 in Fig. 3 illustrates that there is 
a correlation between the predicted and measured values based 
on Smith [25]. Furthermore, Fig. 3 shows that the SLRA model 
cannot accurately estimate soil gas CRn values from soil k values. 

In reality, the r value between predicted and measured soil gas 
CRn values is a useful indication of the ANN and SLRA models' 
prediction ability. In this study, two performance metrics 
(relative absolute error and root mean square error, denoted as 
RAE and RMSE) were calculated using the formulae described 
below to assess the prediction accuracy of the ANN and SLRA 
models. 

 

 

Figure 1. Comparison of the measured soil gas CRn values with 
the predicted soil gas CRn values from the ANN model for training 
samples. 

 

Figure 2. Comparison of the measured soil gas CRn values with 
the predicted soil gas CRn values from the ANN model for testing 
samples. 

 

Figure 3. Comparison of the measured soil gas CRn values with 
the predicted soil gas CRn values from the SLRA model for all 
samples. 
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𝑅𝐴𝐸 =
∑ |((𝐶𝑅𝑛)𝑃𝑟𝑒−(𝐶𝑅𝑛)𝐸𝑥𝑝)|𝑁

𝑖=1

∑ |((𝐶𝑅𝑛)𝐸𝑥𝑝−(𝐶𝑅𝑛)𝐸𝑥𝑝 𝑀𝑒𝑎𝑛)|𝑁
𝑖=1

                                                       (3) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ ((𝐶𝑅𝑛)𝐸𝑥𝑝 − (𝐶𝑅𝑛)𝑃𝑟𝑒)

2𝑁
𝑖=1                                         (4) 

where (𝐶𝑅𝑛)𝐸𝑥𝑝 is the measured soil gas 𝐶𝑅𝑛value; (𝐶𝑅𝑛)𝑃𝑟𝑒 is 

predicted soil gas 𝐶𝑅𝑛value; (𝐶𝑅𝑛)𝐸𝑥𝑝 𝑀𝑒𝑎𝑛 is the measured soil 

gas 𝐶𝑅𝑛values’ mean value; and N is the sample number. In a 
perfect forecast, the RAE value is 0; the RAE value increases as the 

model prediction error increases. The closer the RMSE is to zero, 
the smaller the difference between forecasts and observations. 

Table 2 illustrates the developed ANN and SLRA models’ 
performance metrics. The ANN model performed better in terms 
of prediction accuracy than the SLRA model based on the 
computed metrics in Table 2. This result also shows that the 
developed ANN model is effective and beneficial in predicting soil 
gas CRn values. As a result, the soil gas CRn values can be accurately 
predicted using the trained ANN structures from the soil k values.

Table 2. Performance metrics of the ANN and SLRA models developed in this study. 

Model Data r  MAE (kBq m-3) RMSE (kBq m-3) RAE (kBq m-3) 

ANN 

Training set 0.84 21.66 38.76 0.52 

Testing set 0.88 25.61 35.48 5.45 

SLRA All set 0.37 35.00 54.50 13.30 

 

4. Conclusion 

This research investigates the use of SLRA and ANN models to 
estimate soil gas CRn values from soil k values. To do this, data 
including 142 soil gas CRn and soil k measurements from the 
available literature were used. The soil gas CRn values predicted 
from ANN and SLRA models were compared to the measured soil 
gas CRn values to assess the models' predictive ability. The 
comparison results demonstrated a better performance of the 
ANN model than the SLRA model in predicting soil gas CRn values. 
In accordance with the study's findings, the developed ANN 
model may be applied to forecast soil gas CRn values using the soil 
k values. This study demonstrates the effectiveness of the ANNs 
to acquire and illustrate complex relationships among the 
parameters. 
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