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Abstract
By generalizing the relationships between auxiliary variables that appear in the works of Roy et al. (1972) and Roy &
Moran (1973), we investigate the dynamics of non-interacting particles under the action of a central force field whose
force function is a solution to a certain differential equation. The method used by Roy et al. (1972), Broucke (1971),
and later by Sitarski (1979), was utilized in such a way that the obtained recursive equations can be used to describe the
motion of a particle under such a field. The class of such fields includes both gravitational and non-gravitational force
fields. Several numerical and historically essential examples and detailed discussions of various cases are given.
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1 Introduction

The dynamics of particles under the action of a force directed
towards or from a fixed center is one of the oldest and
most interesting topics. During the 1970s, a series of articles
(Roy et al. 1972; Roy & Moran 1973; Moran et al. 1973;
Black 1973) about the numerical integration, using high order
expansions in time, of the motion for the two-body problem
and the motion of two bodies perturbed by some disturbing
force were published. Broucke (1971) used their method to
study the solutions to the N -body problem. Sitarski (1979)
used a similar method for the dynamics of comets having high
eccentric orbits by considering this problem as a special case
of the N -body problem. Saad et al. (2008) presented a new
symbolic algorithm for the dynamics of comets. Alghamdi &
Alshaery (2020) studied circular restricted gravitational three-
body problem using similar methods. Hadjifotinou (2000) used
the recurrent relations for the integration of motion of finitely
many satellites orbiting around a planet. All these articles are
based on the techniques and methods developed by Steffensen
(1956, 1957) (e.g. Roy 2020, Ch. 4.13; Valtonen & Karttunen
2006, Ch. 2.11; Broucke 1971). Roy et al. (1972) proved that
integration by recurrent equations is an efficient and accurate
method for the present settings. Since then it has been shown
by many researchers (Black 1973; Broucke 1971; Hadjifotinou
2000) that the obtained reliable results are satisfactory in speed,
precision, and accuracy for the applications.

The present work is motivated by these papers and focuses
on systems of recursive equations obtained from second-order
equations modeling the dynamics of particles. In our approach,
we further generalize this method to a certain class, called
type-I, of central force fields by using the relationships between
auxiliary variables that appear in the works of Roy et al. (1972)
and Roy & Moran (1973). Most of the force fields appearing in
the related literature are particular cases of type-I central force
fields. After generalizing the method used by Roy et al. (1972),
Broucke (1971), and later by Sitarski (1979), we use systems
of recursive equations to study the motion of a particle under
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such a field. Concrete examples of type-I central force fields
include both gravitational and non-gravitational force fields,
and hence, they can be used in certain problems appearing in
the dynamics of space flight.

The structure of the paper is as follows. In §2, we introduce
the notions of type-I and type-II central force fields. In §3
we prove several statements that show that the introduced
notions are well-defined. In §4, we study certain properties of
the auxiliary variables needed in the numerical solutions. In §5,
we focus on the dynamics of non-interacting particles under
the action of type-I central force fields. In §6 we present some
results in the case of type-II fields.

2 Preliminaries

We prefer the mathematical approach given in Hirsch & Smale
(1974) because it is closer to the works of Smale (1967)
in celestial mechanics. Throughout, f denotes a real valued
analytic function defined on the open interval (0,∞). We
denote by r the position of a particle in a space with respect to
the standard non-rotating rectangular coordinate system. We
denote the Euclidean norm of r by r, that is r = ‖r‖. Further,
we assume everywhere in the present work that r is sufficiently
many times differentiable, and, is non-vanishing in the sense
that zero does belong to the closure of the set {t : r(t) 6= 0}.
The unit vector r̂ in the direction of r is defined by the condition
r = rr̂.

Following Hirsch & Smale (1974, Ch. 2.4), by a central
force field induced by the function f we mean a field Ff = F
defined everywhere over the space, except possibly at the origin,
satisfying

F (r) = −f(r)r

whenever r 6= 0, see also Remark 1 below. In this case,
‖F (r)‖ = |f(r)|r.

Many analytical and local statistical properties of Ff are
induced by those of f . The transformation that maps such
an analytic function f to its induced central force field Ff is
linear, i.e. Fkf1+f2 = kFf1 + Ff2 for any scalar k ∈ R. It
further follows that if Pn is the nth polynomial approximation
of f around r0 > 0 then the truncation error in the induced
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central force field of Pn is given by a high dimensional version
of Taylor’s theorem, see Lemma 2 below. Similarly, if P is the
nth Lagrange interpolating polynomial associated with f and
n+ 1 distinct arguments r0, r1, . . . , rn in (0,∞) then an error
bound for Ff and FP is given by a high dimensional version of
Lagrange error formula, see Lemma 3.

Definition 1. We say that a central force field F induced by
the function f is type-I if there exists some analytic function q
on (0,∞) such that f is a solution of the differential equation
f ′ + qf = 0. Similarly, we say that F is type-II if there exists
some analytic functions p and q on the same interval (0,∞)
such that the function f is a solution of the differential equation
f ′′ + pf ′ + qf = 0.

One can show that if F is type-I, it is also type-II. However,
F can be type-II but not type-I, for example F (r) = sin(r)r is
as such. It is also clear that F is type-I (or type-II) if and only
if kF for k ∈ R is type-I (or type-II, respectively). Further, if
F is induced by some f and is type-I then the central vector
fields induced by rf and f/r, respectively, are also type-I, see
Lemma 1 below.

The problem that we are interested in is the
approximations of the solutions of the differential equation

d2r
dt2 = −f(r)r (1)

in which the force field appearing on the right side is either
type-I or type-II.

Remark 1. In the present article, f(r) denotes the analytical
function inducing Ff in the non-normalized equation Eq. (1).
Since

d2r
dt2 = −f(r)r = −f(r)rr̂

the function f(r)r can be regarded as the force directed towards
or from a fixed center. It follows from Lemma 1 given below
that being type-I, as given Definition 1, is invariant under
normalization with respect to any choice of the Euclidean norm.
In general, the force depends not only on r but also other
magnitudes such as time, velocity, etc. (Danby 1988, Ch. 4;
Whittaker & McCrae 1988, Ch. IV), however, we follow the
conventions given in Hirsch & Smale (1974, Ch. 2.4).

Example 1. Let f(r) = K
r3 for r > 0 where K is a positive

constant. The central force field F induced by f is type-I with
q(r) = 3/r. We note that q(r) is independent of K. The Eq.
(1) can be regarded as the equations of relative motion of one of
the bodies about another body in a two body system where the
constantK depends on the choice of units (Musielak & Quarles
2017, Ch. 2; Beutler 2005, Ch. 3; Heggie 2005; Valtonen &
Karttunen 2006, Ch. 3; Roy et al. 1972). Indeed, if r denotes
the radius vector from a body P1 of mass M to a body P of
mass m then the equations of relative motion for the body P
about the body P1 is given by Eq. (1) with f(r) = K

r3 where
K = G(M +m) and G is the constant of gravitation.

Example 2. Let f(r) = k2 for some constant k. In this case,
Eq. (1) models a high dimensional version of a simple harmonic
oscillator (Hirsch & Smale 1974, Ch. 2.4). The corresponding
central force field is type-I. In dimension 1, Eq. (1) is an
equation for the undriven undamped oscillator.

Example 3. If f(r) = µ/r4 then Eq. (1) can be rewritten as

d2r
dt2 = − µ

r3 r̂

whose solutions are known to produce Cotes’ spirals (Danby
1988, Ch. 4.7; Whittaker & McCrae 1988, Ch. IV). The
resulting central force field is type-I with q(r) = 4/r.

Consider an analytic function u(t) defined over a domain
containing zero. We denote the jth coefficient of the expansion
of u(t) around t = 0 by [̂u]j for j ≥ 0. One advantage
of the bracket notation [̂·] is that it allows one to express
coefficients appearing in the expansions of composite functions
in a more compact way. For instance, let w be a positive non-
vanishing analytic function of t. Then ̂[1/√w]

j
represents the

jth coefficient in the expansion of 1/
√
w around zero.

By a recursive transform of a differential-algebraic system
(abbreviated as DAS), we mean a system of recursive equations
(abbreviated as SRE) consisting of those obtained from the
given DAS. In general, the SRE of a DAS is not unique because
it may further contain auxiliary recursive equations which are
needed to solve the system, see for instance §4.

Remark 2. In Broucke (1971), it was stated that for the
problem of 10 bodies revolving around the Sun, the first 25
terms of the expansions were used. In general, the choices
of step sizes and the number of terms in expansions vary
and depend on the problem itself (for instance Valtonen &
Karttunen 2006, Ch. 2.11). Black (1973) reported that Myachin
& Sizova (1972) used a fixed step size and a varying number
of terms. Further applications related to regular polygons and
star clusters were given in Black (1973). Sitarski (1979, Sec.
5) stated that, in the case of comets having high eccentric
orbits, 12 terms in the expansions produced the desired results.
A detailed discussion related to the size of integration steps can
also be found in Sitarski (1979). It is further reported in Sitarski
(1979) that Mercurial terms in the equation of the comet’s
motion affect the step size. In the present paper, we use similar
numbers. However, the step size of Example 11 given below is
chosen relatively smaller due to the nature of the problem.

3 The Well Definedness of Type

Let Ω = Cω(0,∞) denote the linear space of all real valued
and real analytic functions on the interval (0,∞). The following
lemma states that the solution space of the equation f ′+qf =
0 is invariant under multiplications by r and by 1/r.

Lemma 1. A function f ∈ Ω satisfies f ′ + q1f = 0 for some
q1 ∈ Ω if and only if the function g(r) = f(r)

r
satisfies g′ +

q2g = 0 for some q2 ∈ Ω.

Proof. Given q1 let us put

q2(r) = q1(r) + 1
r

for every r. Because r is non-vanishing, q2 ∈ Ω. It follows that

g′(r) + q2(r)g(r) = f ′(r)r − f(r)
r2 +

(
q1(r) + 1

r

)
f(r)
r

= f(r)
r

(
−q1(r)− 1

r
+ q1(r) + 1

r

)
= 0

for every such r. Conversely, suppose that g′ + q2g = 0. If we
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let

q1(r) = q2(r)− 1
r

for every r and f(r) = rg(r) then it follows that

f ′(r) + q1(r)f(r) = (rg(r))′ +
(
q2(r)− 1

r

)
rg(r)

= g′(r)r + g(r) + rq2(r)g(r)− g(r)
= −rq2(r)g(r) + rq2(r)g(r)
= 0

for every such r.

The following lemma shows that the nomenclatures type-I
and type-II, as given in Definition 1, are well-defined.

Proposition 1. The type of a central force field does not
depend on the functions that are inducing it.

Proof. Let f, g ∈ Ω induce F . Without loss of generality, for
every r we have f(r)r = g(r)r, and hence, (f(r)− g(r))r = 0
where r is nonzero. Hence, f(r) = g(r) for every r. Since r
runs through the space freely except the origin, f = g on the
interval (0,∞). Since both f and g are analytic, if at least one
of f(0) or g(0) is finite then the other is also finite, and their
values at zero are equal to each other. Hence, f ′ + qf = 0 if
and only g′ + qg = 0. The other case is similar.

In the following lemma, Pn(r) denotes the nth
approximating polynomial for f ∈ Ω about r0 > 0.

Lemma 2. Denote by Ff and FPn be the central force fields
induced by f and Pn, respectively. Then there exists ξ(r)
depending on r such that

‖(Ff − FPn )(r)‖ = |f
n+1(ξ(r))|
(n+ 1)! |(r − r0)n+1|r

for every r > 0.

Example 4. This example shows that FPn may not be type-I
even though Ff is type-I. Let f(r) = K/r3 as in Example 1.
Then

P1(r) = K

r3
0
− 3K

r4
0

(r − r0)

and there exists no q ∈ Ω such that P ′1 + qP1 = 0.

Let P be the nth Lagrange interpolating polynomial
associated with f and n + 1 distinct arguments r0, r1, . . . , rn

in (0,∞) with ri ∈ [R0, R1] for R0, R1 > 0.

Lemma 3. Denote by Ff and FP be the central force fields
induced by f and P , respectively. Then there exists ξ(r)
between R0 and R1

‖(Ff − FP )(r)‖ = |f
n+1(ξ(r))|
(n+ 1)! |(r− r0)(r− r1) · · · (r− rn)|r

for every r ∈ [R0, R1].

4 The auxiliary variables w, s, σ and υ

This section is devoted to studying properties of three variables
appearing in Black (1973); Moran et al. (1973); Roy & Moran
(1973); Roy et al. (1972), and an additional auxiliary variable.
Differential and algebraic relations between these variables
allow us to obtain approximations to the solution of Eq. (1).

Further, since some of these relations are independent of f ,
the corresponding SRE can be precomputed and can be used
whenever needed, see Example 7.

Let r be as given in §2. Similar to Roy et al. (1972), we
write

w = 1
r2 , s = r · ṙ, σ = ws, υ =

√
w = 1

r
(2)

where s is defined in terms of the classical dot product. The
auxiliary variables w, s and σ were used in Black (1973); Moran
et al. (1973); Roy & Moran (1973); Roy et al. (1972). In the
present paper, we further use υ since it simplifies the recursive
formulae.

The following remark reflects the central idea of the
present work.

Remark 3. In Roy et al. (1972), there is another auxiliary
variable, called u, defined by

u = 1
r3 ,

(Roy et al. 1972, Eq.6), where 1/r3 appears in the equations
(Roy et al. 1972, Eq.1) of relative motion. In the present work,
we do not use u because if a central force field is type-I then
the analytic function inducing that field satisfies a differential
equation. This allows us not to use u but to use the differential
equation instead.

Remark 4. Broucke (1971) studied the case of the general
N -body problem. He introduced and used auxiliary variables
si = 1/r3

i for each of the N planets revolving around the Sun
and sij = r−3

ij for each pair of the planets. Sitarski (1979) used
a similar auxiliary variable in the case of the dynamics of the
comet.

The following lemma is needed in Proposition 2.

Lemma 4. We have

[̂s2]j =
j∑

j1=0

j1∑
j2=0

j−j1∑
j3=0

(j3 + 1)(j2 + 1)

×
[
[̂r]j2+1 · [̂r]j1−j2

] [
[̂r]j3+1 · [̂r]j−j1−j3

]
and

[̂s3]j =
j∑

j2=0

j2∑
j1=0

j2∑
j3=0

j2−j1∑
j4=0

j−j1∑
j5=0

(j3 + 1)(j4 + 1)(j5 + 1)

×

[[
[̂r]j3+1 · [̂r]j2−j3

] [
[̂r]j4+1 · [̂r]j1−j2−j4

]
[
[̂r]j5+1 · [̂r]j−j1−j5

]]
for j ≥ 0.

Proof. Since s = r · ṙ we have

[̂s]j =
j∑

i=0

(i+ 1)[̂r]i+1 · [̂r]j−i

for j ≥ 0. As s2 and s3 denote the second and third powers of
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s, respectively, we have

[̂s2]j =
j∑

j1=0

[̂s]j1
[̂s]j−j1

and

[̂s3]j =
j∑

j2=0

j2∑
j1=0

[̂s]j1
[̂s]j2−j1

[̂s]j−j2
.

for j ≥ 0. The results follow from these.

The following lemma is needed in the sequel.

Lemma 5. If p ≥ 1 is independent of time then
d
dtw

p/2 = −pw
p+2

2 s = −pw
p
2 σ and d

dtw
−p/2 = pw

2−p
2 s.

Proof. Let p ≥ 1. Since we have
d
dt

( 1
rp

)
= −p r · ṙ

rp+2 ,

it follows that
d
dtw

p/2 = −pw
p+2

2 s = −pw
p
2 σ .

Similarly, it follows from
drp

dt = prp−2r · ṙ

that
d
dtw

−p/2 = pw
2−p

2 s

.

Lemma 6. In the above setting, we have (ṙ)2 = s2w and
r̈

ṙ
= ṡ

s
− sw.

Proof. We have

(ṙ)2 = (s
r

)2 = s2w

and
r̈

ṙ
= ṡr − sṙ

sr
= ṡ

s
− sw

.

5 Results Related Type-I Central Force Fields

Consider Eq. (1) together with f ′ + qf = 0 over the interval
(0,∞). If we put γ = f(r) then we have

γ̇ = f ′(r)ṙ = −q(r)f(r)sυ.

The differential algebraic system (DAS) corresponding to Eq.
(1) can be written as

γ̇ = −q(r)γsυ,
υ̇ = −υσ,
s = r · ṙ,
σ = ws,

w = υ2,

r̈ = −γr.

(3)

We note that q(r) appears only in the first equation above.
Further, in the above system, there will be no advantage if we
replace w with v, and vice versa. Indeed, since υ =

√
w, it is

possible to rewrite all equations containing υ in terms of w.
In that case, one has to deal with the time derivative of

√
w.

On the other hand, if one changes every occurrence of w to v2

then the equation σ = v2s contains v2. However, the equation
w = v2 is already listed in Eq. (3).

Example 5. If f(r) = K/r3 for some positive constant K, see
Example 1, then

f ′(r)ṙ = −3Ks
r5 = −3f(r)sw = −3γsw

which agrees with

q(r) = 3
√
w = 3/r ,

in terms of r. Thus, the first equation in Eq. (3) simplifies to
γ̇ = −3γσ, which is same as the first equation of the system
(Roy et al. 1972, Eq. 7). A similar discussion for the case of
two body problem is also given in Beutler (2005, Ch. 7.4.3),
and in Roy (2020, Ch. 4.13).

Example 6. If f(r) = K/rp for some constants p ≥ 1 and
K > 0 then one can show that q(r) = p/r. Hence, in view of
Example 5, the first equation of in Eq. (3) becomes

γ̇ = −pγσ = −pγsw .

The corresponding central force field generally appears in
applications (Danby 1988, Prob. 4.11.6). In the case of

f(r) = K1

rp1
+ K2

rp2

with p1, p2 ≥ 1 and K1,K2 > 0 one obtains

q(r) = K2p2r
p1 +K1p1r

p2

r (K2rp1 +K1rp2 )

which is analytic over (0,∞). It follows that the first equation
in Eq. (3) simplifies to

γ̇ = − (K1p1ν
p1 +K2p2ν

p2 )
K1νp1 +K2νp2

γsν2

Example 7. Let f(r) = k2 for some nonzero constant k, see
Example 2. It follows from f ′+qf = 0 that q is zero everywhere.
Therefore, the Eq. (3) further simplifies, by Lemma 5, to

υ̇ = −υσ,
s = r · ṙ,
σ = ws,

w = υ2,

r̈ = −γr

though the DAS formed by w, s, σ and υ is independent of the
computation of r by recursions. This example suggests that one
can precompute the SRE of this independent DAS for various
initial values. We informally remark that one can even design
special-purpose hardware for the numerical computations of
these types of independent subsystems (Heggie 2005, Sec. 3.3).
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Theorem 1. The SRE of Eq. (3) is given by

[̂γ]j+1 = −1
j + 1

j∑
j3=0

j3∑
j2=0

j2∑
j1=0

[̂q(r)]j1
[̂γ]j2−j1

[̂s]j3−j2
[̂υ]j−j3

,

[̂υ]j+1 = −1
j + 1

j∑
j1=0

[̂υ]j1
[̂σ]j−j1

,

[̂s]j =
j∑

j1=0

(j − j1 + 1)[̂r]j1
· [̂r]j−j1+1,

[̂σ]j =
j∑

j1=0

[̂w]j [̂s]j−j1
,

[̂w]j =
j∑

j1=0

[̂υ]j [̂υ]j−j1
,

[̂r]j+2 = −1
(j + 1)(j + 2)

j∑
j1=0

[̂γ]j1
[̂r]j−j1

,

(4)
for j ≥ 0 where the initial values [̂w]0, [̂s]0, [̂σ]0, [̂υ]0, [̂r]0, and
[̂r]1 of recursions are obtained from the initial values of Eq. (3).

Remark 5. In general, initial values of Eq. (1) consists of the
data r(0) and ṙ(0). By using Eq. (2), we determine the initial
values of all variables appearing in the SRE given in Theorem
1. We note that this approach has the advantage that the SRE
given in Theorem 1 does not change even if the initial time
value t0 = 0 is changed to t1 with t0 6= t1. In that case, [̂·]
evaluates the coefficients with respect to time at t1.

Remark 6. In the views of §4 and Theorem 1, the scalar
magnitudes γ, υ, s, σ, w, the vector r = (x, y) and the function
q are all transformed into sequences [̂γ]j , [̂υ]j , [̂s]j , [̂σ]j , [̂w]j ,
[̂x]j , [̂y]j and [̂q]j for j ≥ 0, respectively. Let x(0) = X0,
y(0) = Y0, x′(0) = X1, y′(0) = Y1 be the initial values
of the problem. We put [̂x]0 = X0, [̂x]1 = X1, [̂y]0 = Y0,
and [̂Y ]0 = Y1. The corresponding SRE can be iterated for
any j ≥ 0 and the number of terms N of the expansion
provides a stopping condition for the iteration procedure. Once
a stopping condition is satisfied then [̂x]j and [̂y]j are evaluated
for j = 0, 1, . . . , N . On the other hand, not all variables are
needed to be evaluated up to order N because of the difference
of degrees appearing in the SRE given in Theorem 1.

Proposition 2. In order to compute [̂r]` for some ` ≥ 4
it suffices to compute [̂γ]j for j = 0, 1, . . . , ` − 2; [̂υ]j for
j = 0, 1, . . . , ` − 3; [̂s]j for j = 0, 1, . . . , ` − 3; [̂σ]j for
j = 0, 1, . . . , `− 4; and [̂q]j for j = 0, 1, . . . , `− 3.

Proof. By using the equation of [̂r] given in Theorem 1, we see
that [̂r]` depends on [̂γ]`−2. Similarly, [̂γ]`−2 depends on [̂υ]`−3,
[̂s]`−3 and [̂q]`−3. Consider the magnitude [̂σ]`−3 together with
the only equation

[̂υ]j+1 = −1
j + 1

j∑
j1=0

[̂υ]j1
[̂σ]j−j1

,

appearing in the SRE of Theorem 1 containing σ on its right

side. Because the maximum value of the index j−j1 is j, [̂σ]`−3

produces [̂υ]`−2, which is not needed from the previous step.
Hence, by structural induction it suffices to compute [̂σ]j for
j = 0, 1, . . . , `− 4.

Remark 7. Suppose that an explicit formula, in terms r, for
q is available. In the SRE given in Theorem 1, one requires to
compute [̂q(r)]j with respect to time. Suppose further that the
values of components of dir

dti for i = 0, 1, . . . , j at t = 0 are
known. Then one may use McKiernan’s formula (McKiernan
1956),

[̂q(r)]j = 1
j!

[
j∑

j1=1

dj1

dxj1
[q(x)]x=r(t)

×
j1∑

j2=0

(−1)j1−j2

j2!(j1 − j2)! [r(t)]
j1−j2 dj

dtj [r(t)]j2

]
t=0

for the jth component of the recursive transform of the
composite function q(r). When the summations appearing on
the right side of this formula expanded, the order of derivatives
of q and r go up to exactly j. More details about this formula
can be found in McKiernan (1956).

Example 8. The SRE corresponding to the high dimensional
harmonic oscillator of Example 7, is given by

[̂r]j+2 = −k2

(j + 1)(j + 2) [̂r]j ,

for j ≥ 0 together with the independent SRE formed by w, s, σ
and υ.

Example 9. If f(r) = µ/r4 then q(r) = 4/r, see Example 3.
Depending on the initial values and µ one obtains Cotes’ spirals
of various types (Danby 1988, Ch. 4.7; Whittaker & McCrae
1988, Ch. IV). In this case, q = 4υ and the initial value of γ
of the corresponding SRE is µ/r4

0 where r0 is the norm of the
initial position. Now we give a concrete example. Let µ = 7
with initial data x(0) = −40, y(0) = −40, x′(0) = 0.067246,
y′(0) = 0 with step size h = 0.1 on the interval [0, 1500]. For
the number of terms of the expansions concerning the time, we
use 12. The value x′(0) = 0.067246 is chosen for the purpose of
obtaining an epispiral as shown in Figure 1. The solution curve
sensitively depends on x′(0) in the sense that small changes
in x′(0) cause drastic changes in the solution. The second and
third graphs given in Figure 1 illustrate respectively the error
vectors and their magnitudes obtained from the standard solver
of Mathematica and the SRE of Theorem 1. The norm of the
error becomes larger as the solution curve approaches the center
of the field.

In the following example, e denotes the base of Napier’s
logarithm, not the eccentricity. Instead of exp (f(x)) we write
ef(x).

Example 10. Let p1 ≥ 1 and p2 > 1 be integers. If
f(r) = e

p1
p2−1 r1−p2 then q(r) = p1/r

p2 = p1υ
p2 . Hence, the
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Figure 1. (Top Panel) A numerical solution for Cotes’ spirals given
in Example 9 (Middle Panel) The error vectors with respect to the
standard Mathematica solver (Bottom Panel) The norm of the error
vectors showing that the global error is less than 0.035 in the given
range

corresponding DAS is

γ̇ = −p1υ
p2γsυ,

υ̇ = −υσ,
s = r · ṙ,
σ = ws,

w = υ2,

r̈ = −γr.

It follows that for the SRE given in Eq. (4) of Theorem 1, it
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Figure 2. (Top Panel) A numerical solution in the case f(r) =
e

p1
p2−1 r1−p2

, see Example 10 (Middle Panel) The error vectors with
respect to the standard Mathematica solver (Bottom Panel) The
norm of the error vectors showing a quasi-periodic global error

suffices to compute

[̂q(r)]j = p1 [̂υp2 ]j

= p1

j∑
jp2−1=0

jp2−1∑
jp2−2=0

· · ·
j2∑

j1=0

p2∏
m=1

[̂υ]jm−jm−1

with j0 = 0 and jp2 = j. Let us give a concrete example. We
choose p1 = 8 and p2 = 2 so that f(r) = e8/r. Consider the
initial data x(0) = 100, y(0) = 100, x′(0) = 100, y′(0) = 0
with step size h = 0.05 on the interval [0, 100]. For the number
of terms of the expansions, we use 13. The solution curve is
given Figure 2 together with the comparison of the standard
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Figure 3. Plots of the auxiliary variables at the initial location of the numerical example given in Example 10

solver of Mathematica and the SRE of Theorem 1. The third
graph illustrates the fact that the norm of the error changes in
a quasi-periodic manner becoming smaller and larger as time
increases. In the views of Remark 6 and Proposition 2, Figure
3 illustrates the changes in the auxiliary variables.

Example 11. Let Q(r) = a−1 + a0 ln r + a1
r

+ · · · + an
rn for

some real constants a−1, a0, . . . , an. Then f(r) = eQ(r) is a
solution of f ′ + qf = 0 with q(r) = −Q′(r). Thus, if we set
f(r) = eQ(r) then Eq. (1) becomes

d2r
dt2 = −ea−1+a0 ln r+ a1

r
+···+ an

rn r

whose DAS contains
γ̇ = −q(r)γsυ

= (a0

r
− a1

r2 − · · · −
nan

rn+1 )γsυ

as one of its equations, see Eq. (3). Since υ = 1/r, we can
write

γ̇ = (a0υ − a1υ
2 − · · · − nanυ

n+1)γsυ,

so that [̂υ]j for j = 0, 1, 2, . . . ` determines [̂υk]` for k =
1, . . . , n + 1. We consider the case Q(r) = 1 + ln r − 5

r
− 50

r2

so that

γ̇ = (υ + 5υ2 + 100υ3)γsυ
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Figure 4. (Top Panel) Solution of the numerical example given in
Example 11 (Middle Panel) The error vectors with respect to the
standard Mathematica solver (Bottom Panel) The norm of the error
vectors showing a small nonlinear and accumulation of error

in terms of υ, γ and s only. Consider the initial data x(0) = 10,
y(0) = 10, x′(0) = 20, y′(0) = 10 with step size h = 0.005 on
the interval [0, 55]. For the number of terms of the expansions,
we use 12. The solution curve is given Figure 4 together with
the comparison of the standard solver of Mathematica and
the SRE of Theorem 1. Contrary to the case of Example 10,
the third graph of Figure 4 implies a nonlinear and increasing
accumulation of error which is consistent with the second
graph. In this case, h = 0.005 is relatively smaller than the
step sizes of the previous examples and the accumulated error
is much smaller, see also Remark 2.

6 A Partial Result Related Type-II Central Force Fields

Consider Eq. (1) together with f ′′ + pf ′ + qf = 0 over the
interval (0,∞). If we put

γ = f(r),
κ = γ̇ = f ′(r)ṙ = f ′(r)s

√
w

then it follows that

κ̇ = f ′′(r)(ṙ)2 + f ′(r)r̈.

Since f ′′+pf ′+qf = 0 over the interval (0,∞) and r ∈ (0,∞),
we have

f ′′(r) = −p(r)f ′(r)− q(r)f(r) .

Hence,

κ̇ =
[
−p(r)f ′(r)− q(r)f(r)

]
(ṙ)2 + f ′(r)r̈

= −p(r)f ′(r)(ṙ)2 − q(r)f(r)(ṙ)2 + f ′(r)r̈

which contains the term f ′(r)r̈.

Lemma 7. In the above setting, if ṙ 6= 0 then

f ′(r)r̈ = κ
ṡ

s
− κsw = κ

ṡ

s
− s3v4

.

Proof.

f ′(r)r̈ = f ′(r)ds
√
w

dt

= f ′(r)ṡ
√
w − f ′(r)s

2

r3

= κr

s
ṡ
√
w − κr

s

s2

r3

= κ
ṡ

s
− κsw

because

f ′(r) = κ

ṙ
= κr

s

whenever ṙ 6= 0. Furthermore, this implies that s = r · ṙ 6= 0
because r is assumed to be away from the origin. We finally
note that one can also multiply both sides of r̈ = −s2v3 + ṡv
by f ′(r) to obtain the same result.

It follows from Lemma 7 that
κ̇ = −p(r)f ′(r)(ṙ)2 − q(r)f(r)(ṙ)2 + f ′(r)r̈

= −p(r)κsυ − q(r)γs2w + κ
ṡ

s
− κsw.

because κ = f ′(r)ṙ and f(r)(ṙ)2 = γs2w. The corresponding
DAS can be written as

γ̇ = κ,

κ̇ = −p(r)κsυ − q(r)γs2w + κ
ṡ

s
− κsw,

υ̇ = −υσ,
s = r · ṙ,
σ = ws,

w = υ2,

r̈ = −γr

(5)

in which κ̇ can also be expressed in such a way that it contains
a term containing s3, see Lemma 7. Unlike the reduction in the
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central force fields of type-I, in the type-II case we further need
[̂s2]j or [̂s3]j for j ≥ 0, see Lemma 4.

Theorem 2. In the SRE of Eq. (5), the recursive transform of
the second equation can be found from

̂[p(r)κsυ]j =
j∑

j3=0

j3∑
j2=0

j2∑
j1=0

[̂p(r)]j1
[̂κ]j2−j1

[̂s]j3−j2
[̂υ]j−j3

,

̂[q(r)γs2w]j =
j∑

j3=0

j3∑
j2=0

j2∑
j1=0

[̂q(r)]j1
[̂γ]j2−j1

[̂s2]j3−j2
[̂w]j−j3

,

[̂
κ
ṡ

s

]
j

=
j∑

j1=0

[̂κ]j1

[̂
ṡ

s

]
j−j1

,

[̂κsw]j =
j∑

j2=0

j2∑
j1=0

[̂κ]j1
[̂s]j2−j1

[̂w]j−j2
,

[̂κ]j+1 = − ̂[p(r)κsυ]j − ̂[q(r)γs2w]j +
[̂
κ
ṡ

s

]
j
− [̂κsw]j

provided that the coefficients of ṡ/s in the expansion with
respect to time are known.

7 Conclusion

In the present paper, by using auxiliary variables w, s, σ and
υ and the equation f ′ + qf = 0, we generalized one of
the numerical methods used by Roy et al. (1972), Broucke
(1971), and Sitarski (1979) to determine dynamics a particle
under the action of a central force field induced by f . The
current method is more comprehensive in its applicability,
as it can be used to study a particle’s motion under both
gravitational and non-gravitational central forces. We remark
that Roy (2020) applied this numerical method to perturbation
problems, while the current approach remains untested. In the
present settings, what we mean by a perturbation problem is
that the particle’s trajectory is disturbed by a term added to
the second derivative. In the gravitational case, this term is
usually called the perturbing acceleration.

The case of N -body problem, in which multiple interacting
bodies affect each other’s motion was discussed in Broucke
(1971). The present method might be useful in investigating
the dynamics of a particle in a compound field with N different
centers. We further remark that the recent advancements in the
theory of integral equations and decomposition methods may
have further applications in the present settings.
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