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IDEAL THEORY OF (m,n)-NEAR RINGS

Fahimeh MOHAMMADI1 and Bijan DAVVAZ2

1,2Department of Mathematical Sciences, Yazd University, Yazd, IRAN

Abstract. The aim of this research work is to define and characterize a new

class of n-ary algebras that we call (m,n)-near rings. We investigate the

notions of i-R-groups, i-(m,n)-near field, prime ideals, primary ideals and
subtractive ideals of (m,n)-near rings. We describe the concept of homomor-

phisms between (m,n)-near rings that preserve the (m,n)-near ring structure,

and give some results in this respect.

1. Introduction

Polyadic groups were introduced in 1928 by W. Dörnte [10]. An important role in
n-group theory is the paper [12], for more details see [7,11]. Then, n-ary operations
are used then in the study of (m,n)-rings [5, 6, 13] and (m,n)-semirings [1, 3, 8].

Let A be a non-empty set. A map h : Am −→ A is called an m-ary operation.
A non-empty set A with an m-ary operation h is called an m-ary groupoid that
is denoted by (A, h). The sequence zi, zi+1, ..., zm is denoted by zmi where 1 ≤
i ≤ m. For all 1 ≤ i ≤ j ≤ m, the phrase h(z1, z2, ..., zi, ki+1, ..., kj , lj+1, ..., lm)

is represented as h(zi1, k
j
i+1, l

m
j+1). In this case when ki+1 = ki+2 = ... = kj = k,

it is expressed as h(zi1, k
(j−i), lmj+1). An m-ary groupoid (A, h) is called an m-ary

semigroup if h is associative; that is,

h(zi−1
1 , h(zm+i−1

i ), z2m−1
m+i ) = h(zj−1

1 , h(zm+j−1
j ), z2m−1

m+j ),

for all z1, z2, ..., z2m−1 ∈ A where 1 ≤ i ≤ j ≤ m. An m-ary semigroupoid
(A, h) is named an m-ary group if for all ci−1

1 , cni+1, b ∈ A exist zn1 ∈ A, such

that h(ci−1
1 , zi, c

n
i+1) = b for every 1 ≤ i ≤ n. We say f is commutative if

h(z1, z2, ..., zm) = h(zη(1), zη(2), ..., zη(m)), for every permutation η of {1, 2, ...,m}
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and z1, z2, ..., zm ∈ A. An m-ary semigroup (A, h) is called a semi-abelian or (1,m)-
commutative if h(z, c(m−2), k) = h(k, c(m−2), z), for all c, z, k ∈ A.

2. (m,n)-Near Rings

We refer to [2, 4, 14], for details about near rings. In this section, we define the
(m,n)-near ring and give examples for it and present definitions of α1-(m,n)-near
ring, α2-(m,n)-near ring, R0, Rc, constant near ring, i-zero divisor, Zi,j(R). We
present some results in this respect.

Definition 1. Assume that A is a non-empty set and h, k be r-ary and s-ary
operations on A, respectively. In this case (A, h, k) is named an i-(r, s)-near ring,
if the following conditions hold:

(1) (A, h) is an r-ary group (not necessarily abelian),
(2) (A, k) is an s-ary semigroup,
(3) The s-ary operation k is i-distributive with respect to the r-ary operation

h,

where the definition of i-distributive condition is as follows: for every c1, c2, ..., cn,
d1, d2..., dm ∈ R, if i = n, then

k(cn−1
1 , h(d1, d2, ..., dm)) = h(k(cn−1

1 , d1), k(c
n−1
1 , d2), ..., k(c

n−1
1 , dm)).

If i = 1 then

k(h(d1, d2, ..., dm), cn2 ) = h(k(d1, c
n
2 ), k(d2, c

n
2 ), ..., k(dm, cn2 )).

If 1 < i < n then

k(ci−1
1 , h(d1, d2, ..., dm), cni+1)

= h(k(ci−1
1 , d1, c

n
i+1), k(c

i−1
1 , d2, c

n
i+1), ..., k(c

i−1
1 , dm, cni+1)).

Throughout this paper, we explain i-(m,n)-near ring by (m,n)-near ring. It is
clear that every (m,n)-ring [5] is an (m,n)-near ring.

Example 1. Assume that (H, l) is an m-ary group with the identity element 0 and
N(H) = {h : H −→ H | h is a function }. Then (N(H), l, ◦) is an (m, 2)-near
ring, where ◦ is the composition of functions.

(1) We know (N(H), l) is an m-ary group ( not necessarily abelian).
(2) It is clear that (N(H), ◦) is a 2-ary semigroup.
(3) The 2-ary operation ◦ is 1-distributive with respect to the m-ary operation

f .

We notice that in this (m, 2)-near ring the 2-distributive law fails to retain. To
consider this, let d, dj , ci ∈ H, bi ̸= 0, 1 ≤ j ≤ m, 1 ≤ i ≤ 2 and hdj

: H −→ H,
hci : H −→ H for all g ∈ H, by hdj

(g) = dj, hci(g) = ci. Now, for i = 2, we have

[hc1 ◦ (l(hd1
, hd2

, ..., hdm
))](g) = hc1(l((hd1

(g), hd2
(g), ..., hdm

(g))
= hc1(l(d1, d2, ..., dm)) = l(d1, d2, ..., dm),
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and

[l(hc1 ◦ hd1
, hc1 ◦ hd2

, ..., hc1 ◦ hdm
)](g) = l(hc1(hd1

(g)), hc1(hd2
(g)), ..., hc1(hd1

(g)))
= l(hc1(d1), hc1(d2), ..., hc1(dn))

= l(c
(m)
1 ).

This shows that

[hc1 ◦ (l(hd1
, hd2

, ..., hdm
))](g) ̸= [l(hc1 ◦ hd1

, hc1 ◦ hd2
, ..., hc1 ◦ hdm

)](g).

For i = 1, we have

(l(hd1
, hd2

, ..., hdm
)) ◦ hc1(g) = (l(hd1

, hd2
, ..., hdm

))(c1)
= l(hd1(c1), hd2(c1), ..., hdm(c1))
= l(d1, d2, ..., dm),

and
[l(hd1

◦ hd1
, hd2

◦ hc1 , ..., hdm
◦ hc1)](g)

= l((hd1 ◦ hc1)(g), (hd2 ◦ hc1)(g), ..., (hdm ◦ hc1)(g))
= l((hd1)(c1), (hd2)(c1), ..., (hdm)(c1))
= l(d1, d2, ..., dm).

Hence,

[(l(hd1 , hd2 , ..., hdm)) ◦ hc2 ](g) = [l((hd1 ◦ hc1), (hd2 ◦ hc1), ..., (hdm ◦ hc1))](g).

Therefore N(H) fails to satisfy the i-distributive for i = 2.

Example 2. Consider the additive group Zmn. Then (Zmn, h) is a group, where
h(c1, c2, ..., cm) = c1 + c2 + ... + cm. We define k on Zmn by k(c1, c2, ..., cn) = c1,
for all c1, c2, ..., cn ∈ Zmn. It is easy to see (Zmn, h, k) is an (m,n)-near ring. For
1 < i ⩽ n, we have

k(c1, c2, ..., ci−1, h(d1, d2, ..., dm), ci+1, ..., cn) = c1
h(k(c1, c2, ..., ci−1, d1, ci+1, ..., cn), ..., k(c1, c2, ..., ci−1, dm, ci+1, ..., cn))

= h(c
(m)
1 ) = mc1.

If mn = m − 1, then m = 1 ∈ Zmn. Hence, for all 1 < i ⩽ n, (Zmn−1, h, k) is
i-distributive. For i = 1, we have

k(h(d1, d2, ..., dm), c2, ..., cn) = h(d1, d2, ..., dm) = d1 + d2 + ...+ dm
h(k(d1, c2, ..., cn), k(d2, d2, ..., dn), ..., k(dm, c1, ..., cn))

= h(d1, d2, ..., dm) = d1 + d2 + ...+ dm.

Consequently, for i = 1, (Zmn−1, h, k) is 1-distributive.

Assume that A is an (m,n)-near ring. The element e ∈ A is named an identity
element if k(e(i−1), s, e(n−i)) = s for all s ∈ A and 1 ⩽ i ⩽ n.

Example 3. We know (R,+, ·) is an (m,n)-near ring with two binary operations
m-addition and n-multiplication. 1 is an identity element in (R,+, ·).
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Assume that (A, h, k) is an (m,n)-near ring. m ∈ A is named i-cancellable, if
for all 1 ≤ i ≤ n, ci, di ∈ A and k(ci−1

1 ,m, cni ) = k(di−1
1 ,m, dni ), then ci = di for

all 1 ≤ i ≤ n. m ̸= 0 is named an i-zero divisor, if there exist nonzero elements
c1, c2, ..., cn ∈ R such that k(ci−1

1 ,m, cni+1) = 0. An (m,n)-near ring (A, h, k) is
called integral near ring if it has no zero divisors. An i-(m,n)-near field is a non-
empty set P together with two binary operations h and k such that (P, h) is a group
(not necessarily abelian), (P, k) is a group and n-ary operation k is i-distributive
with respect to the m-ary operation h.

Example 4. Set of rational numbers with two binary operations h and k so that
k(d1, d2, ..., dn) = d1 and h(d1, d2, ..., dm) = d1 + d2 + ...+ dm for di ∈ Q, (Q, h, k)
is an (m,n)-near field.

Definition 2. Let (A, h, k) be an (m,n)-near ring,

(1) If for every e ∈ A exists z ∈ A such that e = k(z(n−1), e, z(n−1)), then A is
named an α1-(m,n)-near ring.

(2) If for every e ∈ A−{0} exists z ∈ A−{0} such that z = k(z(n−1), e, z(n−1)),
then A is named an α2-(m,n)-near ring.

Example 5. (N(H), l, ◦) defined in Example 1 is an α2-(m,n)-near ring.

Example 6. (Zmn, h, k) defined in Example 2 is an α2-(m,n)-near ring.

Definition 3. Let (A, h, k) be an (m,n)-near ring,

(1) A subgroup (O, h) of an m-ary group (A, h) with the property k(O(n)) ⊂ M
is named an (m,n)-subnear ring of (A, h, k), It is shown by O ⩽ N .

(2) A subnear ring O of A is named i-invariant, if h(A(i−1), O,A(m−i)) ⊆ O.

If O is i-invariant for all 1 ⩽ i ⩽ m, then O is named invariant.

Example 7. The triple (2Z, h, k) is an (m,n)-subnear ring of the (m,n)-near ring
(Z, h, k), that h(d1, d2, ..., dm) = d1 + d2 + ... + dm and k(e1, e2 + ..., en) = e1 · e2·
... ·en.
Definition 4. Let (A, h, k) be an (m,n)-near ring and 0 is the identity element
of (A, h). Then, A0 = {r ∈ A | k(0(s−1), r, 0(n−s)) = 0, 1 ≤ s ≤ n} is called
the zero symmetric part of A. In addition, Ac = {r ∈ R | k(0(s−1), r, 0(n−s)) =
r, 1 ≤ s ≤ n} is named a resistant part of A. An (m,n)-near ring A is named a
zero symmetric near ring if A = A0. An (m,n)-near ring A is named a constant
(m,n)-near ring if A = Ac.

Lemma 1. A0 and Ac are (m,n)-subnear rings of the (m,n)-near ring (A, h, k).

Proof. We show that A0 is a subgroup of A. If x1, x2, ..., xm ∈ A0 then

k(0(i−1), xj , 0
(n−i)) = 0 for 1 ≤ j ≤ m and 1 ≤ i ≤ n.

Now, we have

k(0(i−1), h(x1, x2, ..., xm), 0(n−i))
= h(k(0(i−1), x1, 0

(n−i)), k(0(i−1), x2, 0
(n−i)), ..., k(0(i−1), xm, 0(n−i))) = 0.
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Therefore, h(x1, x2, ...xm) ∈ A0, and so (A0, h) is a subgroup of (A, h, k). Next,
if we take y1, y2, ..., yn ∈ A0, then for all 1 ≤ i ≤ n and 1 ≤ j ≤ n, we have
k(0(i−1), yj , 0

(n−i)) = 0. Then, we obtain

k(0(n−1), k(y1, y2, ..., yn)) = k(k(0(n−1), y1), y2, ..., yn) = k(0, y2, ..., yn)
= k(k(0(n)), y2, .., yn) = k(0, k(0(n−1), y2), y3, ..., yn) = k(0, 0, y3, ..., yn)
= ... = k(0(n−1), yn) = 0.

Therefore, k(y1, y2, ..., yn) ∈ A0, and so k(A
(n)
0 ) ⊂ A0. This shows that (A0, h, k) is

an (m,n)-subnear ring of (m,n)-near ring (A, h, k). We show that Ac is a subgroup
of A. Let x1, x2, ..., xm ∈ A0. Then, we have k(0

(i−1), xj , 0
(n−i)) = xj for 1 ≤ j ≤ m

and 1 ≤ i ≤ n. Now, we obtain

k(0(i−1), h(x1, x2, ...xm), 0(n−i))
= h(k(0(i−1), x1, 0

(n−i)), k(0(i−1), x2, 0
(n−i)), ..., k(0(i−1), xm, 0(n−i)))

= h(x1, x2, ..., xm).

This yields that h(x1, x2, ...xm) ∈ Ac. Hence, (Ac, h) is a subgroup of (A, h, k).
Next, if y1, ..., yn ∈ Ac, then k(0(i−1), yj , 0

(n−i)) = yj , for all 1 ≤ i ≤ n, 1 ≤
j ≤ n. This gives that k(0(n−1), k(y1, y2, ..., yn)) = k(k(0(n−1), y1), y2, ..., yn) =

k(y1, y2, ..., yn). Therefore k(y1, y2, ..., yn) ∈ Ac and k(A
(n)
c ) ⊂ Ac. Hence, (Ac, h, k)

is an (m,n)-subnear ring of (m,n)-near ring (A, h, k). □

Theorem 1. Let (A, h, k) be an (m,n)-near ring. If r ∈ A0 is i-cancellable, then
r is not an i-zero divisor.

Proof. Suppose that r ∈ A0 is i-cancellable and also r is an i-zero divisor, so
there exist nonzero elements d1, d2, ..., dn ∈ A such that k(di−1

1 , r, dni+1) = 0. Since

r ∈ A0, it follows that k(di−1
1 , r, dni+1) = 0 = k(0(i−1), r, 0(n−i)). Again, since r is

i-cancellable, it follows that for all 1 ≤ i ≤ n, di = 0, that it is a contradiction. □

Let (A, h, k) be an (m,n)-near ring. The center, Zi,j(A), is the subset of elements
in A that (i, j)-commute with element of A. In the symbol, we can write:

Zi,j(A) = {b ∈ A | a1, ..., an ∈ A and for j > i,

k(ai−1
1 , b, ani ) = k(ai−1

1 , aj , ai+1, ..., aj−1, b, a
n
j+1)}.

Example 8. In Example 2, for all i, j ∈ 2, 3, ..., n, we have Zi,j(A) = A.

Suppose that (A, h, k) is an (m,n)-near ring. If (A, k) is commutative, then A is
named a commutative near ring. An element r ∈ A is named idempotent element
if k(r(n)) = r. An element r ∈ A is named nilpotent element if k(r(n)) = 0.

Example 9. In Example 2, for all r ∈ Zmn, we have k(r
n) = r, and so all elements

are idempotent. Moreover, Zmn has only one nilpotent element that is 0.

Suppose that (A, h, k) is an (m,n)-near ring. A subset S of A is named nilpotent
if k(S(n)) = 0. A subset S of A is named nill if every element of S is a nilpotent
element.
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Theorem 2. Assume that S is a subset of A. If S is nilpotent, then S is nill.

Proof. Assume that S is nilpotent. Then k(S(n)) = 0. This gives that k(s(n)) = 0
for all s ∈ S. Hence, S is a nilpotent for all s ∈ S, then S is nill. □

Definition 5. Assume that (A, h, k) is an (m,n)-near ring and (W,h) be an m-
group with identity element 0 of (A, h). W is named an i-A-group if there exists a
mapping l : W×, ...,×W︸ ︷︷ ︸

i−1

×A×W × ...×W︸ ︷︷ ︸
n−i

→ W the image of

(r(i−1), s, r(n−i)) ∈ W×, ...,×W︸ ︷︷ ︸
i−1

×A×W × ...×W︸ ︷︷ ︸
n−i

→ W,

for s ∈ A and r ∈ W , is denoted by l(r(i−1), s, r(n−i)) = k(r(i−1), s, r(n−i)), satisfy-
ing the following conditions:

(1) k(si−1
1 , h(r1, r2, ..., rm), sni+1)

= h(k(si−1
1 , r1, s

n
i+1), k(s

i−1
1 , r2, s

n
i+1), ..., k(s

i−1
1 , rn, s

n
i+1)).

(2) k(ti−1
1 , k(z1, z2, ..., zn), t

n
i+1) = k(ti−l−1

1 , k(ti−1
i−l , z

n−l
1 ), znn−l+1, t

n
i+1)

= k(ti−1
1 , zs1, k(z

n
s+1, t

i+s
i+1), t

n
i+s+1) for all 1 ≤ l ≤ i−1 and 1 ≤ s ≤ n− i,

for all sj , ti ∈ W that 1 ≤ i, j ≤ n. For all ri, zt ∈ A that 1 ≤ i ≤ m and 1 ≤ t ≤ n,
we denote this i-A-group by AA...A︸ ︷︷ ︸

i−1

W AA...A︸ ︷︷ ︸
n−i

.

Example 10. If we consider W = Z in Example 2, then W is an 1-Zmn-group.
By taking i = 1 in Definition 5, the conditions of the definition are satisfied,

k(h(r1, r2, ..., rm), sn2 ) = h(k(r1, s
n
2 ), k(r2, s

n
2 ), ..., k(rm, sn2 )) = h(r1, r2, ..., rm),

k(k(s1, s2, ..., sn), t
n
2 ) = k(sl1, k(s

n
l+1, t

1+l
2 ), tn2+l) = s1.

In Definition 5, if k(r(i−1), g, r(n−i)) = 0 for all g ∈ W yields r = 0, then W is a
faithful i-A-group.

Example 11. In Example 2, Zmn operates faithfully on Z.

Assume that (A, h, k) is an (m,n)-near ring. A subgroup H of an i-A-group
W is named an i-A-subgroup (written as H ≤A W ), if it is closed under the
operation of A and k(r(i−1), h, r(n−i)) ∈ H for all r ∈ A, h ∈ H. Suppose that
W1 and W2 are two A-groups, s : W1 → W2 is named i-A-homomorphism, if for
all l, l1, ..., ln ∈ W1 and for all r ∈ A, s(h(l1, l2, ..., lm)) = h(s(l1), s(l2), ..., s(lm))
and s(k(r(i−1), l, r(n−i))) = k(r(i−1), s(l), r(n−i)). If H is the kernel of an i-A-
homomorphism, then it is named an i-A-normal subgroup and we write H ⊴A W .

Example 12. If h(d1, d2, ..., dm) = d1 + d2 + .... + dm, k(d1, d2, ..., dn) = d1 · d2·
... ·dn, then (R, h, k) is an (m,n)-near ring and Q (the set of rationales) is a
i-R-subgroup of R.

Assume that W is an i-A-group. W is named a unitary i-A-group if A be a near
ring with unity 1 so that k(1(i−1), x, 1(n−i)) = x for all x ∈ W .
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Example 13. If in Example 4, dj = 1 for j ∈ {1, 2..., i − 1, i + 1, ..., n}, then

k(1(i−1), x, 1(n−i)) = 1 · 1 · ... · 1︸ ︷︷ ︸
i−1

·x · 1 · 1 · ... · 1︸ ︷︷ ︸
n−i

= x.

Theorem 3. In an α1-(m,n)-near ring for every a ∈ A exist some s ∈ A if
n = 2i+ 1, then

(1) k(s(i), a(i+1)) = k(a(i+1), s(i)),
(2) a = k(s(i), k(s(i), ..., k(s(i), a, s(i)), ..., s(i)), s(i)).

Proof. (1) Suppose that A is an α1-(m,n)-near ring and a ∈ A. So there exists
s ∈ R such that a = k(s(i−1), a, s(n−i)). This implies that

k(s(i), a(i+1)) = k(s(i), a, a(i)) = k(s(i), a, k(s(i), a, s(i)), a(i−1))
= k(k(s(i), a, s(i)), a, s(i), ai−1) = k(a, a, s(i), a(i−1))
= k(a, a, s(i), a, k(s(i), a, s(i), a(i−3))) = k(a, a, k(s(i), a, s(i)), a, s(i), a(i−3))
= k(a, a, a, a, s(i), a(i−3)) = ... = k(a(i+1), s(i)).

(2) We have

k(s(i), k(s(i), ..., k(s(i), a, s(i)), ..., s(i)), s(i))
= k(s(i), k(s(i), a, s(i)), s(i)) = a.

□

A subnear ring M of a (m,n)-near ring A is named an α2-subnear ring if for
every a ∈ M exists an s ∈ M so that n = 2i+ 1, k(s(i), a, s(i)) = s.

Theorem 4. Suppose that A is an α2-(m,n)-near ring. In this case

(1) Every invariant subgroup W of A is an α2-subnear ring.
(2) Every ideal I of a zero symmetric α2-near ring A is an α2-subnear ring.

Proof. (1) Take a ∈ W − {0}. Since A is an α2-near ring there exists s ∈ A
such that k(s(i), a, s(i)) = s. Now W is an invariant subgroup of A implies that
k(s(i), a, s(i)) ∈ W . Then s ∈ W . Consequently W is an α2-subnear ring.

(2) Assume that I is an ideal of the zero symmetric α2-near ring A. Let a ∈ I −
{0}. Since A is an α2-near ring, so there exists s ∈ A−{0} so that k(s(i), a, s(i)) = s.
Now, we have k(s(i), a, s(i)) ∈ k((A− {0})(i), I − {0}, (A− {0})(i)) ⊆ I − {0}. The
desired result now follows. □

3. Ideals and Homomorphisms of (m,n)-Near Rings

We define the notions of i-ideal, zero near ring, prime ideal, semi-symmetric,
A(S), k-ideal, i-N -primary and i-P -primary in the (m,n)-near rings and assert a
few related theorems.

Assume that I is a non-empty subgroup of an (m,n)-near ring (A, h, k). Then I
is named a normal subgroup of A if for all ai ∈ A and si−1

1 , smi+1 ∈ A, 1 ≤ i, j ≤ m,

there is bj ∈ I that h(si−1
1 , ai, s

m
i+1) = h(sj−1

1 , bj , s
m
j+1).
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Definition 6. Suppose that I is a non-empty subset of an (m,n)-near ring (A, h, k).
In this case I is named an ideal of A if

(1) I is a normal subgroup of m-ary group (A, h), (I, h) is an m-ary group,
(2) for every a1, a2, ..., an ∈ A, k(ai−1

1 , I, ani+1) ⊆ I,
(3) for all r1, ..., rj−1, rj+1, ..., rm, s1, ..., sj−1, sj+1, ..., sn ∈ A and 1 ≤ k ≤ n,

d ∈ I, there exists l ∈ I that
k(sj−1

1 , h(rk−1
1 , d, rmk+1), s

n
j+1)

= h(k(sj−1
1 , r1, s

n
j+1), k(s

j−1
1 , r2, s

n
j+1), ..., k(s

j−1
1 , rk−1, s

n
j+1), l,

(sj−1
1 , rk+1, s

n
j+1), ..., k(s

j−1
1 , rn, s

n
j+1)).

I is named an i-ideal of A if it satisfies (1) and (2) and I is named a
j-ideal of A for j ̸= i if it satisfies (1) and (3).

If for every 1 ≤ i ≤ n, I is an i-ideal, then I is named an ideal of A.

Example 14. Let Z and Q be the set of integers and the set of rational num-
bers, respectively. Consider two (m,n)-near rings (Z, h, k) and (Q, h, k), where
h(d1, d2, , ..., dm) = d1 + d2 + ... + dm and k(d1, d2, ..., dn) = d1 · d2 · ... · dn−1 · dn.
Then Z is an (m,n)-subnear ring of Q, but Z is not an ideal of the near ring Q.

Remark 1. If J1, J2, ..., Jn and I1, I2, I2, ..., Im are ideals of a near ring A, then

(1) h(I1, I2, ..., Im) is an ideal of A,
(2) J1 ∩ J2 ∩ ... ∩ Jn is an ideal of A,
(3) k(J1, J2, ..., Jn) is an ideal of A.

Assume that (A, h, k) is an (m,n)-near ring and I is an ideal. (A, h) is a group
and I is a normal subgroup. The quotient group (A/I,H,K) is defined. An m-ary
operation h on the cosets is defined by the m-ary operation h as follows:

H(h(d11 , d12 , ..., d1m−1
, I), ..., h(dm1

, dm2
, ..., dmm−1

, I))
= h(h(d11 , d12 , ..., d1m−1

, h(d21 , d22 , ..., d2m−1
, h(d31 , d32 , ..., d3m−1

, ...
h(d(m−1)1 , d(m−1)2 , ..., d(m−1)m−1

h(dm1
, dm2

, ..., dmm−1
, I)....)).

An n-ary operation k on cosets is defined by the n-ary operation k as follows:
K(h(d11 , d12 , ..., d1n−1 , I), ..., h(dn1 , dn2 , ..., dnn−1 , I))

= h(k(h(d11 , d12 , ..., d1n−1
, I), ..., h(d(i−1)1 , d(i−1)2 , ..., d(i−1)(n−1)

, I), di1 ,

h(d(i+1)1 , d(i+1)2 , ..., d(i+1)n−1
, I))..., h(dn1

, dn2
, ..., dnm−1

, I)), ...,
k(h(d11 , d12 , ..., d1m−1

, I), ..., h(d(i−1)1 , d(i−1)2 , ..., d(i−1)m−1
, I), dim−1

,
h(d(i+1)1 , d(i+1)2 ..., d(i+1)m−1

, I))..., h(dn1 , dn2 , ..., dnm−1 , I)), I).

Theorem 5. If I is an ideal in an (m,n)-near ring (A, h, k), then (A/I,H,K),
where the operations H and K are defined as above, has the structure of an (m,n)-
near ring.

Proof. We prove that H is well defined. Assume that

h(di1 , di2 , ..., dim−1
, I) = h(ei1 , ei2 , ..., eim−1

, I),

for 1 ≤ i ≤ m. Then
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H(h(d11 , d12 , ..., d1m−1
, I), ..., h(dm1

, dm2
, ..., dmm−1

, I))
= h(h(d11 , d12 ..., d1m−1 , h(d21 , d22 , ..., d2m−1 , h(d31 , d32 , ..., d3m−1 , ...,

h(d(m−1)1 , d(m−1)2 , ..., d(m−1)m−1
h(dm1

, ..., dmm−1
, I)....))

= h(d11 , d12 , ..., d1m−1 , h(d21 , d22 , ..., d2m−1 , h(d31 , d32 , ..., d3m−1 , ...,
h(d(m−1)1 , d(m−1)2 , ..., d(m−1)m−1

, h(em1
, em2

, ..., emm−1
, I)...))

= h(d11 , d22 , ..., d1m−1 , h(d21 , d22 , ..., d2m−1 , h(d31 , d32 , ..., d3m−1 , ...
h(d(m−1)1 , d(m−1)2 , ..., d(m−1)m−1

, h(I, em1
, em2

, ..., emm−1
)...))

= h(d11 , d12 , ..., h(d1(m−1)
, h(d21 , d22 , ..., d2m−1 , h(d31 , d32 , ..., d3m−1 , ...,

h(h(d(m−1)1 , d(m−1)2 , ..., d(m−1)m−1
, I), h(em1

, em2
, ..., emm−1

)...))
= h(d11 , d12 , ..., d1m−1

, h(d21 , d22 , ..., d2m−1
, , h(d31 , d32 , ..., d3m−1

, ...,
h(h(e(m−1)1 , e(m−1)2 , ..., e(m−1)m−1

, I), em1
, em2

, ..., em(m−1)
)...))

= ... = h(d11 , d12 , ..., d1m−1
, h(h(d21 , d22 , ..., d2m−1

, I), e31 , e32 , ..., e3m−1
), ...,

h(e(m−1)1 , e(m−1)2 , ..., e(m−1)m−1
, h(em1

, em2
, ..., emm−1

, I)...))
= h(d11 , d12 , ..., d1m−1 , h(h(e21 , e22 , ..., e2m−1 , I), e31 , e32 , ..., e3m−1), ...,
h(e(m−1)1 , e(m−1)2 , ..., e(m−1)m−1

, h(em1
, em2

, ..., emm−1
, I)...))

= h(d11 , d12 , ..., d1m−1 , h(h(I, e21 , e22 , ..., e2m−1), e31 , ..., e3m−1), ...,
h(e(m−1)1 , e(m−1)2 , ..., e(m−1)m−1

, h(em1
, em2

, ..., emm−1
, I)...))

= h(h(d11 , d12 , ..., d1m−1 , I), e21 , e22 , ..., e2m−1), h(e31 , e32 , ..., e3m−1 , ...
h(e(m−1)1 , e(m−1)2 , ..., e(m−1)m−1

, h(em1
, em2

, ..., emm−1
, I)...))

= h(e11 , e12 , ..., e1m−1 , h(e21 , e22 , ..., e2m−1 , h(e31 , e32 , ..., e3m−1 , ...,
h(e(m−1)1 , e(m−1)2 , ..., e(m−1)m−1

, h(em1
, em2

, ..., emm−1
, I)...))

= H(h(e11 , e12 , ..., e1m−1 , I), ..., h(em1 , em2 , ..., emm−1 , I)).
Since I is an ideal, then the operator k is well defined and since (A, h) is an

m-ary group so (A/I,H) is an m-ary group. Furthermore, since (A, k) is an n-ary
semigroup, it follows that (A/I,K) is an n-ary semigroup. The n-ary operation k
is i-distributive with respect to the m-ary operation h. Thus, the n-ary operation
k is i-distributive with respect to the m-ary operation H. □

An (m,n)- near ring (A, h, k) is named simple if A does not have non-trivial
ideals. A proper ideal I of (A, h, k) is named maximal if I ⊆ J ⊆ A and J
is an ideal of A implies that either I = J or J = A. A proper ideal I of an
(m,n)-near ring (A, h, k) is named prime, if for every ideals A1, A2, ..., An of A,
k(A1, A2, ..., An) ⊆ I implies A1 ⊆ I or A2 ⊆ I or ... or An ⊆ I. A proper ideal I of
an (m,n)-near ring (A, h, k) is named weakly prime, if for any ideals A1, A2, ..., An

of A, {0} ≠ k(A1, A2, ..., An) ⊆ I implies A1 ⊆ I or A2 ⊆ I or ... or An ⊆ I.
Clearly, every prime ideal is weakly prime and (0) is always weekly prime ideal of
(A, h, k). An ideal I of an (m,n)-near ring (A, h, k) is named semi-symmetric if
k(z, z, ..., z︸ ︷︷ ︸

n

) ∈ I, implies k(⟨z⟩, ⟨z⟩, ..., ⟨z⟩︸ ︷︷ ︸
n

) ⊆ I.

Theorem 6. For an ideal P of an (m,n)-near ring (A, h, k), the following state-
ments are equivalent:

(1) P is prime.



IDEAL THEORY OF (m,n)-NEAR RINGS 1107

(2) If di ̸∈ P and 1 ⩽ i ⩽ n, then k(⟨d1⟩, ⟨d2⟩, ..., ⟨dn⟩) ⊈ P .

Proof. To prove (1) ⇒ (2) assume P is a prime ideal and di ̸∈ P for 1 ⩽ i ⩽ n. Then
⟨di⟩ ⊈ P . If k(⟨d1⟩, ⟨d2⟩, ..., ⟨dn⟩) ⊆ P , P is a prime ideal, then ⟨d1⟩ ⊆ P or ⟨d2⟩ ⊆ P
or ... or ⟨dn⟩ ⊆ P . This is a contradiction. Hence, k(⟨d1⟩, ⟨d2⟩, ..., ⟨dn⟩) ⊈ P . So
(1) ⇒ (2).

To prove (2) ⇒ (1), suppose that I1, I2, ..., In are ideals of R such that k(I1, I2, ...,
In) ⊆ P . Assume that I1, I2, ..., In ⊈ P , Then by (2), we have k(I1, I2, ..., In) ⊈ P ,
that is a contradiction. Hence , I1 ⊆ P or I2 ⊆ P or ... or In ⊆ P . So, P is a prime
ideal. The proof of (2) ⇒ (1) is completed. □

An (m,n)-near ring (A, h, k) is named a zero near ring if k(A,A, ..., A︸ ︷︷ ︸
n

) = 0.

Assume that A is an (m,n)-near ring. The intersection of all prime ideals of A is
named the prime radical of A and is denoted by (A). For any proper ideal I of A,
the intersection of all prime ideals of A containing I is named the prime radical of
I and is denoted by P (I).

Lemma 2. Every integral (m,n)-near ring is prime.

Proof. Assume that (A, h, k) is an integral (m,n)-near ring. It is enough to show
(0) is a prime ideal. Let I1, I2, ..., In be ideals of A such that k(I1, ..., In) ⊂ (0). If
either I1 = (0) or I2 = (0) or ... or In = (0), then there is nothing to prove. If
possible, suppose that I1 ̸= (0) or I2 ̸= (0) or ... or In ̸= (0), then we can choose
0 ̸= a1 ∈ I1, 0 ̸= a2 ∈ I2, ..., 0 ̸= an ∈ In such that k(a1, a2, ..., an) = 0 , which is
in contrast to the fact that A is integral. Therefore, either I1 = (0) or I2 = (0) or
... or In = (0). Thus, we proved that (0) is a prime ideal of A. Hence, A is a prime
(m,n)-near ring. □

Theorem 7. If the (m,n)-near ring (A, h, k) is simple, then either A is prime or
A is a zero (m,n)-near ring.

Proof. Assume that A is not a zero (m,n)-near ring. Then k(A(n)) ̸= (0). We
prove that (0) is a prime ideal of A. Assume that I1, I2, ..., In are ideals of A such
that k(I1, I2, ..., In) ⊆ (0). Since I1, I2, ..., In are ideal of A and A is simple, so
I1, I2, ..., In ∈ {(0), A}. Then k(A(n)) ⊆ k(I1, I2, ..., In) ⊆ (0). It is a contradiction.
Hence, I1 = (0) or I2 = (0) or ... or In = (0). Thus, (0) is a prime ideal of A. This
yields that A is a prime (m,n)-near ring. □

Theorem 8. If I is a semi-symmetric ideal of an (m,n)-near ring (A, h, k), then
P (I) is completely semiprime.

Proof. Suppose that k(a(n)) ∈ P (I). So, k(k(a(n))(n)) ∈ I. Because I is semi-
symmetric, ⟨k(k(a(n))(n))⟩ ⊆ I ⊆ P (I), thus a ∈ P (I). This implies that P (I) is
completely semiprime. □
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If I is a semi-symmetric ideal of a (m,n)-near ring (A, h, k), then

P (I) = {x ∈ A | k(x(n)) ∈ I}.
An (m,n)-near ring A is named semi-symmetric if ⟨0⟩ is a semi-symmetric ideal

of A.
For any subset S of an (m,n)-near ring (A, h, k),

A(S) = {x ∈ S | k(A(i−1), x, A(n−i)) = {0}}.
Clearly, A(S) is an i-ideal of A. An ideal I of an (m,n)-near ring (A, h, k) is named
subtractive or k-ideal, if h(d1, d2, ..., dm) ∈ I for any elements d1, d2, ..., dm−1 ∈ I
and dm ∈ A, then dm ∈ I.

Theorem 9. Let I be a k-ideal of an (m,n)-near ring (S, h, k) with 1 ̸= 0. The
following statements are equivalent:

(1) I is a weakly prime ideal.
(2) If B1, B2, ..., Bn are ideals of S such that {0} ≠ k(B1, B2, ..., Bn) ⊆ I, then

Bi ⊆ I for some 1 ≤ i ≤ n.

Proof. It is straightforward. □

Theorem 10. Every ideal of (m,n)-near ring (S, h, k) is weakly prime if and only if
for any ideals B1, B2, ..., Bn of S, k(B1, B2, ..., Bn) = B1 or k(B1, B2, ..., Bn) = B2

or .... or k(B1, B2, ..., Bn) = Bn or k(B1, B2, ..., Bn) = 0.

Proof. Assume that every ideal of S is weakly prime. Let B1, B2, ..., Bn be ideals
of S and k(B1, B2, ..., Bn) ̸= S, so k(B1, B2, ..., Bn) is weakly prime. If {0} ̸=
k(B1, B2, ..., Bn) ⊆ k(B1, B2, ..., Bn), then we have B1 ⊆ k(B1, B2, ..., Bn) or B2 ⊆
k(B1, B2, ..., Bn) or ... or Bn ⊆ k(B1, B2, ..., Bn) (since k(B1, B2, ..., Bn) is weakly
prime ideal of S), that is, B1 = k(B1, B2, ..., Bn) or B2 = k(B1, B2, ..., Bn) or ...
or Bn = k(B1, B2, ..., Bn). If k(B1, B2, ..., Bn) = S, then B1 = B2 = ... = Bn = S
whence Sn = S.

Conversely, let I be any proper ideal of S and let {0} ≠ k(B1, B2, ..., Bn) ⊆ I
for ideals B1, B2, ..., Bn of S. Then, either B1 = k(B1, B2, ..., Bn) ⊆ I or B2 =
k(B1, B2, ..., Bn) ⊆ I or ... or Bn = k(B1, B2, ..., Bn) ⊆ I. □

Lemma 3. If P be a subtractive ideal of i-(m,n)-near ring (S, h, k) such that
2 ≤ i ≤ n, then P is a weakly prime ideal but it is not a prime ideal of (m,n)-near
ring S. Moreover, k(d1, d2, ..., dn) = 0 for some d1, d2, ..., dn ̸∈ P , then we have
k(di−1, P

(n−1)) = {0}.

Proof. If i = 2, assume that k(d1, p
n−1
1 ) ̸= 0, for some c1, c2, ..., cn−1 ∈ P . Then

0 ̸= k(d1, h(k(1, d2, d3, ..., dn), (k(1, c1, c2, ..., cn−1))
(m−1)), 1(n−2)) ∈ P.

Since P is a weakly prime ideal of S, it follows that d1 ∈ P or

h(k(1, d2, d3, ..., dn), (k(1, c1, c2, ..., cn−1))
(m−1)) ∈ P ,
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that is, d1 ∈ P or d2 ∈ P or ... or dn ∈ P . It is a contradiction. Therefore
k(d1, P

(n−1)) = {0}. Similarly, we can show that k(P, d2, P
(n−2)) = {0}.

If 3 ≤ i ≤ n, suppose that k(di−1, c
n−1
1 ) ̸= 0, for some c1, c2, ..., cn−1 ∈ P . Then,

we have

0 ̸= k(1i−2, di−1, h((k(c
i−2
1 , 1, ci, ..., cn−1))

i−2, k(di−2
1 , 1, dni ),

(k(ci−2
1 , 1, cn−1

i ))(m−i+1)), 1n−i) ∈ P.

Since P is a weakly prime ideal of S, it follows that di−1 ∈ P or

h((k(ci−2
1 , 1, cn−1

i ))(i−2), k(di−2
1 , 1, dni ), (k(c

i−2
1 , 1, cn−1

i ))(m−i+1)) ∈ P,

that is, d1 ∈ P or d2 ∈ P or ... or dn ∈ P . It is a contradiction. Therefore, we
derive that k(di−1, P

(n−1)) = {0}. □

Theorem 11. Suppose that P is a k-ideal in an i-(m,n)-near ring (S, h, k). If P
is weakly prime ideal but not prime, then Pn = {0}.

Proof. Assume that k(c1, c2, ..., cn) ̸= 0 for some c1, c2, ..., cn ∈ P and k(d1, d2, ..., dn) =
0 for some d1, d2, ..., dn ̸∈ P , where P is not a prime ideal of S. Hence

0 ̸= k(di−2
1 , h(dn, p

m−1
i ), dni+1)

= h(k(d1, d2, ..., di−1, di, di+1, ..., dn), (k(d
i−1
1 , pi, d

n
i+1))

(m−1)) ∈ P.
Hence either d1 ∈ P or ... or di−1 ∈ P or di+1 ∈ P or ... or dn ∈ P or
h(di, c

m−1
i ) ∈ P , thus either d1 ∈ P or d2 ∈ P or ... or dn ∈ P , that it is a

contradiction. Hence Pn = {0}. □

Corollary 1. Assume that P is a weakly prime ideal of (m,n)-near ring (S, h, k).
If P is not a prime ideal of S, then P ⊆ Nil S, where Nil S denotes the set of all
nilpotent element of S.

A k-ideal in a commutative (m,n)-near ring (S, h, k) satisfying that Pn = {0}.

Lemma 4. Assume that l is a homomorphism of (m,n)-near ring (S1, h, k) onto
(m,n)-near ring (S2, h

′, k′). Then each of the following statements is true:

(1) If Y is an ideal (k-ideal) in S1, then l(Y ) is an ideal (k-ideal) in S2.
(2) If W is an ideal (k-ideal) in S2, then l−1(W ) is an ideal (k-ideal) in S1.

Proof. It is straightforward. □

Theorem 12. If l : S1 −→ S2 is a homomorphism of (m,n)-near rings and P is
a prime ideal in S2, then l−1(P ) is a prime ideal in S1.

Proof. By Lemma 4, l−1(P ) is an ideal of (S1, h, k). If k(d1, d2, ..., dn) ∈ l−1(P ),
then l(k(d1, d2, ..., dn)) ∈ P implies k′(l(d1), l(d2), ..., l(dn)) ∈ P . Hence P is a
prime ideal of S2 therefore it follows that either l(d1) ∈ P or l(d2) ∈ P or ... or
l(dn) ∈ P and thus either d1 ∈ l−1(P ) or d2 ∈ l−1(P ) or ... or dn ∈ l−1(P ). Thus
l−1(P ) is a prime ideal of S1. □
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Theorem 13. If (S, h, k) be an (m,n)-near ring such that S = ⟨d1, d2, ..., dk⟩ for
k = max{n,m}, is a finitely generated ideal of S, Then each proper k-ideal A of S
is included in a maximal k-ideal of S.

Proof. Assume that β is the set of all k-ideals B of S satisfying A ⊆ B ⊂ S, that
is partially ordered by inclusion. Take a chain {Bi | i ∈ I} in β. Then B =⋃
Bi is a k-ideal of S, because if d1, d2, ..., dn−1, h(d1, d2, ..., dn) ∈ B then by the

definition of B, there is i1, i2, ..., in−1, j ∈ I such that d1 ∈ Bi1 , d2 ∈ Bi2 , ..., dn−1 ∈
Bin−1

, h(d1, d2, ..., dn) ∈ Bj , as Bi partially ordered by inclusion, then Bj ⊆ Bi1 or
Bi1 ⊆ Bj . Without reduce totality of problem assuming Bi1 , Bi2 , ..., Bin−1

⊆ Bj .
So d1, d2, ..., dn−1, h(d1, d2, ..., dn) ∈ Bj because Bj is a k-ideal. Thus dn ∈ Bj and
Bj ⊆ B then dn ∈ B so B is a k-ideal and S = ⟨d1, d2, ..., dk⟩ implies B ̸= S and
hence B ∈ β. So by Zorn’s lemma, β has a maximal element. □

Corollary 2. Let (S, h, k) be an (m,n)-near ring with identity 1. Then each proper
j-ideal of S is included in a maximal j-ideal of S.

Proof. The proof is immediate by taking S = ⟨1⟩. □

Lemma 5. If C,D be two j-ideals of an (m,n)-near ring (S, h, k), then C ∩D is
a j-ideal.

Proof. Let C,D be two j-ideals of S, then by definition j-ideal, C and D are
subgroups of m-ary group (S, h). so C ∩D is a subgroup of m-ary group (S, h). It

is enough to prove for every d1, d2, ..., dn ∈ S, k(dk−1
1 , C∩D, dnk+1) ⊆ C∩D. because

C is a j-ideal, k(dk−1
1 , C ∩D, dnk+1) ⊆ k(dk−1

1 , C, dnk+1) ⊆ C and because D is a j-

ideal, k(dk−1
1 , C∩D, dnk+1) ⊆ k(dk−1

1 , D, dnk+1) ⊆ D. therefore k(di−1
1 , C∩D, dni+1) ⊆

C ∩D. □

Definition 7. An equivalence relation ρ on an (m,n)-near ring (S, f, g) is called
a congruence on S if for any a1, a2, ..., am, b1, b2, ..., bn ∈ S such that aρb, then for
all 1 ≤ i ≤ n and 1 ≤ j ≤ m:

(1) f(aj−1
1 , a, amj+1)ρf(a

j−1
1 , b, amj+1);

(2) g(bi−1
1 , a, bni+1)ρg(b

i−1
1 , b, bni+1).

Let ρ be a congruence on an (m,n)-near ring (S, f, g). Then, the congruence class
of x, S is denoted by xρ and is defined by xρ = {y ∈ S | (x, y) ∈ ρ}. The set of all
congruence classes of S is denoted by S/ρ.

Theorem 14. Let (S, h, k) be an (m,n)-near ring, then (S/ρ, h, k) is an (m,n)-
near ring under the operations

h(d1ρ, d2ρ, ..., dmρ) = h(d1, d2, ..., dm)ρ,
k(d1ρ, d2ρ, ..., dnρ) = k(d1, d2, ..., dn)ρ,

where d1, d2, ..., dm ∈ S is called quotient near ring.
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Proof. Let d1ρ, d2ρ, ..., d2m−1ρ, e1ρ, e2ρ, ..., emρ be elements of S/ρ. Then for each
1 ≤ i ≤ j ≤ m,

h(d1ρ, d2ρ, ..., di−1ρ, h(diρ, di+1ρ, ..., dm+i−1ρ), dm+iρ, dm+i+1ρ, d2m−1ρ)
= h(d1ρ, d2ρ, ..., dj−1ρ, h(djρ, dj+1ρ, ..., dm+j−1ρ), dm+jρ, dm+j+1ρ, ..., d2m−1ρ).

So, the addition is associative on S/ρ. Similarly, the multiplication is associative,
too. Finally, in order to show that the right i-distributivity, we have

k(d1ρ, d2ρ, ..., di−1ρ, h(e1ρ, e2ρ, ..., emρ), di+1ρ, di+2ρ, ..., dnρ)
= h(k(d1ρ, d2ρ, ..., di−1ρ, e1ρ, di+1ρ, ..., dnρ),

k(d1ρ, d2ρ, ..., di−1ρ, e2ρ, di+1ρ, ..., dnρ),
..., k(d1ρ, d2ρ, ..., di−1ρ, emρ, di+1ρ, ..., dnρ)).

Therefore, we derive that S/ρ is an (m,n)-near ring. □

Lemma 6. If (A, h, k) be an (m,n)-near ring with 1 ̸= 0. Then A has at least one
j-maximal ideal.

Proof. Since {0} is a proper j-ideal of A, the set ∆ of all proper j-ideals of A is
not empty. Of course, the relation of inclusion, ⊆, is a partial order on ∆, and by
using Zorn’s lemma to this partially ordered set, a maximal j-ideal of A is just a
maximal member of the partially ordered set (∆,⊆). □

Now, we define the concept of a homomorphism between (m,n)-near rings and
assert some theorems in this respect.

Definition 8. A mapping η from the (m,n)-near ring (A, h, k) into the (m,n)-near
ring (A′, h′, k′) will be named a homomorphism if for each d1, d2, ..., dm ∈ R

(1) (k(d1, d2, ..., dn))η = k′((d1)η, (d2)η, ..., (dn)η),
(2) (h(d1, d2, ..., dm))η = h′((d1)η, (d2)η, ..., (dm)η).

A homomorphism η from the (m,n)-near ring (A, h, k) onto the (m,n)-near ring
(A′, h′, k′) is named maximal if for each d ∈ A′ there exists cd ∈ η−1({d}) such that
h(y, ker(η)(m−1)) ⊂ h(cd, ker(η)

(m−1)) for each y ∈ η−1({d}) and ker(η) = {y ∈
A | yη = 0}.

Lemma 7. Suppose that η is a homomorphism from the (m,n)-near ring (A, h, k)
onto the (m,n)-near ring (A′, h′, k′). If η be maximal, then ker(η) is a Q-ideal,
where Q = {cd}d∈A′ .

Proof. It is clear that
⋃

d∈A h(cd, ker(η)
(m−1)) = A. Let cd and cb be different ele-

ments in Q and d ̸= b. Let h(cd, ker(η)
(m−1))∩h(cb, ker(η)

(m−1)) ̸= ∅. Thus, there
exist k1, k2, ..., km−1, k

′
1, k

′
2, ..., k

′
m−1 ∈ ker(η) such that h(cd, k

m−1
1 ) = h(cb, k

′m−1
1 ).

Thus,

d = h′(cdη, k1η, ..., km−1η) = (h(cd, k
m−1
1 ))η = (h(cb, k

′m−1
1 ))η

= h′(cbη, k
′
1η, ..., k

′
m−1η) = b.

This is a contradiction. Hence, we derive that ker(η) is a Q-ideal. □
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Lemma 8. Let A,A′, η and Q be stated in Lemma 7, and cd1
, cd2

, ..., cdm
, cdm+1

be
elements in Q.

(1) If h(h(cd1
, cd2

, ..., cdm
), ker(η)(m−1)) ⊂ h(cdm+1

, ker(η)(m−1)), then
h′(d1, d2, ..., dm) = dm+1.

(2) If h(k(cd1
, cd2

, ..., cdn
), ker(η)(m−1)) ⊂ h(cdn+1

, ker(η)(m−1)), then
k′(d1, d2, ..., dn) = dn+1.

Proof. (1) Since

h(cd1
, cd2

, ..., cdm
) ∈ h(h(cd1

, cd2
, ..., cdm

), ker(η)(m−1))
⊂ h(cdm+1

, ker(η)(m−1)),

it conforms that there are k1, k2, ..., km−1 ∈ ker(η) such that h(cd1 , cd2 , ..., cdm) =
h(cdm+1 , k

m−1
1 ). Thus, we get

h′(d1, d2, ..., dm) = h′(cd1η, cd2η, ..., cdmη) = (h(cd1 , cd2 , ..., cdm))η
= (h(cdm+1

, km−1
1 ))η = h′(cdm+1

η, k1η, ..., km−1η) = dm+1.

(2) We have
k(cd1

, cd2
, ..., cdn

) ∈ h(k(cd1
, cd2

, ..., cdn
), ker(η)(m−1)) ⊆ h(cdn+1

, ker(η)(m−1)),

so there exist k1, k2, ..., km−1 ∈ ker(η) such that k(cd1 , cd2 , ..., cdn) = h(cdn+1 , k
m−1
1 ).

Thus, we obtain

k′(d1, d2, ..., dn) = k′(cd1
η, cd2

η, ..., cdn
η) = (k(cd1

, cd2
, ..., cdn

))η
= (h(cdn+1

, km−1
1 ))η = h′(cdn+1

η, k1η, ..., km−1η) = dn+1.

This completes the proof. □

Author Contribution Statements Conceptualization, Mohammadi and Davvaz;
methodology, Mohammadi and Davvaz; formal analysis, Davvaz; investigation,
Davvaz; resources, Mohammadi and Davvaz; writing-original draft preparation,
Mohammadi; writing-review and editing, Mohammadi and Davvaz; supervision,
Davvaz; All authors have read and agreed to the published version of the manu-
script.

Declaration of Competing Interests The authors declare no conflict of interest.

References

[1] Alam, S., Rao, S., Davvaz, B., (m,n)-Semirings and a generalized fault- tolerance algebra of

systems, J. Appl. Math., (2013), Art. ID 482391, 10 pp. https://doi.org/10.1155/2013/482391
[2] Balakrishnan, R., Chelvam, T., α1 , α2-Near-rings, International Journal of Algebra, 4(2)

(2010), 71–79.

[3] Chaudhari, J. N., Nemade, H., Davvaz, B., On partitioning ideals of (m,n)-
semirings, Asian European Journal of Mathematics, 15(8) (2022), 2250144 (13 pages).

https://doi.org/10.1142/S1793557122501443

[4] Clay, J., Near-rings: Geneses and Applications, Oxford, New York, 1992.
https://doi.org/10.1093/oso/9780198533986.002.0001



IDEAL THEORY OF (m,n)-NEAR RINGS 1113

[5] Crombez, G., On (m,n)-rings, Abh. Math. Semin. Univ. Hambg., 37 (1972), 180–199.

https://doi.org/10.1007/BF02999695

[6] Crombez, G., Timm, J., On (n, m)-quotient rings, Abh. Math. Semin. Univ. Hambg., 37
(1972), 200–203. https://doi.org/10.1007/BF02999696

[7] Davvaz, B., Leoreanu-Fotea, V., Vougiouklis, T., A survey on the theory of n-hypergroups,

Mathematics, 11 (2023), 551. https://doi.org/10.3390/math11030551
[8] Davvaz, B., Mohammadi, F., Different types of ideals and homomorphisms of (m,n)-

semirings, TWMS J. Pure Appl. Math., 12(2) (2021), 209-222.

[9] Dickson, L., Definitions of a group and a field by independent postulates, Trans. Amer. Math.
Soc., 6 (1905), 198-204.

[10] Dörnte, W., Untersuchungen uber einen verallgemeinerten Gruppenbegriff, Math. Z., 29

(1929), 1-19.
[11] Dudek, W. A., Glazek, K., Around the Hosszu-Gluskin theorem for n-ary groups, Discret.

Math., 308 (2008), 4861-4876. https://doi.org/10.1016/j.disc.2007.09.005
[12] Post, E. L., Polyadic groups, Trans. Amer. Math. Soc., 48 (1940), 208-350.

[13] Usan, J., Zizovic, M., Some remarks on (m,n)-rings, Filomat, 13 (1999), 53-57.

[14] Vasantha Kandasamy, W. B., Smarandache near-rings, American Research Press Rehoboth,
NM, 2002.


	1. Introduction
	2. (m, n)-Near Rings
	3. Ideals and Homomorphisms of (m, n) -Near Rings
	References

