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Abstract 

Fast and effective response in disaster situations is critical for the success of rescue 

operations. In this context, swarm Unmanned Aerial Vehicles (UAVs) play an 

important role in disaster response by rapidly scanning large areas and performing 

situation assessments. In this paper, we propose an innovative method for task 

allocation and route planning for swarm UAVs. By combining Genetic Algorithm 

(GA) and Ant Colony Optimization (ACO) techniques, this method aims to ensure 

the most efficient routing of UAVs. First, clusters are created using GA to determine 

the regions of the disaster area that need to be scanned. At this stage, factors such as 

the capacities of the UAVs, their flight times, and the breadth of their mission areas 

are taken into account. Each UAV is optimized to scan a specific area assigned to it. 

Once the clusters are formed, the routes of the UAVs within each cluster are 

determined by the Ant Colony Algorithm (ACA). The route planning is tested both 

on Google Maps and in a Gazebo simulation environment. Google Maps is used to 

evaluate the accuracy and feasibility of route planning based on real-world 

conditions, while the simulation environment provides the opportunity to test the 

behavior of the UAVs and the effectiveness of the routes in a virtual setting. With 

real-time data integration, the UAVs’ route planning can be updated instantly and 

quickly adapted to emergency situations. 
 

 
1. Introduction 

 

In Fast response in disaster situations is critical to 

saving lives and mitigating damage. Making timely 

and well-informed decisions during natural disasters, 

fires, earthquakes, and other emergencies directly 

affects the success of rescue operations. After these 

disasters, terrestrial cellular networks are often 

disrupted due to damage to base station infrastructure 

[1-2]. In this context, swarm UAVs can quickly and 

efficiently scan large areas to assess the status of 

disaster zones and provide vital information to 

emergency responders [3]. Swarm UAVs are 

particularly effective in complex and large terrain 

areas, facilitating the work of search and rescue 
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teams. By communicating with each other, swarm 

UAVs can work in a coordinated manner, enabling 

them to quickly scan extensive areas. Thanks to these 

features, the process of locating and rescuing missing 

people and those trapped in disaster areas is 

significantly accelerated [4]. 

The most significant limitations of UAVs are 

their low payload capacity, limited battery power, and 

short flight durations [5]. To overcome these 

challenges, the use of swarm UAVs is becoming 

increasingly common. Swarm UAVs distribute the 

area to be scanned and the tasks to be performed 

among individual UAVs according to the principle of 

task sharing for a specific purpose. This allows for the 

scanning of large disaster areas with multiple UAVs 
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that have short flight durations. The initial response 

time is critical for search and rescue operations. 

Swarm UAVs play a crucial role in these operations, 

as they can quickly and effectively search large areas. 

With their high-resolution cameras and other sensors, 

they can provide detailed observations of the 

surroundings, offering a significant advantage in 

locating missing or distressed individuals. 

Additionally, by working in a swarm, they facilitate 

the coordination and direction of operations, thereby 

having the potential to guide rescue teams. 

In this study, a new clustering approach is 

presented that divides the area to be scanned into 

clusters, allowing for the determination of the optimal 

path for each UAV to obtain disaster images in the 

fastest and most effective way after a disaster. To 

achieve this, a novel method is proposed to determine 

the optimal flight routes for UAVs to acquire images 

from the disaster area. The system is designed to 

enable UAVs to reach disaster areas from a specific 

starting point as quickly as possible, collect images, 

and return, first by using the proposed clustering 

method and then by planning the optimal route to be 

followed. The proposed method was tested in a 

simulation environment for different regions, varying 

numbers of UAVs, and different starting points. After 

the tests, the effectiveness of the proposed method 

was verified. The main contributions of the proposed 

approach are as follows: 

• Introduction of a novel GA-based clustering 

approach for routing multiple UAVs, 

• Enabling UAVs to collect data from different 

regions with minimal distance cost, 

• Testing the method in both a two-dimensional 

environment on real maps and in the Gazebo 

simulation environment. 

Especially the test performed in the Gazebo 

simulation environment has not been applied in the 

literature to the best of our knowledge. The studies in 

the literature mostly apply tests by applying two-

dimensional or three-dimensional obstacles on a 

graph. This study allows for easy point determination 

and route planning with an interface to be written for 

a UAV with GPS. 

 

2. Literature Review 

 

Disaster management is a critical area that enables 

societies to recover quickly and effectively after 

natural or man-made disasters. Satellite imagery and 

unmanned aerial vehicles (UAVs) are used in disaster 

management and damage assessment. High-

resolution satellite imaging systems have limitations 

such as image acquisition time, satellite connectivity, 

weather conditions, and delays in data delivery [6]. In 

contrast, UAVs are preferred in disaster management 

because they are fast, safe and flexible [7]. The video 

and still images captured by UAVs provide more 

detail than satellite images, making it easier to quickly 

identify and respond to damaged infrastructure [8-9]. 

In addition, the data collected enables emergency 

teams to make fast and effective decisions. UAVs can 

easily access areas that are difficult to reach with 

traditional methods. UAVs can be used for 

reconnaissance, detection, search and rescue support 

and coordination activities in disasters such as 

earthquakes and landslides, as well as for the 

detection and rescue of people under rubble [10]. 

UAVs have been used to provide communication and 

coordination by creating a communication 

infrastructure after disasters [11]. The advantages of 

UAVs such as rapid response, accessibility and cost-

effectiveness make this technology an indispensable 

tool in disaster management, and the wider and more 

effective use of UAVs in disaster management will 

help minimize the negative effects of disasters by 

increasing social resilience. When UAVs are used in 

disaster situations, they are organized in multiples. A 

single UAV cannot complete complex missions on its 

own due to limitations such as flight time and 

computational capacity. Therefore, the swarm UAV 

system is used to accomplish a variety of challenging 

missions. Swarm UAVs have an important mission 

allocation problem that needs to be solved before they 

can accomplish the missions [12-13]. One of the most 

important issues for UAVs is route planning 

algorithms. An efficient route planning not only 

allows UAVs to perform their missions more 

efficiently and safely, but also saves energy and time. 

Optimal routes minimize unnecessary flights, shorten 

mission duration and extend battery life. The control 

and communication structure in swarm UAVs is used 

to improve route planning operations [14-15]. 

In the literature, some studies have been 

conducted for different purposes such as coordination 

of swarm UAVs for search and rescue activities, 

reaching the target as soon as possible, and target 

identification. Zahng et al. [16] proposed a 

mathematical optimization framework for 

communication of UAVs in post-disaster affected 

areas. Aydin and Altun [17] compared differential 

evolution and particle swarm optimization for route 

planning of UAVs in an environment with multiple 

obstacles. The comparison proved that differential 

evolution is more successful in terms of both the 

number of steps and the path traveled. Wang et al. 

[18] presented an approach combining linear 

programming and PDA for the multi-point vehicle 

routing problem for post-disaster relief delivery. The 

proposed approach is tested on standard benchmark 
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datasets. Zahng et al. [19] proposed a modified 

differential evolution algorithm for disaster 

emergency routing. The proposed approach considers 

two parameters to be optimized. These are risk and 

vehicle angle.  To solve the problem with a 

constrained optimization, a differential evolution 

algorithm based on exponential selection is proposed 

and the B-spline method is used for route generation. 

The proposed approach is tested in both two-

dimensional and three-dimensional environments in 

the presence of obstacles.  Wan et al. [20] proposed a 

multi-objective swarm intelligence algorithm for 

three-dimensional route planning. The method 

transforms the path planning task into a multi-

objective optimization task with multiple constraints 

and simultaneously optimizes the objectives based on 

the total flight path length and terrain threat degree. 

Scherer et al. [21] proposed an architecture for 

building an autonomous system of small-scale UAVs 

for search and rescue missions. The proposed 

architecture allows the use of swarm UAVs with 

different autonomy levels. The proposed architecture 

supports the addition or removal of a new UAV at a 

scalable level. Silvagni et al. [22] designed an 

unmanned aerial vehicle with special capabilities for 

mountaineering activities. The proposed UAV is 

equipped with capabilities customized for mountain 

operations, such as flying at high altitude, flying in 

rainy and snowy weather conditions, and flying day 

and night. Arnold et al. [23] investigated the effect of 

UAV role on first response time by using multi-role 

swarm UAVs in a simulation environment for search 

and rescue operations. They were successful in 

finding more than 90% of the survivors in less than 

40 minutes in their tests with 10 to 50 UAVs in the 

simulation. Karaköse [24] used GA to optimize the 

task allocation of UAVs. The number of UAVs to be 

assigned for each target point and the optimum path 

and number of UAVs were determined according to 

the obstacles on the route. Gladence et al. [25], 

organized a flood disaster in a simulation 

environment and detected people trapped in the flood. 

In the developed simulation, swarm UAVs were used 

and each UAV was given a route. The images 

collected by the UAVs were processed on the server 

and people trapped in the flood were detected in each 

region.  Alawad et al. [26] proposed a swarm 

optimization algorithm based disaster and crisis 

management control system for disaster and crisis 

management in smart cities.  The proposed swarm 

optimization method enables UAVs to find the 

optimal path and consume less energy. Bakirci and 

Ozer [27] used k-means clustering algorithm and 

hierarchical virtual communication ring strategy for 

subtasks such as task allocation of swarm UAVs, 

communication between UAVs, and determination of 

unsafe routes. They also developed recommendations 

for UAVs not to collide during take-off and not to 

communicate securely among themselves. Masroor et 

al. [28] proposed a linear optimization-based 

approach to reach more disaster victims with 

minimum UAVs in an emergency. The main 

objective is to enable users to communicate with the 

UAV.  Wang et al.[29] modeled the 3D UAV 

deployment problem as a Markov process involving 

role assignment and role switching for each UAV. In 

this study, reward and cost functions are defined to 

minimize energy consumption.  Ashraf et al. [30] 

presented an approach that optimizes the order of 

places to visit and the speed of the IHA to minimize 

the task time in IHAs. For this purpose, they treated 

the problem as a nonlinear integer problem and 

presented two algorithms that combine the optimal 

radius of trajectories and circular trajectories.  

Mahajan et al. [31] proposed a multi-objective 

Markov decision process based route management. 

The proposed approach utilizes Markov decision 

process and Q learning approach. For routing 

performance, they compared energy minimum 

remaining node ratio, delay and power to distance 

ratio. Li et al. [32] proposed an adaptive full coverage 

algorithm for data collection with UAVs in a disaster 

situation. The proposed approach provides an 

approach to optimize the path planning of UAVs in 

which optimal paths intersect less and routes are 

minimized. In the proposed approach, two different 

algorithms are developed for node distribution 

density and optimal path planning on the generated 

nodes. Wan et al. [33] proposed an attention-based 

deep reinforcement learning approach for the routing 

problem with multiple IHAs. Service time and route 

selection at each node are analyzed. For the collected 

potential disaster data, the interaction between UAV 

arrival time and service time is analyzed and an 

approach is developed to speed up the process.  

Despite the growing body of research on the 

use of swarm UAVs for disaster management and 

search and rescue operations, several significant gaps 

persist in the literature. Firstly, most existing studies 

are heavily reliant on theoretical implementation and 

lack real-world implementation and validation. This 

discrepancy raises concerns about the practical 

applicability and robustness of the proposed methods 

under actual disaster conditions. In addition, most of 

the studies consist of placing obstacles and running 

algorithms in a two-dimensional environment. 

Simulation environments such as Gazebo give very 

accurate results in terms of modeling real life. There 

is no study in the literature on the use of swarm UAVs 

in such an environment in case of a disaster. 
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3. Proposed Approach for Route Planning 

 

In the proposed study, a system has been designed to 

enable UAVs to reach disaster areas from a specific 

starting point as quickly as possible, collect images, 

and return. This system first distributes tasks using a 

proposed clustering method and then plans the 

optimal routes for the UAVs to follow. The system is 

coded in the Python programming language. In the 

designed system, calculations can be made using 

either the Cartesian or Geographical Coordinate 

System, and the results can be displayed and tested in 

a simulation environment. The general scheme of the 

system is shown in Figure 1.

Entering Coordinates for 
Disaster Route Planning

Determining the Number 
of UAVs to be Used

Determining the Nodes 
for Each UAV Using a 

Genetic Algorithm

Optimal Route 
Determination for Each 

UAV Using the Ant 
Colony Algorithm

Dispatching Drones to 
Relevant Locations and 

Collecting Data

 

Figure 1. Workflow diagram of the system designed for route planning 

 

In this study, a Genetic Algorithm (GA) is 

used to allocate the coordinates to be reached by a 

large number of UAVs departing from a selected 

starting point. The UAVs at the starting point are 

positioned to reach the coordinates closest to them. 

This 360-degree positioning ensures that the UAVs 

can fulfill their missions in the fastest and easiest way. 

As the number of UAVs and coordinates increases, 

this becomes a very long computation process, which 

is optimized using GA in this study. First, the 

coordinates to be accessed during the image 

collection process must be defined in the system. To 

exemplify this process, random coordinates are used 

in the study. Examples of 100 random coordinates for 

the Cartesian Coordinate Plane and 50 random 

coordinates for the map representation can be seen in 

Figure 2.

 

Figure 2. Cartesian Coordinate Plane and map representation of randomly determined points 

 

In the study, the matplotlib library was used 

for visualizations on the cartesian coordinate plane, 

and the plotly library was used for map visualizations. 

The determined coordinates need to be allocated 

according to the number of available UAVs and a 

selected starting point for the UAVs to begin their 

movement. In this study, a clustering method is 

proposed to enable the system to perform this task 

allocation. Although this process can be done with 

known clustering methods, those methods are 
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inefficient since the clustering process is independent 

of the starting point. In the proposed method, the 

coordinates are allocated so that the UAVs closest to 

the starting point are in the same cluster. The position 

of each UAV is determined by placing it at an optimal 

location on a circle with a small radius around the 

origin. GA is used to calculate the positions of the 

UAVs on the circle [34]. According to an angle value 

between 0 and 360 degrees determined for each UAV, 

its position on the circle is found using Equation 1. 

This process is performed with an objective function 

that minimizes the intra-cluster Euclidean distance 

using GA. Figure 3 shows the proposed GA clustering 

approach.

 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑋 = cos (
2×𝜋×𝑎ç𝚤

360
) , 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑌 = sin (

2×𝜋×𝑎ç𝚤

360
)  (1)  

 

function clusters=Genetic_clustering(#uavs, x, y, points)

#uavs: Number of UAVs to be deployed

x: Point x where UAVs will start flying

y: Point y where UAVs will start flying

points: Points where UAVs will fly1. Chromosome coding

a. Create as multiple angle values as the number of UAVs for each chromosome on the circle as K=[a1,a2, an]. 

b. Determine the UAV positions from the angles created according to Equation (1)

2. Create the initial population

3. while(number of iteration)

4.     for each chromosome in population do

a. Determine the position of UAVs

b. Find the clusters of each of the locations to visit according to the closest UAV

c. Find the average distance to the center for each cluster and take the highest distance as the objective 

function

5.     endfor

6.     Crossover

7.     Mutation

8.     Rulet Selection based selection

9. endwhile

 

Figure 3. Determining the clusters to be flown for each UAV with the genetic algorithm 
 

As a result, the optimal clustering positions 

for the UAVs are calculated, as shown in Figure 3. In 

the circle formed by centering on the initial position 

of the UAVs, they are placed at positions determined 

by angle values between 0 and 360 degrees. The UAV 

positions are derived from these angle values. 

Clusters are then formed based on the proximity of the 

UAVs to the points they will fly to. The average 

distance of the points to the cluster centers is 

calculated, and the cluster center with the highest 

average distance is minimized. The algorithm 

prevents UAVs from hovering at the same points by 

ensuring the formation of disjoint clusters. The UAVs 

are placed at the starting point designated for image 

collection. They must reach the targeted coordinates 

to collect the images and return. With appropriate 

route calculation, it is important for the UAVs to 

accomplish this task in the shortest distance possible, 

in terms of time and fuel savings. In this study, the 

Route Determination Algorithm (RDA) was used for 

route calculation. For each UAV, the shortest route 

that allows them to reach their designated coordinates 

from the starting point and return is calculated using 

RDA [35]. The initial pheromone values (τ_ij,), 

attractiveness (η), number of ants (n), importance of 

the pheromone trail (α), importance of attractiveness 

(β), and pheromone evaporation rate (ρ) are 

determined for each UAV for route planning. As a 

first step, the probabilistic path selection from point i 

to point j is calculated as follows. 

 

𝑃𝑖𝑗(𝑡) =
|𝜏𝑖𝑗(𝑡)|

𝛼|𝜂𝑖𝑗|
𝛽

∑ |𝜏𝑖𝑘(𝑡)|
𝛼|𝜂𝑖𝑘|

𝛽
𝑘𝜖𝑁𝑖

 (2) 

 

In Equation (2), 𝑃𝑖𝑗(𝑡) represents the 

probability that an ant moves from point i to point j. 

In equation (2), 𝜏𝑖𝑗(𝑡)  is the pheromone density 

between point i and j, and 𝜂𝑖𝑗 is the attractiveness 

between point i and j. Ni in the equation represents 

the set of points that can be traveled to. At the end of 

each tour, the pheromone trails on the paths that the 

ants have traveled are updated. The pheromone 

update is done according to equation (3). 

 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗(𝑡) (3) 
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In the equation, the pheromone value is 

multiplied by (1-ρ) for the evaporation of the existing 

pheromone trail. In this equation, ρ is chosen between 

0 and 1. The ∆𝜏𝑖𝑗(𝑡) in the equation is used for the 

ants to leave a new pheromone trail. The new 

pheromone trail left by the ants depends on the length 

of the path taken by the ant. This is usually expressed 

as in equation (4).  

 

∆𝜏𝑖𝑗(𝑡) = ∑ ∆𝜏𝑖𝑗
𝑘 (𝑡)𝑚

𝑘=1  (4) 

  
In route planning with ACO, possible routes 

are selected using pheromone trails and 

attractiveness. The ants then complete their routes 

according to the determined probabilities. After the 

tours are completed, the pheromone trails are updated, 

and the process is repeated for a given number of 

iterations until the best solution is found. The 

proposed approach was also tested in a simulation 

environment using multiple UAVs. For this purpose, 

ROS software and the Gazebo simulation 

environment were used. ROS, which stands for Robot 

Operating System, is a software framework based on 

FreeBSD, an open-source operating system by 

Berkeley Software Distribution [36]. It is not a 

traditional operating system but a meta-operating 

system that provides services expected from an 

operating system, including hardware abstraction, 

low-level device control, implementation of 

commonly used functions, message passing between 

processes, and package management [37]. ROS 

promotes flexibility and modularity in a system, 

represented as nodes in a network, allowing robot 

components to communicate through an anonymous 

and asynchronous publish/subscribe mechanism [38]. 

The simulation environment used is Gazebo, a 3D 

dynamic simulator capable of accurately and 

efficiently simulating robot populations in complex 

indoor and outdoor environments. Unlike game 

engines, Gazebo offers physics simulation with a high 

degree of accuracy, along with a range of sensors and 

interfaces for both users and programs [39]. Gazebo 

is built on two different executable file structures: 

gzserver and gzclient. The gzserver executable runs 

the physics update loop and generates sensor data, 

while the gzclient executable provides the user 

interface. Typical uses of Gazebo include testing 

robotics algorithms, designing robots, and 

implementing realistic scenarios [40]. An 

experimental study was conducted on the deployment 

of multiple UAVs to capture simultaneous images 

from multiple points in a real-world setting. The study 

was carried out using Gazebo, a 3D simulation 

program. Within the scope of the study, a 20,000 m² 

experimental area consisting of 50 target points was 

designed in the Gazebo simulation environment. The 

geometric objects representing the target points were 

modeled as square prisms with a side length of 1 

meter. A 3D view of the simulation environment is 

shown in Figure 4. 

 

 

Figure 4. Representation of points in Gazebo Simulation 

environment 

 

Four UAVs controlled by Ardupilot flight 

controllers were added to the 3D working 

environment. The UAV model with Ardupilot flight 

controller is given in Figure 5. 

 

 

Figure 5. Gazebo UAV 

 

MAVProxy ground station software was used 

to control the UAVs. A ground station software was 

run for each UAV and a connection was established 

with the UAVs. Instant command sending and data 

retrieval operations were performed with UAVKit, a 

Python library that enables application development 

for UAVs connected in a 3D simulation environment. 

 

4.  Application Results 

 

The implementation of the proposed approach 

consists of three stages. In the first stage, cluster 

points are determined using a Genetic Algorithm 

(GA) for the given coordinates. In addition to GA, the 

K-means clustering algorithm was also used to 

determine the cluster centers. According to the 
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number of UAVs and the starting point where the 

UAVs will take off, GA determines the points each 

UAV will fly to. The parameters of the GA are 

provided in Table 1. 

 
Table 1. The parameters of genetic algorithm 

Parameter Value 

Number of iteration 500 

Population size 100 

Mutation rate 0.01 

Crossover rate 0.7 

 

In this study, we also compare the proposed 

method with one of the known clustering methods, K-

Means. Figure 5 shows examples of clustering with 

both algorithms. In the study, for each UAV, the 

shortest path will be taken between the points 

determined by ACO, starting from the starting point, 

traveling through all the points in the relevant cluster 

with the shortest path and returning back to the 

starting point. Table 2 shows the ACO parameters. 

 

 

Table 2. The parameters of ACO 

Parameter Value 

Number of ants for each coordinate 4 

Size of colony 100 

Pheromone amount 1 

Evaporation rate (𝜌) 0.1 

Relative importance of pheromone (𝛼) 1 

The importance of attractiveness (𝛽) 5 

 

The UAVs, which are placed at the starting 

point determined to collect the images, need to reach 

the targeted coordinates in sequence, take the images 

and return back. With an appropriate route 

calculation, it is important for the UAVs to perform 

this process on the coordinates from the shortest 

distance in terms of time and battery savings. In this 

study, ACO was used for route calculation. For each 

UAV, the shortest route that allows them to reach 

their own coordinates starting from the starting point 

and return to the starting point was calculated with 

ACO. Figure 6 shows the clusters generated by GA 

and K-means and the routes generated by ACO for 5 

UAVs in two-dimensional space. 

 

  

(a) Points generated in the coordinate system (b) Genetic algorithm objective function change 

  

(c) Clusters generated by genetic algorithm (d) Routes generated for genetic clusters 
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(e) Clusters generated with K-means (f) Routes generated for K-means clusters 

Figure 6. Clusters created in two-dimensional space and route planning 

 

In Figure 6, the starting point of the UAVs in 

the coordinate system is given as coordinate (50,50). 

With GA, the initial angles of the UAVs on the unit 

circle were found as [90, 163, 217, 318, 343]. These 

points are shown in Figure 6(c). It is seen that the 

routes of the UAVs in the clusters created with k-

means intersect more than the clusters created with 

genetics. We also compared the distances traveled by 

the UAVs for each case. The comparison result is 

given in Figure 7.

 

 
Figure 7. Total route length in each clustering for five UAVs 

 

Figure 7 shows that the genetic clustering 

model finds shorter routes for many UAVs and 

shortens the total flight time. In addition, the total 

distance traveled is 945 units in genetic clustering and 

1023 units in k-means clustering. Another advantage 

of genetic clustering is that UAVs are less likely to 

collide with each other. Because the routes do not 

intersect.  In the second scenario, 3 UAVs were used 

on a map. The application results are shown in Figure 

8. 

  

(a) Points generated on the map (b) Genetic algorithm objective function change 
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(c) Clusters generated by genetic algorithm (d) Routes generated for genetic clusters 

  

(e) Clusters generated by  K-means (f) Routed generated for K-means clusters 

Figure 8. Clusters and route planning in two-dimensional space 
 

In Figure 8, when the clusters created with 

GA and k-means are considered, it is seen that the 

routes overlap with each other in the clusters created 

with k-means. On the other hand, the routes generated 

with GA appear more disjoint. In addition, the total 

path taken with the proposed clustering method for 

the three UAVs is 1.04 units, while the path taken 

with k-means is calculated as 1.13 units. The 

proposed approach was also tested in the Gazebo 

simulation environment for 5 UAVs. Five UAVs with 

Ardupilot flight controllers were added to the 

simulation environment via ROS software and are 

shown in Figure 9. 

 

 

Figure 9. Multiple UAVs in Gazebo environment 

 

 MAVProxy ground station software was used 

to control the UAVs. A ground station software was 

run for each UAV and a connection was established 

with the UAVs. Instant command sending and data 

retrieval operations were performed with DroneKit, a 

Python library that allows application development 

for UAVs connected in a 3D simulation environment. 

In order to scan the field in the shortest time with the 

number of available UAVs, which is the aim of the 

study, clusters were created as many as the number of 

UAVs to be activated with the proposed clustering 

method. The clusters are shown in Figure 10. 

 

 

Figure 10. Coordinates clustered with the proposed 

method 

 

  Those marked with blue boxes represent the 

first cluster, i.e. the coordinates to be reached by UAV 

1, those marked with orange boxes represent the 

second cluster, i.e. the coordinates to be reached by 

UAV 2, and those marked with green boxes represent 

the third cluster, i.e. the coordinates to be reached by 



I. Aydın, Ç. Karakaş, G. Altun, M. U. Salur / BEU Fen Bilimleri Dergisi 13 (3), 808-821, 2024 

817 
 

UAV 3.  In order to control the points within the 

determined clusters by the UAVs in the fastest and 

shortest way, the route generated by the ACO was 

used. The front side of the UAV points to the +x axis 

and the right side points to the +y direction. Since it 

is different from the classical coordinate system, there 

is a difference in location information. The cluster 

created in the Gazebo simulation environment and the 

route structure within the cluster are given in Figure 

11.

 

 

Figure 11. Routes generated for clusters in the simulation environment

 

The routes created cannot be uploaded to the 

UAVs at once. Therefore, the coordinate information 

will be sent to the UAV as a message and the 

DroneKit library is used to query whether the UAV 

has reached the target or not. In order to manage 

multiple UAVs at the same time in this way, multi-

threading method was used. A thread was created for 

each UAV, location information was queried instantly 

for each UAV, and if the UAV reached the desired 

target, new location information was sent and the 

mission was tried to be performed. Thus, multiple 

UAVs were managed with a single software. The 

image of the UAV's progress to the target in the 

Gazebo environment is given in Figure 12. 

 

Figure 12. UAV's progress to the target in a gazebo 

environment 
 

Table 3 shows the distances covered by each 

method for scenarios with different number of points, 

number of UAVs and starting points.

Table 3. Routed coordinates for UAVs 

Example 

scenario 

Number of 

points 

Number 

of 

UAVs 

Starting point 

Total distance traveled 

with K-Means 

Clustering 

Total distance traveled 

with the proposed 

clustering method 

1 100 5 (50, 50) 970.39 955.96 

2 100 3 (50, 0) 1000.97 947.40 

3 100 4 (0, 50) 1068.11 1018.43 

4 50 5 (39.1890, 38.6728) 1.27 1.14 

5 50 3 (39.1890, 38.6228) 1.13 1.05 

6 50 4 (39.2690, 38.6728) 1.42 1.25 
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According to the results obtained, the 

proposed coordinate sharing method for UAVs sent 

from a starting point to reach the assigned coordinates 

works more efficiently than clustering methods such 

as K-Means, which only performs a standard 

grouping in terms of distance similarity. 

Subsequently, successful results were obtained in the 

routing process performed with RDA for each UAV 

to reach their assigned coordinates from the shortest 

distance. This method is expected to be used to 

perform operations such as taking images and 

transferring cargo in order to quickly determine the 

situation during and after the disaster until detailed 

mapping with satellite images or aerial vehicles. 

In the literature, different approaches have 

been used for task allocation and route planning of 

swarm UAVs.  Some studies aim to reach the target 

with the shortest path in an environment with 

obstacles. For this purpose, route planning of a single 

UAV was mostly performed. In studies conducted 

with swarm UAVs, on the other hand, multiple UAVs 

were used for shortest route planning. The routes to 

be traveled by each UAV were determined by 

clustering approach. Table 4 shows the comparison 

between the methods in the literature and the 

proposed approach.

Table 4. Comparison of the proposed method with other studies 

Reference The method Simulation tool Results 

[7] 
Clustering with k-means and 

distributed route planning 
Display on a map 

- Decentralized control 

- Low real-time applicability 

[19] 
Exponential rank differential 

evolution algorithm 

Representation in two and 

three dimensional space 

- Route planning in the presence 

of obstacles 

- Single destination 

[20] 
Route planning with multi-

objective swarm optimization 

Representation in two and 

three dimensional space 

- Route planning for a single 

destination 

- Avoiding obstacles 

[28] Integer linear optimization 
Representation in two 

dimensional space 

- UAV positioning in a 

distributed environment 

- Protection of inter-UAV 

communication 

[32] 
Adaptive full coverage and 

intelligent route planning 

Representation in two 

dimensional space 

- Preventing intersection of routes 

- Quality of service and 

establishment of minimum 

routes 

[33] 
Deep Q learning based route 

planning 

Representation in two 

dimensional space 

- Minimum service time 

- Attention-based deep 

reinforcement approach 

- Mathematical modeling 

This 

study 

Multiple route planning with 

genetic algorithm based clustering 

and ant colony algorithm 

Two-dimensional 

environment, map and 

representation in Gazebo 

simulation environment 

- Route planning of multiple 

UAVs with minimum distance 

- Preventing crossing of routes 

- Suitable for real life application 

 

Considering the results in Table 4, it is 

evident that many methods only use two-dimensional 

graphical representations. Although some studies 

have applied three-dimensional environments, the 

main focus has been on guiding to a target in an 

obstacle-rich environment [19-20]. In multi-route 

planning with swarm UAVs, only study [32] 

proposed a method to prevent route intersections. Due 

to the complexity of the mathematical structures of 

some models, there is a need to adjust specific 

parameters [28, 33]. This study offers two main 

contributions compared to the existing literature. The 

first contribution is the creation of non-intersecting 

routes for UAVs using a genetic algorithm, resulting 

in a low intersection rate. The second contribution is 

the demonstration of the algorithm in three different 

platforms: a two-dimensional space, on a map, and in 

the Gazebo simulation environment. The Gazebo 

environment models UAVs in a way that accurately 

reflects real-world scenarios, providing a reliable 

simulation of actual field conditions.  
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5. Conclusions 
 

This study proposes an innovative method combining 

Genetic Algorithm and Ant Colony Optimization 

techniques for task allocation and route planning of 

swarm UAVs in disaster situations. Firstly, k-means 

and GA based clustering techniques are used to 

determine the mission regions of UAVs. Genetic-

based clustering creates more discrete and clear 

clusters, thus avoiding overlaps between the mission 

areas of UAVs. This allows for a more efficient and 

faster scanning of disaster areas. In addition, 

operational efficiency is increased by ensuring that 

the routes of the UAVs do not intersect. Route 

planning using Ant Colony Optimization helped to 

minimize the total path distance of the UAVs. Thus, 

energy consumption is reduced and the UAVs can 

operate for longer periods of time. The proposed 

approach was tested both on a two-dimensional 

coordinate system and on Google Maps and Gazebo 

simulation environment. In particular, the tests in the 

Gazebo simulation environment demonstrated the 

applicability and effectiveness of the method in real-

world conditions. Similar simulation environment 

tests have not been conducted before, which 

emphasizes the novelty of this study in the literature. 

With real-time data integration, the route planning of 

UAVs can be updated instantaneously and quickly 

adapted to emergency situations. This contribution is 

a great advantage when time is of the essence in 

disaster response. As a result, the proposed method 

successfully solves the problem of task sharing and 

route planning of swarm UAVs in disaster situations 

and improves operational efficiency. The results of 

the study provide an important contribution to the 

optimization of UAV use in future disaster response 

operations. 
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