http://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 73, Number 4, Pages 1098–1113 (2024) DOI:10.31801/cfsuasmas.1494749 ISSN 1303-5991 E-ISSN 2618-6470

Research Article; Received: June 3, 2024; Accepted: September 22, 2024

IDEAL THEORY OF (m, n)-NEAR RINGS

Fahimeh MOHAMMADI¹ and Bijan DAVVAZ²

^{1,2}Department of Mathematical Sciences, Yazd University, Yazd, IRAN

ABSTRACT. The aim of this research work is to define and characterize a new class of *n*-ary algebras that we call (m, n)-near rings. We investigate the notions of *i*-*R*-groups, *i*-(m, n)-near field, prime ideals, primary ideals and subtractive ideals of (m, n)-near rings. We describe the concept of homomorphisms between (m, n)-near rings that preserve the (m, n)-near ring structure, and give some results in this respect.

1. INTRODUCTION

Polyadic groups were introduced in 1928 by W. Dörnte [10]. An important role in n-group theory is the paper [12], for more details see [7,11]. Then, n-ary operations are used then in the study of (m, n)-rings [5,6,13] and (m, n)-semirings [1,3,8].

Let A be a non-empty set. A map $h: A^m \longrightarrow A$ is called an *m*-ary operation. A non-empty set A with an *m*-ary operation h is called an *m*-ary groupoid that is denoted by (A, h). The sequence $z_i, z_{i+1}, ..., z_m$ is denoted by z_i^m where $1 \le i \le m$. For all $1 \le i \le j \le m$, the phrase $h(z_1, z_2, ..., z_i, k_{i+1}, ..., k_j, l_{j+1}, ..., l_m)$ is represented as $h(z_1^i, k_{i+1}^j, l_{j+1}^m)$. In this case when $k_{i+1} = k_{i+2} = ... = k_j = k$, it is expressed as $h(z_1^i, k^{(j-i)}, l_{j+1}^m)$. An *m*-ary groupoid (A, h) is called an *m*-ary semigroup if h is associative; that is,

$$h(z_1^{i-1}, h(z_i^{m+i-1}), z_{m+i}^{2m-1}) = h(z_1^{j-1}, h(z_j^{m+j-1}), z_{m+j}^{2m-1}),$$

for all $z_1, z_2, ..., z_{2m-1} \in A$ where $1 \leq i \leq j \leq m$. An *m*-ary semigroupoid (A, h) is named an *m*-ary group if for all $c_1^{i-1}, c_{i+1}^n, b \in A$ exist $z_1^n \in A$, such that $h(c_1^{i-1}, z_i, c_{i+1}^n) = b$ for every $1 \leq i \leq n$. We say f is commutative if $h(z_1, z_2, ..., z_m) = h(z_{\eta(1)}, z_{\eta(2)}, ..., z_{\eta(m)})$, for every permutation η of $\{1, 2, ..., m\}$

©2024 Ankara University

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. 16Y30, 16Y99.

Keywords. (m, n)-near ring, (m, n)-near field, ideal, homomorphism.

¹ ² f1991mohammadi@gmail.com; ^(b) 0009-0003-1562-9231;

² $rac{}{}$ davvaz@yazd.ac.ir-Corresponding author; $begin{tmatrix} 0 & 0000-0003-1941-5372. \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 & 0 \\
begin{tmatrix} 0 & 0 & 0 &$

and $z_1, z_2, ..., z_m \in A$. An *m*-ary semigroup (A, h) is called a semi-abelian or (1, m)commutative if $h(z, c^{(m-2)}, k) = h(k, c^{(m-2)}, z)$, for all $c, z, k \in A$.

2. (m, n)-Near Rings

We refer to [2, 4, 14], for details about near rings. In this section, we define the (m, n)-near ring and give examples for it and present definitions of α_1 -(m, n)-near ring, α_2 -(m, n)-near ring, R_0 , R_c , constant near ring, *i*-zero divisor, $Z_{i,j}(R)$. We present some results in this respect.

Definition 1. Assume that A is a non-empty set and h, k be r-ary and s-ary operations on A, respectively. In this case (A, h, k) is named an i-(r, s)-near ring, if the following conditions hold:

- (1) (A, h) is an r-ary group (not necessarily abelian),
- (2) (A,k) is an s-ary semigroup,
- (3) The s-ary operation k is i-distributive with respect to the r-ary operation h,

where the definition of *i*-distributive condition is as follows: for every $c_1, c_2, ..., c_n$, $d_1, d_2, ..., d_m \in R$, if i = n, then

$$k(c_1^{n-1}, h(d_1, d_2, ..., d_m)) = h(k(c_1^{n-1}, d_1), k(c_1^{n-1}, d_2), ..., k(c_1^{n-1}, d_m)).$$

If i = 1 then

$$k(h(d_1, d_2, \dots, d_m), c_2^n) = h(k(d_1, c_2^n), k(d_2, c_2^n), \dots, k(d_m, c_2^n)).$$

If 1 < i < n then

$$\begin{aligned} & k(c_1^{i-1}, h(d_1, d_2, \dots, d_m), c_{i+1}^n) \\ &= h(k(c_1^{i-1}, d_1, c_{i+1}^n), k(c_1^{i-1}, d_2, c_{i+1}^n), \dots, k(c_1^{i-1}, d_m, c_{i+1}^n)). \end{aligned}$$

Throughout this paper, we explain i(m,n)-near ring by (m,n)-near ring. It is clear that every (m,n)-ring [5] is an (m,n)-near ring.

Example 1. Assume that (H, l) is an m-ary group with the identity element 0 and $N(H) = \{h : H \longrightarrow H \mid h \text{ is a function }\}$. Then $(N(H), l, \circ)$ is an (m, 2)-near ring, where \circ is the composition of functions.

- (1) We know (N(H), l) is an m-ary group (not necessarily abelian).
- (2) It is clear that $(N(H), \circ)$ is a 2-ary semigroup.
- (3) The 2-ary operation \circ is 1-distributive with respect to the m-ary operation f.

We notice that in this (m, 2)-near ring the 2-distributive law fails to retain. To consider this, let $d, d_j, c_i \in H, b_i \neq 0, 1 \leq j \leq m, 1 \leq i \leq 2$ and $h_{d_j} : H \longrightarrow H$, $h_{c_i} : H \longrightarrow H$ for all $g \in H$, by $h_{d_j}(g) = d_j$, $h_{c_i}(g) = c_i$. Now, for i = 2, we have

$$\begin{aligned} [h_{c_1} \circ (l(h_{d_1}, h_{d_2}, ..., h_{d_m}))](g) &= h_{c_1}(l((h_{d_1}(g), h_{d_2}(g), ..., h_{d_m}(g))) \\ &= h_{c_1}(l(d_1, d_2, ..., d_m)) = l(d_1, d_2, ..., d_m), \end{aligned}$$

and

$$\begin{aligned} [l(h_{c_1} \circ h_{d_1}, h_{c_1} \circ h_{d_2}, ..., h_{c_1} \circ h_{d_m})](g) &= l(h_{c_1}(h_{d_1}(g)), h_{c_1}(h_{d_2}(g)), ..., h_{c_1}(h_{d_1}(g))) \\ &= l(h_{c_1}(d_1), h_{c_1}(d_2), ..., h_{c_1}(d_n)) \\ &= l(c_1^{(m)}). \end{aligned}$$

This shows that

 $[h_{c_1} \circ (l(h_{d_1}, h_{d_2}, ..., h_{d_m}))](g) \neq [l(h_{c_1} \circ h_{d_1}, h_{c_1} \circ h_{d_2}, ..., h_{c_1} \circ h_{d_m})](g).$ For i = 1, we have

$$\begin{aligned} (l(h_{d_1}, h_{d_2}, \dots, h_{d_m})) \circ h_{c_1}(g) &= (l(h_{d_1}, h_{d_2}, \dots, h_{d_m}))(c_1) \\ &= l(h_{d_1}(c_1), h_{d_2}(c_1), \dots, h_{d_m}(c_1)) \\ &= l(d_1, d_2, \dots, d_m), \end{aligned}$$

and

$$\begin{aligned} &[l(h_{d_1} \circ h_{d_1}, h_{d_2} \circ h_{c_1}, ..., h_{d_m} \circ h_{c_1})](g) \\ &= l((h_{d_1} \circ h_{c_1})(g), (h_{d_2} \circ h_{c_1})(g), ..., (h_{d_m} \circ h_{c_1})(g)) \\ &= l((h_{d_1})(c_1), (h_{d_2})(c_1), ..., (h_{d_m})(c_1)) \\ &= l(d_1, d_2, ..., d_m). \end{aligned}$$

Hence,

 $[(l(h_{d_1}, h_{d_2}, ..., h_{d_m})) \circ h_{c_2}](g) = [l((h_{d_1} \circ h_{c_1}), (h_{d_2} \circ h_{c_1}), ..., (h_{d_m} \circ h_{c_1}))](g).$ Therefore N(H) fails to satisfy the *i*-distributive for *i* = 2.

Example 2. Consider the additive group \mathbb{Z}_{mn} . Then (\mathbb{Z}_{mn}, h) is a group, where $h(c_1, c_2, ..., c_m) = c_1 + c_2 + ... + c_m$. We define k on \mathbb{Z}_{mn} by $k(c_1, c_2, ..., c_n) = c_1$, for all $c_1, c_2, ..., c_n \in \mathbb{Z}_{mn}$. It is easy to see (\mathbb{Z}_{mn}, h, k) is an (m, n)-near ring. For $1 < i \leq n$, we have

$$k(c_1, c_2, ..., c_{i-1}, h(d_1, d_2, ..., d_m), c_{i+1}, ..., c_n) = c_1$$

$$h(k(c_1, c_2, ..., c_{i-1}, d_1, c_{i+1}, ..., c_n), ..., k(c_1, c_2, ..., c_{i-1}, d_m, c_{i+1}, ..., c_n))$$

$$= h(c_1^{(m)}) = mc_1.$$

If mn = m - 1, then $\overline{m} = \overline{1} \in \mathbb{Z}_{mn}$. Hence, for all $1 < i \leq n$, $(\mathbb{Z}_{mn-1}, h, k)$ is *i*-distributive. For i = 1, we have

$$\begin{aligned} k(h(d_1, d_2, ..., d_m), c_2, ..., c_n) &= h(d_1, d_2, ..., d_m) = d_1 + d_2 + ... + d_m \\ h(k(d_1, c_2, ..., c_n), k(d_2, d_2, ..., d_n), ..., k(d_m, c_1, ..., c_n)) \\ &= h(d_1, d_2, ..., d_m) = d_1 + d_2 + ... + d_m. \end{aligned}$$

Consequently, for i = 1, $(\mathbb{Z}_{mn-1}, h, k)$ is 1-distributive.

Assume that A is an (m, n)-near ring. The element $e \in A$ is named an identity element if $k(e^{(i-1)}, s, e^{(n-i)}) = s$ for all $s \in A$ and $1 \leq i \leq n$.

Example 3. We know $(\mathbb{R}, +, \cdot)$ is an (m, n)-near ring with two binary operations *m*-addition and *n*-multiplication. 1 is an identity element in $(\mathbb{R}, +, \cdot)$.

Assume that (A, h, k) is an (m, n)-near ring. $m \in A$ is named *i*-cancellable, if for all $1 \leq i \leq n$, $c_i, d_i \in A$ and $k(c_1^{i-1}, m, c_i^n) = k(d_1^{i-1}, m, d_i^n)$, then $c_i = d_i$ for all $1 \leq i \leq n$. $m \neq 0$ is named an *i*-zero divisor, if there exist nonzero elements $c_1, c_2, ..., c_n \in R$ such that $k(c_1^{i-1}, m, c_{i+1}^n) = 0$. An (m, n)-near ring (A, h, k) is called integral near ring if it has no zero divisors. An *i*-(m, n)-near field is a nonempty set P together with two binary operations h and k such that (P, h) is a group (not necessarily abelian), (P, k) is a group and n-ary operation k is *i*-distributive with respect to the m-ary operation h.

Example 4. Set of rational numbers with two binary operations h and k so that $k(d_1, d_2, ..., d_n) = d_1$ and $h(d_1, d_2, ..., d_m) = d_1 + d_2 + ... + d_m$ for $d_i \in \mathbb{Q}$, (\mathbb{Q}, h, k) is an (m, n)-near field.

Definition 2. Let (A, h, k) be an (m, n)-near ring,

- (1) If for every $e \in A$ exists $z \in A$ such that $e = k(z^{(n-1)}, e, z^{(n-1)})$, then A is named an α_1 -(m, n)-near ring.
- (2) If for every $e \in A \{0\}$ exists $z \in A \{0\}$ such that $z = k(z^{(n-1)}, e, z^{(n-1)})$, then A is named an α_2 -(m, n)-near ring.

Example 5. $(N(H), l, \circ)$ defined in Example 1 is an α_2 -(m, n)-near ring.

Example 6. (\mathbb{Z}_{mn}, h, k) defined in Example 2 is an α_2 -(m, n)-near ring.

Definition 3. Let (A, h, k) be an (m, n)-near ring,

- (1) A subgroup (O,h) of an m-ary group (A,h) with the property $k(O^{(n)}) \subset M$ is named an (m,n)-subnear ring of (A,h,k), It is shown by $O \leq N$.
- (2) A subnear ring O of A is named i-invariant, if $h(A^{(i-1)}, O, A^{(m-i)}) \subseteq O$.

If O is *i*-invariant for all $1 \leq i \leq m$, then O is named invariant.

Example 7. The triple $(2\mathbb{Z}, h, k)$ is an (m, n)-subnear ring of the (m, n)-near ring (\mathbb{Z}, h, k) , that $h(d_1, d_2, ..., d_m) = d_1 + d_2 + ... + d_m$ and $k(e_1, e_2 + ..., e_n) = e_1 \cdot e_2 \cdot ... \cdot e_n$.

Definition 4. Let (A, h, k) be an (m, n)-near ring and 0 is the identity element of (A, h). Then, $A_0 = \{r \in A \mid k(0^{(s-1)}, r, 0^{(n-s)}) = 0, 1 \le s \le n\}$ is called the zero symmetric part of A. In addition, $A_c = \{r \in R \mid k(0^{(s-1)}, r, 0^{(n-s)}) =$ $r, 1 \le s \le n\}$ is named a resistant part of A. An (m, n)-near ring A is named a zero symmetric near ring if $A = A_0$. An (m, n)-near ring A is named a constant (m, n)-near ring if $A = A_c$.

Lemma 1. A_0 and A_c are (m, n)-subnear rings of the (m, n)-near ring (A, h, k).

Proof. We show that A_0 is a subgroup of A. If $x_1, x_2, ..., x_m \in A_0$ then

$$k(0^{(i-1)}, x_j, 0^{(n-i)}) = 0$$
 for $1 \le j \le m$ and $1 \le i \le n$.

Now, we have

$$k(0^{(i-1)}, h(x_1, x_2, ..., x_m), 0^{(n-i)}) = h(k(0^{(i-1)}, x_1, 0^{(n-i)}), k(0^{(i-1)}, x_2, 0^{(n-i)}), ..., k(0^{(i-1)}, x_m, 0^{(n-i)})) = 0.$$

Therefore, $h(x_1, x_2, ..., x_m) \in A_0$, and so (A_0, h) is a subgroup of (A, h, k). Next, if we take $y_1, y_2, ..., y_n \in A_0$, then for all $1 \leq i \leq n$ and $1 \leq j \leq n$, we have $k(0^{(i-1)}, y_j, 0^{(n-i)}) = 0$. Then, we obtain

$$\begin{split} &k(0^{(n-1)},k(y_1,y_2,...,y_n)) = k(k(0^{(n-1)},y_1),y_2,...,y_n) = k(0,y_2,...,y_n) \\ &= k(k(0^{(n)}),y_2,..,y_n) = k(0,k(0^{(n-1)},y_2),y_3,...,y_n) = k(0,0,y_3,...,y_n) \\ &= ... = k(0^{(n-1)},y_n) = 0. \end{split}$$

Therefore, $k(y_1, y_2, ..., y_n) \in A_0$, and so $k(A_0^{(n)}) \subset A_0$. This shows that (A_0, h, k) is an (m, n)-subnear ring of (m, n)-near ring (A, h, k). We show that A_c is a subgroup of A. Let $x_1, x_2, ..., x_m \in A_0$. Then, we have $k(0^{(i-1)}, x_j, 0^{(n-i)}) = x_j$ for $1 \leq j \leq m$ and $1 \leq i \leq n$. Now, we obtain

$$\begin{split} & k(0^{(i-1)}, h(x_1, x_2, ... x_m), 0^{(n-i)}) \\ & = h(k(0^{(i-1)}, x_1, 0^{(n-i)}), k(0^{(i-1)}, x_2, 0^{(n-i)}), ..., k(0^{(i-1)}, x_m, 0^{(n-i)})) \\ & = h(x_1, x_2, ..., x_m). \end{split}$$

This yields that $h(x_1, x_2, ..., x_m) \in A_c$. Hence, (A_c, h) is a subgroup of (A, h, k). Next, if $y_1, ..., y_n \in A_c$, then $k(0^{(i-1)}, y_j, 0^{(n-i)}) = y_j$, for all $1 \le i \le n, 1 \le j \le n$. This gives that $k(0^{(n-1)}, k(y_1, y_2, ..., y_n)) = k(k(0^{(n-1)}, y_1), y_2, ..., y_n) = k(y_1, y_2, ..., y_n)$. Therefore $k(y_1, y_2, ..., y_n) \in A_c$ and $k(A_c^{(n)}) \subset A_c$. Hence, (A_c, h, k) is an (m, n)-subnear ring of (m, n)-near ring (A, h, k).

Theorem 1. Let (A, h, k) be an (m, n)-near ring. If $r \in A_0$ is i-cancellable, then r is not an i-zero divisor.

Proof. Suppose that $r \in A_0$ is *i*-cancellable and also r is an *i*-zero divisor, so there exist nonzero elements $d_1, d_2, ..., d_n \in A$ such that $k(d_1^{i-1}, r, d_{i+1}^n) = 0$. Since $r \in A_0$, it follows that $k(d_1^{i-1}, r, d_{i+1}^n) = 0 = k(0^{(i-1)}, r, 0^{(n-i)})$. Again, since r is *i*-cancellable, it follows that for all $1 \le i \le n$, $d_i = 0$, that it is a contradiction. \Box

Let (A, h, k) be an (m, n)-near ring. The center, $Z_{i,j}(A)$, is the subset of elements in A that (i, j)-commute with element of A. In the symbol, we can write:

$$Z_{i,j}(A) = \{ b \in A \mid a_1, ..., a_n \in A \text{ and for } j > i, \\ k(a_1^{i-1}, b, a_i^n) = k(a_1^{i-1}, a_j, a_{i+1}, ..., a_{j-1}, b, a_{j+1}^n) \}.$$

Example 8. In Example 2, for all $i, j \in 2, 3, ..., n$, we have $Z_{i,j}(A) = A$.

Suppose that (A, h, k) is an (m, n)-near ring. If (A, k) is commutative, then A is named a commutative near ring. An element $r \in A$ is named idempotent element if $k(r^{(n)}) = r$. An element $r \in A$ is named nilpotent element if $k(r^{(n)}) = 0$.

Example 9. In Example 2, for all $r \in \mathbb{Z}_{mn}$, we have $k(r^n) = r$, and so all elements are idempotent. Moreover, \mathbb{Z}_{mn} has only one nilpotent element that is 0.

Suppose that (A, h, k) is an (m, n)-near ring. A subset S of A is named nilpotent if $k(S^{(n)}) = 0$. A subset S of A is named nill if every element of S is a nilpotent element.

Theorem 2. Assume that S is a subset of A. If S is nilpotent, then S is nill.

Proof. Assume that S is nilpotent. Then $k(S^{(n)}) = 0$. This gives that $k(s^{(n)}) = 0$ for all $s \in S$. Hence, S is a nilpotent for all $s \in S$, then S is nill.

Definition 5. Assume that (A, h, k) is an (m, n)-near ring and (W, h) be an mgroup with identity element 0 of (A, h). W is named an i-A-group if there exists a mapping $l: W \times, ..., \times W \times A \times W \times ... \times W \to W$ the image of

$$(r^{(i-1)}, s, r^{(n-i)}) \in \underbrace{W \times, ..., \times W}_{i-1} \times A \times \underbrace{W \times ... \times W}_{n-i} \to W,$$

for $s \in A$ and $r \in W$, is denoted by $l(r^{(i-1)}, s, r^{(n-i)}) = k(r^{(i-1)}, s, r^{(n-i)})$, satisfying the following conditions:

(1) $k(s_1^{i-1}, h(r_1, r_2, ..., r_m), s_{i+1}^n)$ $\begin{aligned} &(1) \quad k(t_1^{i-1}, t_1, t_2^n), k(t_1^{i-1}, t_2, s_{i+1}^n), \dots, k(t_1^{i-1}, t_n, s_{i+1}^n)). \\ &= h(k(s_1^{i-1}, t_1, s_{i+1}^n), k(s_1^{i-1}, t_2, s_{i+1}^n), \dots, k(s_1^{i-1}, t_n, s_{i+1}^n)). \\ &(2) \quad k(t_1^{i-1}, k(t_1, t_2, \dots, t_n), t_{i+1}^n) = k(t_1^{i-l-1}, k(t_{i-l}^{i-1}, t_1^{n-l}), t_{n-l+1}^n, t_{i+1}^n) \\ &= k(t_1^{i-1}, t_1^n, k(t_1, t_{i+1}^{i+1}), t_{i+1}^n), \text{ for all } 1 \le l \le i-1 \text{ and } 1 \le s \le n-i, \end{aligned}$

for all $s_i, t_i \in W$ that $1 \leq i, j \leq n$. For all $r_i, z_t \in A$ that $1 \leq i \leq m$ and $1 \leq t \leq n$, we denote this i-A-group by $\underbrace{AA...A}_{i-1}W \underbrace{AA...A}_{n-i}$.

$$n-$$

Example 10. If we consider $W = \mathbb{Z}$ in Example 2, then W is an 1- \mathbb{Z}_{mn} -group. By taking i = 1 in Definition 5, the conditions of the definition are satisfied,

 $k(h(r_1, r_2, ..., r_m), s_2^n) = h(k(r_1, s_2^n), k(r_2, s_2^n), ..., k(r_m, s_2^n)) = h(r_1, r_2, ..., r_m),$ $k(k(s_1, s_2, ..., s_n), t_2^n) = k(s_1^l, k(s_{l+1}^n, t_2^{1+l}), t_{2+l}^n) = s_1.$

In Definition 5, if $k(r^{(i-1)}, g, r^{(n-i)}) = 0$ for all $g \in W$ yields r = 0, then W is a faithful *i*-A-group.

Example 11. In Example 2, \mathbb{Z}_{mn} operates faithfully on \mathbb{Z} .

Assume that (A, h, k) is an (m, n)-near ring. A subgroup H of an *i*-A-group W is named an *i*-A-subgroup (written as $H \leq_A W$), if it is closed under the operation of A and $k(r^{(i-1)}, h, r^{(n-i)}) \in H$ for all $r \in A, h \in H$. Suppose that W_1 and W_2 are two A-groups, $s: W_1 \to W_2$ is named *i*-A-homomorphism, if for all $l, l_1, ..., l_n \in W_1$ and for all $r \in A$, $s(h(l_1, l_2, ..., l_m)) = h(s(l_1), s(l_2), ..., s(l_m))$ and $s(k(r^{(i-1)}, l, r^{(n-i)})) = k(r^{(i-1)}, s(l), r^{(n-i)})$. If H is the kernel of an *i*-Ahomomorphism, then it is named an *i*-A-normal subgroup and we write $H \trianglelefteq_A W$.

Example 12. If $h(d_1, d_2, ..., d_m) = d_1 + d_2 + ... + d_m$, $k(d_1, d_2, ..., d_n) = d_1 \cdot d_2 \cdot d_n$... d_n , then (\mathbb{R}, h, k) is an (m, n)-near ring and \mathbb{Q} (the set of rationales) is a *i*- \mathbb{R} -subgroup of \mathbb{R} .

Assume that W is an i-A-group. W is named a unitary i-A-group if A be a near ring with unity 1 so that $k(1^{(i-1)}, x, 1^{(n-i)}) = x$ for all $x \in W$.

Example 13. If in Example 4, $d_j = 1$ for $j \in \{1, 2..., i - 1, i + 1, ..., n\}$, then $k(1^{(i-1)}, x, 1^{(n-i)}) = \underbrace{1 \cdot 1 \cdot ... \cdot 1}_{i-1} \cdot x \cdot \underbrace{1 \cdot 1 \cdot ... \cdot 1}_{n-i} = x.$

Theorem 3. In an α_1 -(m,n)-near ring for every $a \in A$ exist some $s \in A$ if n = 2i + 1, then

 $\begin{array}{ll} (1) & k(s^{(i)},a^{(i+1)}) = k(a^{(i+1)},s^{(i)}), \\ (2) & a = k(s^{(i)},k(s^{(i)},...,k(s^{(i)},a,s^{(i)}),...,s^{(i)}),s^{(i)}). \end{array}$

Proof. (1) Suppose that A is an α_1 -(m, n)-near ring and $a \in A$. So there exists $s \in R$ such that $a = k(s^{(i-1)}, a, s^{(n-i)})$. This implies that

$$\begin{split} & k(s^{(i)}, a^{(i+1)}) = k(s^{(i)}, a, a^{(i)}) = k(s^{(i)}, a, k(s^{(i)}, a, s^{(i)}), a^{(i-1)}) \\ & = k(k(s^{(i)}, a, s^{(i)}), a, s^{(i)}, a^{i-1}) = k(a, a, s^{(i)}, a^{(i-1)}) \\ & = k(a, a, s^{(i)}, a, k(s^{(i)}, a, s^{(i)}, a^{(i-3)})) = k(a, a, k(s^{(i)}, a, s^{(i)}), a, s^{(i)}, a^{(i-3)}) \\ & = k(a, a, a, a, s^{(i)}, a^{(i-3)}) = \ldots = k(a^{(i+1)}, s^{(i)}). \end{split}$$

(2) We have

$$\begin{aligned} &k(s^{(i)}, k(s^{(i)}, ..., k(s^{(i)}, a, s^{(i)}), ..., s^{(i)}), s^{(i)}) \\ &= k(s^{(i)}, k(s^{(i)}, a, s^{(i)}), s^{(i)}) = a. \end{aligned}$$

A subnear ring M of a (m, n)-near ring A is named an α_2 -subnear ring if for every $a \in M$ exists an $s \in M$ so that n = 2i + 1, $k(s^{(i)}, a, s^{(i)}) = s$.

Theorem 4. Suppose that A is an α_2 -(m, n)-near ring. In this case

- (1) Every invariant subgroup W of A is an α_2 -subnear ring.
- (2) Every ideal I of a zero symmetric α_2 -near ring A is an α_2 -subnear ring.

Proof. (1) Take $a \in W - \{0\}$. Since A is an α_2 -near ring there exists $s \in A$ such that $k(s^{(i)}, a, s^{(i)}) = s$. Now W is an invariant subgroup of A implies that $k(s^{(i)}, a, s^{(i)}) \in W$. Then $s \in W$. Consequently W is an α_2 -subnear ring.

(2) Assume that I is an ideal of the zero symmetric α_2 -near ring A. Let $a \in I - \{0\}$. Since A is an α_2 -near ring, so there exists $s \in A - \{0\}$ so that $k(s^{(i)}, a, s^{(i)}) = s$. Now, we have $k(s^{(i)}, a, s^{(i)}) \in k((A - \{0\})^{(i)}, I - \{0\}, (A - \{0\})^{(i)}) \subseteq I - \{0\}$. The desired result now follows.

3. Ideals and Homomorphisms of (m, n)-Near Rings

We define the notions of *i*-ideal, zero near ring, prime ideal, semi-symmetric, A(S), k-ideal, *i*-N-primary and *i*-P-primary in the (m, n)-near rings and assert a few related theorems.

Assume that I is a non-empty subgroup of an (m, n)-near ring (A, h, k). Then I is named a normal subgroup of A if for all $a_i \in A$ and $s_1^{i-1}, s_{i+1}^m \in A, 1 \le i, j \le m$, there is $b_j \in I$ that $h(s_1^{i-1}, a_i, s_{i+1}^m) = h(s_1^{j-1}, b_j, s_{j+1}^m)$.

Definition 6. Suppose that I is a non-empty subset of an (m, n)-near ring (A, h, k). In this case I is named an ideal of A if

- (1) I is a normal subgroup of m-ary group (A, h), (I, h) is an m-ary group,
- (2) for every $a_1, a_2, ..., a_n \in A$, $k(a_1^{i-1}, I, a_{i+1}^n) \subseteq I$,
- (3) for all $r_1, ..., r_{j-1}, r_{j+1}, ..., r_m, s_1, ..., s_{j-1}, s_{j+1}, ..., s_n \in A$ and $1 \le k \le n$, $d \in I$, there exists $l \in I$ that

$$k(s_1^{j-1}, h(r_1^{k-1}, d, r_{k+1}^m), s_{j+1}^n) = h(k(s_1^{j-1}, r_1, s_{j+1}^n), k(s_1^{j-1}, r_2, s_{j+1}^n), \dots, k(s_1^{j-1}, r_{k-1}, s_{j+1}^n), l, (s_1^{j-1}, r_{k+1}, s_{j+1}^n), \dots, k(s_1^{j-1}, r_n, s_{j+1}^n)).$$

I is named an i-ideal of A if it satisfies (1) and (2) and I is named a j-ideal of A for $j \neq i$ if it satisfies (1) and (3).

If for every $1 \le i \le n$, I is an *i*-ideal, then I is named an ideal of A.

Example 14. Let \mathbb{Z} and \mathbb{Q} be the set of integers and the set of rational numbers, respectively. Consider two (m,n)-near rings (\mathbb{Z},h,k) and (\mathbb{Q},h,k) , where $h(d_1,d_2,...,d_m) = d_1 + d_2 + ... + d_m$ and $k(d_1,d_2,...,d_n) = d_1 \cdot d_2 \cdot ... \cdot d_{n-1} \cdot d_n$. Then \mathbb{Z} is an (m,n)-subnear ring of \mathbb{Q} , but \mathbb{Z} is not an ideal of the near ring \mathbb{Q} .

Remark 1. If $J_1, J_2, ..., J_n$ and $I_1, I_2, I_2, ..., I_m$ are ideals of a near ring A, then

- (1) $h(I_1, I_2, ..., I_m)$ is an ideal of A,
- (2) $J_1 \cap J_2 \cap \ldots \cap J_n$ is an ideal of A,
- (3) $k(J_1, J_2, ..., J_n)$ is an ideal of A.

Assume that (A, h, k) is an (m, n)-near ring and I is an ideal. (A, h) is a group and I is a normal subgroup. The quotient group (A/I, H, K) is defined. An *m*-ary operation h on the cosets is defined by the *m*-ary operation h as follows:

$$\begin{split} H(h(d_{1_1}, d_{1_2}, ..., d_{1_{m-1}}, I), ..., h(d_{m_1}, d_{m_2}, ..., d_{m_{m-1}}, I)) \\ &= h(h(d_{1_1}, d_{1_2}, ..., d_{1_{m-1}}, h(d_{2_1}, d_{2_2}, ..., d_{2_{m-1}}, h(d_{3_1}, d_{3_2}, ..., d_{3_{m-1}}, ... \\ h(d_{(m-1)_1}, d_{(m-1)_2}, ..., d_{(m-1)_{m-1}}h(d_{m_1}, d_{m_2}, ..., d_{m_{m-1}}, I)...)). \\ \text{An n-ary operation k on cosets is defined by the n-ary operation k as follows: $K(h(d_{1_1}, d_{1_2}, ..., d_{1_{n-1}}, I), ..., h(d_{n_1}, d_{n_2}, ..., d_{n_{n-1}}, I))$ \\ &= h(k(h(d_{1_1}, d_{1_2}, ..., d_{1_{n-1}}, I), ..., h(d_{(i-1)_1}, d_{(i-1)_2}, ..., d_{(i-1)_{(n-1)}}, I), d_{i_1}, \\ h(d_{(i+1)_1}, d_{(i+1)_2}, ..., d_{(i+1)_{n-1}}, I))..., h(d_{n_1}, d_{n_2}, ..., d_{n_{m-1}}, I)), ..., \\ k(h(d_{1_1}, d_{1_2}, ..., d_{1_{m-1}}, I), ..., h(d_{(i-1)_1}, d_{(i-1)_2}, ..., d_{(i-1)_{m-1}}, I), d_{i_{m-1}}, \\ h(d_{(i+1)_1}, d_{(i+1)_2}..., d_{(i+1)_{m-1}}, I))..., h(d_{n_1}, d_{n_2}, ..., d_{n_{m-1}}, I), d_{i_{m-1}}, \\ h(d_{(i+1)_1}, d_{(i+1)_2}..., d_{(i+1)_{m-1}}, I))..., h(d_{n_1}, d_{n_2}, ..., d_{n_{m-1}}, I), I). \end{split}$$

Theorem 5. If I is an ideal in an (m, n)-near ring (A, h, k), then (A/I, H, K), where the operations H and K are defined as above, has the structure of an (m, n)-near ring.

Proof. We prove that H is well defined. Assume that

 $h(d_{i_1}, d_{i_2}, ..., d_{i_{m-1}}, I) = h(e_{i_1}, e_{i_2}, ..., e_{i_{m-1}}, I),$

for $1 \leq i \leq m$. Then

F. MOHAMMADI, B. DAVVAZ

$$\begin{split} &H(h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, I), \dots, h(d_{m_1}, d_{m_2}, \dots, d_{m_{m-1}}, I)) \\ &= h(h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, h(d_{3_1}, d_{3_2}, \dots, d_{3_{m-1}}, \dots, h(d_{(m-1)_1}, d_{(m-1)_2}, \dots, d_{(m-1)_{m-1}}, h(d_{m_1}, \dots, d_{m_{m-1}}, I).\dots)) \\ &= h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, h(d_{3_1}, d_{3_2}, \dots, d_{3_{m-1}}, \dots, h(d_{(m-1)_1}, d_{(m-1)_2}, \dots, d_{(m-1)_{m-1}}, h(e_{m_1}, e_{m_2}, \dots, e_{m_{m-1}}, I).\dots)) \\ &= h(d_{1_1}, d_{2_2}, \dots, d_{1_{m-1}}, h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, h(d_{3_1}, d_{3_2}, \dots, d_{3_{m-1}}, \dots, h(d_{(m-1)_1}, d_{(m-1)_2}, \dots, d_{(m-1)_{m-1}}, h(I, e_{m_1}, e_{m_2}, \dots, e_{m_{m-1}}).\dots)) \\ &= h(d_{1_1}, d_{1_2}, \dots, h(d_{1_{(m-1)}}, h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, h(d_{3_1}, d_{3_2}, \dots, d_{3_{m-1}}, \dots, h(h(d_{(m-1)_1}, d_{(m-1)_2}, \dots, d_{(m-1)_{m-1}}, I), h(e_{m_1}, e_{m_2}, \dots, e_{m_{m-1}}).\dots)) \\ &= h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, h(d_{3_1}, d_{3_2}, \dots, d_{3_{m-1}}, \dots, h(h(e_{(m-1)_1}, e_{(m-1)_2}, \dots, e_{(m-1)_{m-1}}, I), e_{m_1}, e_{m_2}, \dots, e_{m_{m-1}}).\dots)) \\ &= \dots = h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, I), e_{3_1}, e_{3_2}, \dots, e_{3_{m-1}}), \dots, h(e_{(m-1)_1}, e_{(m-1)_2}, \dots, e_{(m-1)_{m-1}}, h(e_{m_1}, e_{m_2}, \dots, e_{m_{m-1}}, I).\dots)) \\ &= \dots = h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, I), e_{3_1}, e_{3_2}, \dots, e_{3_{m-1}}), \dots, h(e_{(m-1)_1}, e_{(m-1)_2}, \dots, e_{(m-1)_{m-1}}, h(e_{m_1}, e_{m_2}, \dots, e_{m_{m-1}}, I).\dots)) \\ &= h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(h(I_{2_1}, e_{2_2}, \dots, e_{2_{m-1}}, I), e_{3_1}, e_{3_2}, \dots, e_{3_{m-1}}), \dots, h(e_{(m-1)_1}, e_{(m-1)_2}, \dots, e_{(m-1)_{m-1}}, h(e_{m_1}, e_{m_2}, \dots, e_{m_{m-1}}, I).\dots)) \\ &= h(h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, I), e_{2_1}, e_{2_2}, \dots, e_{2_{m-1}}), h(e_{3_1}, e_{3_2}, \dots, e_{3_{m-1}}, \dots, h(e_{(m-1)_1}, e_{(m-1)_2}, \dots, e_{(m-1)_{m-1}}, h(e_{m_1}, e_{m_2}, \dots, e_{m_{m-1}}, I).\dots)) \\ &= h(e_{(1_1}, e_{1_2}, \dots, e_{(m-1)_{m-1}}, h(e_{m_1}, e_{m_2}$$

Since I is an ideal, then the operator k is well defined and since (A, h) is an m-ary group so (A/I, H) is an m-ary group. Furthermore, since (A, k) is an n-ary semigroup, it follows that (A/I, K) is an n-ary semigroup. The n-ary operation k is *i*-distributive with respect to the m-ary operation h. Thus, the n-ary operation k is *i*-distributive with respect to the m-ary operation H.

An (m, n)- near ring (A, h, k) is named simple if A does not have non-trivial ideals. A proper ideal I of (A, h, k) is named maximal if $I \subseteq J \subseteq A$ and J is an ideal of A implies that either I = J or J = A. A proper ideal I of an (m, n)-near ring (A, h, k) is named prime, if for every ideals $A_1, A_2, ..., A_n$ of A, $k(A_1, A_2, ..., A_n) \subseteq I$ implies $A_1 \subseteq I$ or $A_2 \subseteq I$ or ... or $A_n \subseteq I$. A proper ideal I of an (m, n)-near ring (A, h, k) is named weakly prime, if for any ideals $A_1, A_2, ..., A_n$ of A, $\{0\} \neq k(A_1, A_2, ..., A_n) \subseteq I$ implies $A_1 \subseteq I$ or $A_2 \subseteq I$ or $A_2 \subseteq I$ or ... or $A_n \subseteq I$. Clearly, every prime ideal is weakly prime and (0) is always weekly prime ideal of (A, h, k). An ideal I of an (m, n)-near ring (A, h, k) is named ring (A, h, k) is named semi-symmetric if $k(\underline{z}, z, ..., z) \in I$, implies $k(\underline{\langle z \rangle, \langle z \rangle, ..., \langle z \rangle}) \subseteq I$.

Theorem 6. For an ideal P of an (m, n)-near ring (A, h, k), the following statements are equivalent:

(1) P is prime.

(2) If $d_i \notin P$ and $1 \leq i \leq n$, then $k(\langle d_1 \rangle, \langle d_2 \rangle, ..., \langle d_n \rangle) \notin P$.

Proof. To prove $(1) \Rightarrow (2)$ assume P is a prime ideal and $d_i \notin P$ for $1 \leq i \leq n$. Then $\langle d_i \rangle \notin P$. If $k(\langle d_1 \rangle, \langle d_2 \rangle, ..., \langle d_n \rangle) \subseteq P$, P is a prime ideal, then $\langle d_1 \rangle \subseteq P$ or $\langle d_2 \rangle \subseteq P$ or ... or $\langle d_n \rangle \subseteq P$. This is a contradiction. Hence, $k(\langle d_1 \rangle, \langle d_2 \rangle, ..., \langle d_n \rangle) \notin P$. So $(1) \Rightarrow (2)$.

To prove $(2) \Rightarrow (1)$, suppose that $I_1, I_2, ..., I_n$ are ideals of R such that $k(I_1, I_2, ..., I_n) \subseteq P$. Assume that $I_1, I_2, ..., I_n \notin P$, Then by (2), we have $k(I_1, I_2, ..., I_n) \notin P$, that is a contradiction. Hence, $I_1 \subseteq P$ or $I_2 \subseteq P$ or ... or $I_n \subseteq P$. So, P is a prime ideal. The proof of $(2) \Rightarrow (1)$ is completed. \Box

An (m, n)-near ring (A, h, k) is named a zero near ring if $k(\underline{A, A, ..., A}) = 0$.

Assume that A is an (m, n)-near ring. The intersection of all prime ideals of A is named the prime radical of A and is denoted by (A). For any proper ideal I of A, the intersection of all prime ideals of A containing I is named the prime radical of I and is denoted by P(I).

Lemma 2. Every integral (m, n)-near ring is prime.

Proof. Assume that (A, h, k) is an integral (m, n)-near ring. It is enough to show (0) is a prime ideal. Let $I_1, I_2, ..., I_n$ be ideals of A such that $k(I_1, ..., I_n) \subset (0)$. If either $I_1 = (0)$ or $I_2 = (0)$ or ... or $I_n = (0)$, then there is nothing to prove. If possible, suppose that $I_1 \neq (0)$ or $I_2 \neq (0)$ or ... or $I_n \neq (0)$, then we can choose $0 \neq a_1 \in I_1, 0 \neq a_2 \in I_2, ..., 0 \neq a_n \in I_n$ such that $k(a_1, a_2, ..., a_n) = 0$, which is in contrast to the fact that A is integral. Therefore, either $I_1 = (0)$ or $I_2 = (0)$ or ... or $I_n = (0)$. Thus, we proved that (0) is a prime ideal of A. Hence, A is a prime (m, n)-near ring.

Theorem 7. If the (m, n)-near ring (A, h, k) is simple, then either A is prime or A is a zero (m, n)-near ring.

Proof. Assume that A is not a zero (m, n)-near ring. Then $k(A^{(n)}) \neq (0)$. We prove that (0) is a prime ideal of A. Assume that $I_1, I_2, ..., I_n$ are ideals of A such that $k(I_1, I_2, ..., I_n) \subseteq (0)$. Since $I_1, I_2, ..., I_n$ are ideal of A and A is simple, so $I_1, I_2, ..., I_n \in \{(0), A\}$. Then $k(A^{(n)}) \subseteq k(I_1, I_2, ..., I_n) \subseteq (0)$. It is a contradiction. Hence, $I_1 = (0)$ or $I_2 = (0)$ or ... or $I_n = (0)$. Thus, (0) is a prime ideal of A. This yields that A is a prime (m, n)-near ring.

Theorem 8. If I is a semi-symmetric ideal of an (m, n)-near ring (A, h, k), then P(I) is completely semiprime.

Proof. Suppose that $k(a^{(n)}) \in P(I)$. So, $k(k(a^{(n)})^{(n)}) \in I$. Because I is semi-symmetric, $\langle k(k(a^{(n)})^{(n)}) \rangle \subseteq I \subseteq P(I)$, thus $a \in P(I)$. This implies that P(I) is completely semiprime.

If I is a semi-symmetric ideal of a (m, n)-near ring (A, h, k), then

$$P(I) = \{ x \in A \mid k(x^{(n)}) \in I \}.$$

An (m, n)-near ring A is named semi-symmetric if $\langle 0 \rangle$ is a semi-symmetric ideal of A.

For any subset S of an (m, n)-near ring (A, h, k),

$$A(S) = \{ x \in S \mid k(A^{(i-1)}, x, A^{(n-i)}) = \{0\} \}.$$

Clearly, A(S) is an *i*-ideal of A. An ideal I of an (m, n)-near ring (A, h, k) is named subtractive or k-ideal, if $h(d_1, d_2, ..., d_m) \in I$ for any elements $d_1, d_2, ..., d_{m-1} \in I$ and $d_m \in A$, then $d_m \in I$.

Theorem 9. Let I be a k-ideal of an (m, n)-near ring (S, h, k) with $1 \neq 0$. The following statements are equivalent:

- (1) I is a weakly prime ideal.
- (2) If $B_1, B_2, ..., B_n$ are ideals of S such that $\{0\} \neq k(B_1, B_2, ..., B_n) \subseteq I$, then $B_i \subseteq I$ for some $1 \leq i \leq n$.

Proof. It is straightforward.

Theorem 10. Every ideal of (m, n)-near ring (S, h, k) is weakly prime if and only if for any ideals $B_1, B_2, ..., B_n$ of $S, k(B_1, B_2, ..., B_n) = B_1$ or $k(B_1, B_2, ..., B_n) = B_2$ or ... or $k(B_1, B_2, ..., B_n) = B_n$ or $k(B_1, B_2, ..., B_n) = 0$.

Proof. Assume that every ideal of S is weakly prime. Let $B_1, B_2, ..., B_n$ be ideals of S and $k(B_1, B_2, ..., B_n) \neq S$, so $k(B_1, B_2, ..., B_n)$ is weakly prime. If $\{0\} \neq k(B_1, B_2, ..., B_n) \subseteq k(B_1, B_2, ..., B_n)$, then we have $B_1 \subseteq k(B_1, B_2, ..., B_n)$ or $B_2 \subseteq k(B_1, B_2, ..., B_n)$ or ... or $B_n \subseteq k(B_1, B_2, ..., B_n)$ (since $k(B_1, B_2, ..., B_n)$ is weakly prime ideal of S), that is, $B_1 = k(B_1, B_2, ..., B_n)$ or $B_2 = k(B_1, B_2, ..., B_n)$ or ... or $B_n = k(B_1, B_2, ..., B_n)$. If $k(B_1, B_2, ..., B_n) = S$, then $B_1 = B_2 = ... = B_n = S$ whence $S^n = S$.

Conversely, let I be any proper ideal of S and let $\{0\} \neq k(B_1, B_2, ..., B_n) \subseteq I$ for ideals $B_1, B_2, ..., B_n$ of S. Then, either $B_1 = k(B_1, B_2, ..., B_n) \subseteq I$ or $B_2 = k(B_1, B_2, ..., B_n) \subseteq I$ or ... or $B_n = k(B_1, B_2, ..., B_n) \subseteq I$. \Box

Lemma 3. If P be a subtractive ideal of $i \cdot (m, n)$ -near ring (S, h, k) such that $2 \leq i \leq n$, then P is a weakly prime ideal but it is not a prime ideal of (m, n)-near ring S. Moreover, $k(d_1, d_2, ..., d_n) = 0$ for some $d_1, d_2, ..., d_n \notin P$, then we have $k(d_{i-1}, P^{(n-1)}) = \{0\}.$

Proof. If i = 2, assume that $k(d_1, p_1^{n-1}) \neq 0$, for some $c_1, c_2, \dots, c_{n-1} \in P$. Then

$$0 \neq k(d_1, h(k(1, d_2, d_3, ..., d_n), (k(1, c_1, c_2, ..., c_{n-1}))^{(m-1)}), 1^{(n-2)}) \in P.$$

Since P is a weakly prime ideal of S, it follows that $d_1 \in P$ or

$$h(k(1, d_2, d_3, ..., d_n), (k(1, c_1, c_2, ..., c_{n-1}))^{(m-1)}) \in P,$$

that is, $d_1 \in P$ or $d_2 \in P$ or ... or $d_n \in P$. It is a contradiction. Therefore $k(d_1, P^{(n-1)}) = \{0\}$. Similarly, we can show that $k(P, d_2, P^{(n-2)}) = \{0\}$.

If $3 \le i \le n$, suppose that $k(d_{i-1}, c_1^{n-1}) \ne 0$, for some $c_1, c_2, ..., c_{n-1} \in P$. Then, we have

$$0 \neq k(1^{i-2}, d_{i-1}, h((k(c_1^{i-2}, 1, c_i, \dots, c_{n-1}))^{i-2}, k(d_1^{i-2}, 1, d_i^n), (k(c_1^{i-2}, 1, c_i^{n-1}))^{(m-i+1)}, 1^{n-i}) \in P.$$

Since P is a weakly prime ideal of S, it follows that $d_{i-1} \in P$ or

$$h((k(c_1^{i-2}, 1, c_i^{n-1}))^{(i-2)}, k(d_1^{i-2}, 1, d_i^n), (k(c_1^{i-2}, 1, c_i^{n-1}))^{(m-i+1)}) \in P,$$

that is, $d_1 \in P$ or $d_2 \in P$ or ... or $d_n \in P$. It is a contradiction. Therefore, we derive that $k(d_{i-1}, P^{(n-1)}) = \{0\}.$ \square

Theorem 11. Suppose that P is a k-ideal in an i(m, n)-near ring (S, h, k). If P is weakly prime ideal but not prime, then $P^n = \{0\}$.

Proof. Assume that $k(c_1, c_2, ..., c_n) \neq 0$ for some $c_1, c_2, ..., c_n \in P$ and $k(d_1, d_2, ..., d_n) =$ 0 for some $d_1, d_2, ..., d_n \notin P$, where P is not a prime ideal of S. Hence $0 \neq k(d_1^{i-2}, h(d_n, p_i^{m-1}), d_{i+1}^n)$

 $= h(k(d_1, d_2, \dots, d_{i-1}, d_i, d_{i+1}, \dots, d_n), (k(d_1^{i-1}, p_i, d_{i+1}^n))^{(m-1)}) \in P.$

Hence either $d_1 \in P$ or ... or $d_{i-1} \in P$ or $d_{i+1} \in P$ or ... or $d_n \in P$ or

 $h(d_i, c_i^{m-1}) \in P$, thus either $d_1 \in P$ or $d_2 \in P$ or ... or $d_n \in P$, that it is a contradiction. Hence $P^n = \{0\}$.

Corollary 1. Assume that P is a weakly prime ideal of (m, n)-near ring (S, h, k). If P is not a prime ideal of S, then $P \subseteq Nil S$, where Nil S denotes the set of all nilpotent element of S.

A k-ideal in a commutative (m, n)-near ring (S, h, k) satisfying that $P^n = \{0\}$.

Lemma 4. Assume that l is a homomorphism of (m, n)-near ring (S_1, h, k) onto (m,n)-near ring (S_2,h',k') . Then each of the following statements is true:

(1) If Y is an ideal (k-ideal) in S_1 , then l(Y) is an ideal (k-ideal) in S_2 .

(2) If W is an ideal (k-ideal) in S_2 , then $l^{-1}(W)$ is an ideal (k-ideal) in S_1 .

Proof. It is straightforward.

Theorem 12. If $l: S_1 \longrightarrow S_2$ is a homomorphism of (m, n)-near rings and P is a prime ideal in S_2 , then $l^{-1}(P)$ is a prime ideal in S_1 .

Proof. By Lemma 4, $l^{-1}(P)$ is an ideal of (S_1, h, k) . If $k(d_1, d_2, ..., d_n) \in l^{-1}(P)$, then $l(k(d_1, d_2, ..., d_n)) \in P$ implies $k'(l(d_1), l(d_2), ..., l(d_n)) \in P$. Hence P is a prime ideal of S_2 therefore it follows that either $l(d_1) \in P$ or $l(d_2) \in P$ or ... or $l(d_n) \in P$ and thus either $d_1 \in l^{-1}(P)$ or $d_2 \in l^{-1}(P)$ or ... or $d_n \in l^{-1}(P)$. Thus $l^{-1}(P)$ is a prime ideal of S_1 .

Theorem 13. If (S, h, k) be an (m, n)-near ring such that $S = \langle d_1, d_2, ..., d_k \rangle$ for $k = \max\{n, m\}, is a finitely generated ideal of S, Then each proper k-ideal A of S$ is included in a maximal k-ideal of S.

Proof. Assume that β is the set of all k-ideals B of S satisfying $A \subseteq B \subseteq S$, that is partially ordered by inclusion. Take a chain $\{B_i \mid i \in I\}$ in β . Then B = $\bigcup B_i$ is a k-ideal of S, because if $d_1, d_2, ..., d_{n-1}, h(d_1, d_2, ..., d_n) \in B$ then by the definition of B, there is $i_1, i_2, ..., i_{n-1}, j \in I$ such that $d_1 \in B_{i_1}, d_2 \in B_{i_2}, ..., d_{n-1} \in I$ $B_{i_{n-1}}, h(d_1, d_2, ..., d_n) \in B_j$, as B_i partially ordered by inclusion, then $B_j \subseteq B_{i_1}$ or $B_{i_1} \subseteq B_j$. Without reduce totality of problem assuming $B_{i_1}, B_{i_2}, ..., B_{i_{n-1}} \subseteq B_j$. So $d_1, d_2, ..., d_{n-1}, h(d_1, d_2, ..., d_n) \in B_j$ because B_j is a k-ideal. Thus $d_n \in B_j$ and $B_j \subseteq B$ then $d_n \in B$ so B is a k-ideal and $S = \langle d_1, d_2, ..., d_k \rangle$ implies $B \neq S$ and hence $B \in \beta$. So by Zorn's lemma, β has a maximal element. \square

Corollary 2. Let (S, h, k) be an (m, n)-near ring with identity 1. Then each proper j-ideal of S is included in a maximal j-ideal of S.

Proof. The proof is immediate by taking $S = \langle 1 \rangle$.

Lemma 5. If C, D be two j-ideals of an (m, n)-near ring (S, h, k), then $C \cap D$ is a *j*-ideal.

Proof. Let C, D be two *j*-ideals of S, then by definition *j*-ideal, C and D are subgroups of *m*-ary group (S, h). so $C \cap D$ is a subgroup of *m*-ary group (S, h). It is enough to prove for every $d_1, d_2, ..., d_n \in S, k(d_1^{k-1}, C \cap D, d_{k+1}^n) \subseteq C \cap D$. because $C \text{ is a } j\text{-ideal}, k(d_1^{k-1}, C \cap D, d_{k+1}^n) \subseteq k(d_1^{k-1}, C, d_{k+1}^n) \subseteq C \text{ and because } D \text{ is a } j\text{-ideal}, k(d_1^{k-1}, C \cap D, d_{k+1}^n) \subseteq k(d_1^{k-1}, D, d_{k+1}^n) \subseteq D. \text{ therefore } k(d_1^{i-1}, C \cap D, d_{i+1}^n) \subseteq D.$ $C \cap D$.

Definition 7. An equivalence relation ρ on an (m, n)-near ring (S, f, g) is called a congruence on S if for any $a_1, a_2, ..., a_m, b_1, b_2, ..., b_n \in S$ such that apb, then for all $1 \leq i \leq n$ and $1 \leq j \leq m$:

- (1) $f(a_1^{j-1}, a, a_{j+1}^m)\rho f(a_1^{j-1}, b, a_{j+1}^m);$ (2) $g(b_1^{i-1}, a, b_{i+1}^n)\rho g(b_1^{i-1}, b, b_{i+1}^n).$

Let ρ be a congruence on an (m, n)-near ring (S, f, g). Then, the congruence class of x, S is denoted by $x\rho$ and is defined by $x\rho = \{y \in S \mid (x,y) \in \rho\}$. The set of all congruence classes of S is denoted by S/ρ .

Theorem 14. Let (S, h, k) be an (m, n)-near ring, then $(S/\rho, h, k)$ is an (m, n)near ring under the operations

$$h(d_1\rho, d_2\rho, ..., d_m\rho) = h(d_1, d_2, ..., d_m)\rho,$$

$$k(d_1\rho, d_2\rho, ..., d_n\rho) = k(d_1, d_2, ..., d_n)\rho,$$

where $d_1, d_2, ..., d_m \in S$ is called quotient near ring.

Proof. Let $d_1\rho, d_2\rho, ..., d_{2m-1}\rho, e_1\rho, e_2\rho, ..., e_m\rho$ be elements of S/ρ . Then for each $1 \le i \le j \le m$,

 $h(d_1\rho, d_2\rho, ..., d_{i-1}\rho, h(d_i\rho, d_{i+1}\rho, ..., d_{m+i-1}\rho), d_{m+i}\rho, d_{m+i+1}\rho, d_{2m-1}\rho) = h(d_1\rho, d_2\rho, ..., d_{j-1}\rho, h(d_j\rho, d_{j+1}\rho, ..., d_{m+j-1}\rho), d_{m+j}\rho, d_{m+j+1}\rho, ..., d_{2m-1}\rho).$ So, the addition is associative on S/ρ . Similarly, the multiplication is associative, too. Finally, in order to show that the right *i*-distributivity, we have

 $\begin{aligned} & k(d_1\rho, d_2\rho, ..., d_{i-1}\rho, h(e_1\rho, e_2\rho, ..., e_m\rho), d_{i+1}\rho, d_{i+2}\rho, ..., d_n\rho) \\ &= h(k(d_1\rho, d_2\rho, ..., d_{i-1}\rho, e_1\rho, d_{i+1}\rho, ..., d_n\rho), \\ & \quad k(d_1\rho, d_2\rho, ..., d_{i-1}\rho, e_2\rho, d_{i+1}\rho, ..., d_n\rho), \\ & \quad ..., k(d_1\rho, d_2\rho, ..., d_{i-1}\rho, e_m\rho, d_{i+1}\rho, ..., d_n\rho)). \end{aligned}$ Therefore, we derive that S/ρ is an (m, n)-near ring. \Box

Lemma 6. If (A, h, k) be an (m, n)-near ring with $1 \neq 0$. Then A has at least one *j*-maximal ideal.

Proof. Since $\{0\}$ is a proper *j*-ideal of A, the set Δ of all proper *j*-ideals of A is not empty. Of course, the relation of inclusion, \subseteq , is a partial order on Δ , and by using Zorn's lemma to this partially ordered set, a maximal *j*-ideal of A is just a maximal member of the partially ordered set (Δ, \subseteq) .

Now, we define the concept of a homomorphism between (m, n)-near rings and assert some theorems in this respect.

Definition 8. A mapping η from the (m, n)-near ring (A, h, k) into the (m, n)-near ring (A', h', k') will be named a homomorphism if for each $d_1, d_2, ..., d_m \in \mathbb{R}$

- (1) $(k(d_1, d_2, ..., d_n))\eta = k'((d_1)\eta, (d_2)\eta, ..., (d_n)\eta),$
- (2) $(h(d_1, d_2, ..., d_m))\eta = h'((d_1)\eta, (d_2)\eta, ..., (d_m)\eta).$

A homomorphism η from the (m, n)-near ring (A, h, k) onto the (m, n)-near ring (A', h', k') is named maximal if for each $d \in A'$ there exists $c_d \in \eta^{-1}(\{d\})$ such that $h(y, ker(\eta)^{(m-1)}) \subset h(c_d, ker(\eta)^{(m-1)})$ for each $y \in \eta^{-1}(\{d\})$ and $ker(\eta) = \{y \in A \mid y\eta = 0\}$.

Lemma 7. Suppose that η is a homomorphism from the (m, n)-near ring (A, h, k) onto the (m, n)-near ring (A', h', k'). If η be maximal, then $ker(\eta)$ is a Q-ideal, where $Q = \{c_d\}_{d \in A'}$.

Proof. It is clear that $\bigcup_{d \in A} h(c_d, ker(\eta)^{(m-1)}) = A$. Let c_d and c_b be different elements in Q and $d \neq b$. Let $h(c_d, ker(\eta)^{(m-1)}) \cap h(c_b, ker(\eta)^{(m-1)}) \neq \emptyset$. Thus, there exist $k_1, k_2, \ldots, k_{m-1}, k'_1, k'_2, \ldots, k'_{m-1} \in ker(\eta)$ such that $h(c_d, k_1^{m-1}) = h(c_b, k'_1^{m-1})$. Thus,

$$d = h'(c_d\eta, k_1\eta, \dots, k_{m-1}\eta) = (h(c_d, k_1^{m-1}))\eta = (h(c_b, k'_1^{m-1}))\eta = h'(c_b\eta, k'_1\eta, \dots, k'_{m-1}\eta) = b.$$

This is a contradiction. Hence, we derive that $ker(\eta)$ is a Q-ideal.

Lemma 8. Let A, A', η and Q be stated in Lemma 7, and $c_{d_1}, c_{d_2}, ..., c_{d_m}, c_{d_{m+1}}$ be elements in Q.

$$\begin{array}{ll} (1) & If \ h(h(c_{d_1}, c_{d_2}, ..., c_{d_m}), ker(\eta)^{(m-1)}) \subset h(c_{d_{m+1}}, ker(\eta)^{(m-1)}), \ then \\ & \ h'(d_1, d_2, ..., d_m) = d_{m+1}. \\ (2) & If \ h(k(c_{d_1}, c_{d_2}, ..., c_{d_n}), ker(\eta)^{(m-1)}) \subset h(c_{d_{n+1}}, ker(\eta)^{(m-1)}), \ then \\ & \ k'(d_1, d_2, ..., d_n) = d_{n+1}. \end{array}$$

Proof. (1) Since

$$\begin{aligned} h(c_{d_1}, c_{d_2}, ..., c_{d_m}) &\in h(h(c_{d_1}, c_{d_2}, ..., c_{d_m}), ker(\eta)^{(m-1)}) \\ &\subset h(c_{d_{m+1}}, ker(\eta)^{(m-1)}), \end{aligned}$$

it conforms that there are $k_1, k_2, ..., k_{m-1} \in ker(\eta)$ such that $h(c_{d_1}, c_{d_2}, ..., c_{d_m}) = h(c_{d_{m+1}}, k_1^{m-1})$. Thus, we get

$$\begin{aligned} h'(d_1, d_2, ..., d_m) &= h'(c_{d_1}\eta, c_{d_2}\eta, ..., c_{d_m}\eta) = (h(c_{d_1}, c_{d_2}, ..., c_{d_m}))\eta \\ &= (h(c_{d_{m+1}}, k_1^{m-1}))\eta = h'(c_{d_{m+1}}\eta, k_1\eta, ..., k_{m-1}\eta) = d_{m+1}. \end{aligned}$$

(2) We have

 $k(c_{d_1}, c_{d_2}, ..., c_{d_n}) \in h(k(c_{d_1}, c_{d_2}, ..., c_{d_n}), ker(\eta)^{(m-1)}) \subseteq h(c_{d_{n+1}}, ker(\eta)^{(m-1)}),$ so there exist $k_1, k_2, ..., k_{m-1} \in ker(\eta)$ such that $k(c_{d_1}, c_{d_2}, ..., c_{d_n}) = h(c_{d_{n+1}}, k_1^{m-1}).$ Thus, we obtain

$$k'(d_1, d_2, ..., d_n) = k'(c_{d_1}\eta, c_{d_2}\eta, ..., c_{d_n}\eta) = (k(c_{d_1}, c_{d_2}, ..., c_{d_n}))\eta$$

= $(h(c_{d_{n+1}}, k_1^{m-1}))\eta = h'(c_{d_{n+1}}\eta, k_1\eta, ..., k_{m-1}\eta) = d_{n+1}.$

This completes the proof.

Author Contribution Statements Conceptualization, Mohammadi and Davvaz; methodology, Mohammadi and Davvaz; formal analysis, Davvaz; investigation, Davvaz; resources, Mohammadi and Davvaz; writing-original draft preparation, Mohammadi; writing-review and editing, Mohammadi and Davvaz; supervision, Davvaz; All authors have read and agreed to the published version of the manuscript.

Declaration of Competing Interests The authors declare no conflict of interest.

References

- Alam, S., Rao, S., Davvaz, B., (m,n)-Semirings and a generalized fault- tolerance algebra of systems, J. Appl. Math., (2013), Art. ID 482391, 10 pp. https://doi.org/10.1155/2013/482391
- [2] Balakrishnan, R., Chelvam, T., α₁, α₂-Near-rings, International Journal of Algebra, 4(2) (2010), 71–79.
- [3] Chaudhari, J. N., Nemade, H., Davvaz, B., On partitioning ideals of (m,n)semirings, Asian European Journal of Mathematics, 15(8) (2022), 2250144 (13 pages). https://doi.org/10.1142/S1793557122501443
- [4] Clay, J., Near-rings: Geneses and Applications, Oxford, New York, 1992. https://doi.org/10.1093/oso/9780198533986.002.0001

- [5] Crombez, G., On (m,n)-rings, Abh. Math. Semin. Univ. Hambg., 37 (1972), 180–199. https://doi.org/10.1007/BF02999695
- [6] Crombez, G., Timm, J., On (n, m)-quotient rings, Abh. Math. Semin. Univ. Hambg., 37 (1972), 200–203. https://doi.org/10.1007/BF02999696
- [7] Davvaz, B., Leoreanu-Fotea, V., Vougiouklis, T., A survey on the theory of n-hypergroups, Mathematics, 11 (2023), 551. https://doi.org/10.3390/math11030551
- [8] Davvaz, B., Mohammadi, F., Different types of ideals and homomorphisms of (m, n)semirings, TWMS J. Pure Appl. Math., 12(2) (2021), 209-222.
- [9] Dickson, L., Definitions of a group and a field by independent postulates, Trans. Amer. Math. Soc., 6 (1905), 198-204.
- [10] Dörnte, W., Untersuchungen uber einen verallgemeinerten Gruppenbegriff, Math. Z., 29 (1929), 1-19.
- [11] Dudek, W. A., Glazek, K., Around the Hosszu-Gluskin theorem for n-ary groups, Discret. Math., 308 (2008), 4861-4876. https://doi.org/10.1016/j.disc.2007.09.005
- [12] Post, E. L., Polyadic groups, Trans. Amer. Math. Soc., 48 (1940), 208-350.
- [13] Usan, J., Zizovic, M., Some remarks on (m, n)-rings, Filomat, 13 (1999), 53-57.
- [14] Vasantha Kandasamy, W. B., Smarandache near-rings, American Research Press Rehoboth, NM, 2002.