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    Abstract—Power systems stability is enhanced through a novel 

stabilizer developed around a non singular adaptive fuzzy 

terminal integral sliding mode approach using the Nussbaum 

function applied to a nonlinear model of a single machine power 

system connected to an infinite bus via a double transmission 

lines subjected to severe faults. Nussbaum gain is used to avoid 

the problem of controllability of the system.  Stability is insured 

through Lyapunov synthesis. Severe operating conditions are 

used in a simulation study to test the validity of the proposed 

method, indicating better performance and satisfactory transient 

dynamic behavior. 

     

    Index Terms—Power system stabilizer, adaptive fuzzy global 

sliding mode; Nussbaum function, Lyapunov stability. 

I. INTRODUCTION 

 HESE power systems are complex nonlinear systems that 

often exhibit low frequency oscillations due to insufficient 

damping caused by adverse operating conditions which can 

lead to a devastating loss of synchronism [1].  

Power system stabilizers are used to suppress these 

oscillations and improve the overall stability [1-4]. The 

computation of the fixed parameters of these stabilizers is 

usually based on the linearized model of the power system 

around a nominal operating point [5-7]. The operating 

condition often change as a result of load variation and/or 

major disturbances, making the dynamic behaviour of the 

power system different, thus requiring new adjustment of 

stabilizer parameters for  if the latter are  kept fixed,  

controlled power system  performance is greatly degraded [7]. 

 Conventional stabilizers, consisting of cascade connected 

lead–lag compensators derived from a linear model 

representing the power system at a certain operating point, 

have long been used to damp  oscillations regardless of the 

varying loading conditions or disturbances [8-12]. However,  

a lot of research about the design of power system stabilizers 

has been conducted, using a wide range of strategies, such as 

sliding controller [13,14], adaptive controller [15-16], 

adaptive fuzzy controllers [17,18] and a comparison of some 

approaches to designing power system stabilizers has been 

presented in [19,20].  
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One of these possible methods is the application of 

adaptive fuzzy sliding controller. Remarkable research effort 

has been done in the last decade putting forward intelligent 

fuzzy logic based power system stabilizer as well as 

optimality in adapting to changing operating conditions as in 

[21-23].  

However, this linear model based control strategies often 

fail to provide satisfactory results over a wide range of 

operating conditions besides during severe disturbances, PSS 

action may actually cause the generator under its control to 

lose synchronism in an attempt to control its excitation field. 

In [24] the authors applied the Nussbaum gain with the 

conventional sliding mode control but the results are 

unsatisfied. 

This paper introduces briefly in the next section the 

terminal sliding mode control approach used, followed by the 

second section in which adaptive fuzzy technique is tackled. 

In third section the design of the non singular adaptive fuzzy 

terminal sliding mode stabilizer using a Nussbaum gain is 

undertaken and stability issue addressed. The power system 

model is presented in the ensuing section followed by 

simulation and a presentation of results for different operating 

conditions. 

II. GLOBAL SLIDING MODE CONTROL 

Consider a SISO nonlinear system described by: 
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where   2

21
Rxxx

T
 is the state vector, Ru  is the 

input,  txf ,  and  txg ,  are the unknown functions 

nonlinear. 

Then,  txf ,  and  txg ,  can be written as: 
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ggg 
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                                (3) 

where
0

f , 
0

g  are the nominal functions, f  and g  are 

uncertainties satisfy the conditions:  
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G
g
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where F  and G  are positive. 

The terminal sliding switching surface as follows: 
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  
t

xxdxS
0

211
                       (6) 

where  ,  and   are the constants positive. 

Control law enabling satisfaction of the attraction phase 

condition (7) and the equivalent control to maintain state 

trajectories on the sliding surface is typically given by (8) 

assuming g is non-singular.       

 

                0SS                                     (7) 

 

Theorem 1: For the nonlinear system (1), if we choose the 

following control law: 
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where *k indicates the control gain with the sliding function, 

then the system is stable. 

 

Proof: 

Choosing the Lyapunov function candidate to be 
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III. ADAPTIVE FUZZY GLOBAL SLIDING MODE CONTROL 

In this section, the procedure to construct an adaptive fuzzy 

gain to the terminal sliding mode controller. k̂  is the 

approximation of the 
*k , using the singleton fuzzifier, 

product fuzzy inference and center gravity defuzzifier, the 

inferred output is: 
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where  
mk2k1kk

,...,θ,θθθ   is the vector of parameters, 

 T
m21

,...,ξ,ξξξ  is the vector of fuzzy basis functions. 

The minimum approximation error is: 
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where 
*

k
  is the optimal approximation parameter and 
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Theorem 2: For the nonlinear system (1), if we choose the 

following control law: 
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and if, 
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and choose the adaptation law: 
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then the system is stable. 

 

Proof: 

Choosing the Lyapunov function candidate to be 
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IV. NON SINGULAR ADAPTIVE FUZZY GLOBAL SLIDING 

MODE CONTROL 

 Definition 

A function is called a Nussbaum-type function if it has the 

following properties: 
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Through out this paper the even Nussbaum function: 

 

       2cosexp 2N                 (18) 

 

is employed and   is a variable determined later. 

In this section, the fuzzy logic model is expressed as the 

following form: 
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f
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approximates the unknown system function  xf  with the 

approximation error 
f

 , such that: 
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where  
mf2f1ff

,...,θ,θθθ   is the vector of 

parameters,  T
m21

,...,ξ,ξξξ  is the vector of fuzzy basis 

functions. 

V. ADAPTIVE FUZZY GLOBAL SLIDING MODE CONTROL 

USING NUSSBAUM FUNCTION 

In previous research on indirect adaptive fuzzy method, the 

controller with  xĝ1  can be singular because it cannot be 

guaranteed that  xĝ  is note equal to zero at any moment 

where  xĝ  denotes the approximation of  xg . A Nussbaum 

function is used to avoid appearance of the singularity 

problem and should satisfy the following condition: 

 

   gN                               (21) 

 

Theorem 3: For the nonlinear system (1), if we choose the 

following control law: 
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and choose the adaptation law: 
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then the system is stable. 

 

PROOF: 

Choosing the Lyapunov function candidate to be 
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VI. POWER SYSTEM MODEL 

The power system model considered in this paper is a 

nonlinear model representing a synchronous machine 

connected to an infinite bus via a double circuit transmission 

line. The power system schematic diagram including turbine, 

transformer, automatic voltage regulator and PSS is shown in 

Fig.1 [25-26]. 

 

 
Fig.1   One-line SMIB diagram with AVR and PSS. 

A fourth order classic representation is:  
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A nonlinear representation the machine during a transient 

period after a major disturbance has occurred in the system is 

follows:  
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where the state variable are expressed as:   Pz   , 

with   is speed deviation, 
em

PPP    is the accelerating 

power and M  is inertia moment coefficient. 

The fact that the governor time constant is large compared 

to the time constants of the synchronous machine and its 

exciter, so that during the first few seconds after the 

occurrence of a severe disturbance the governor function can 

be ignored. Therefore the mechanical input power is constant 

during the transient integral, say less than 5 seconds after the 

disturbance has occurred [19]. 

Then, (29) can be written in form of system (1), if you 

make a change of variable as follows: 
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The parameters of the single machine infinite bus system 

are as follows:  
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VII. SIMULATION 

The soundness of the proposed PSS was tested and 

performance as well as robustness tests were conducted and 

compared to a classic CPSS [13] confirming, through 

computer simulations, good transient behaviour with the 

proposed control despite severe operating conditions 

illustrated by the following case studies. Five fuzzy sets for 

each input are sufficient for the PSS to be designed.  

The fuzzy sets for inputs   and P are defined 

according to the membership functions shown in Fig.2.1 and 

Fig.2.2. The initial value of the
f

 , 
k

 is chosen to be zero 

and the 0.09 respectively. 

 

 
Fig.2.1 Fuzzy sets for input  . 

 

 
Fig.2.2 Fuzzy sets for input P . 

 

Case 1: First the simulation results for normal load 

condition are shown in Fig.3 with PSS calculated on proposed 

control. Performances of the proposed PSS are clearly 

superior while a greater control effort is solicited.  

 

 
Fig.3.1 Speed deviation. 

 

Case 2: Operating conditions change abruptly from light to 

heavy load condition, i.e. Q  is changed from 0.3 p.u. to 0.8 

p.u and 45.0
e

x p.u. The simulation results in Fig.4 show a 

better transient performance for the proposed control. 

 

 
Fig.3.2 Accelerating power. 

 
Fig.3.3 Electrical power. 

 
Fig.3.4 Rotor angle. 
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Fig.4.1 Speed deviation in heavy reactive power case. 

 

 

 
Fig.4.2 Accelerating power in heavy reactive power case. 

 
Fig.4.3 Electrical power in heavy reactive power case. 

 
Fig.4.4 Rotor angle in heavy reactive power case. 

 

Case 3: We now consider the case of the sudden 

occurrence of importing reactive power causing a change in Q 

from the light value to -0.3 p.u and strong connection 

( 1.0
e

x  p.u). Again the simulation results shown in Fig.5 

seem to indicate a good transient behaviour with superior 

performance due to the proposed PSS. 

 
Fig.5.1 Speed deviation for case 3. 

 
Fig.5.2 Accelerating power for case 3. 

 

VIII. CONCLUSION 

We introduced in this paper, based on the adaptive fuzzy 

terminal sliding mode controller and the Nussbaum gain, a 

new non singular   power system stabilizer that enhances 

damping and improves transient dynamics of a single 

synchronous machine using a nonlinear model of the power 

system. Different load conditions as well as severe 

perturbations were used to evaluate the proposed power 

system stabilizer effectiveness in rapidly reducing oscillations 

that could lead to loss of synchronism if not treated. 

Simulation results exhibit superior performance over classical 

PSS and in absence of PSS.    

 

 
Fig.5.3 Electrical power for case 3. 
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Fig.5.4 Rotor angle for case 3. 
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