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ABSTRACT

In this paper we develop five new methods of estimation to estimate the parameters of four 
widely used nonlinear models namely Haldane, Powell, Moser and Webb model. A standard 
growth data set of Escherichia Coli is considered for estimating the parameters. The estimat-
ed model parameters are analyzed by evaluating statistical parameters χ2, Root Mean Square 
Error, R2, R2

a
 and R2

pre. As a result, the Powell model gives the best fit with estimation of R2 as 
99.7% with respect to method IV. Moreover, the other three models also provide remarkable 
fit along with the newly introduced methods. Method II gives R2 value as 99% in case of the 
Haldane model. The method IV estimates with R2 value as 99.6% in the Moser model and the 
method III estimates with R2 value as 99.4% in case of the Webb model.
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INTRODUCTION

The growth kinetics of the microbial has been an area 
of vast potentiality for many scientific researches and it 
has many implications for our society. The combination 
of mathematical modeling with experimental works can 
provide a meaningful and quantitative interpretation of 
the experimental results and unveiling new windows of 
microbial physiology. The representation of a real-world 
phenomenon using mathematical tools is termed as 
Mathematical modeling. Biological phenomena are com-
plex natural phenomena and mathematical modeling helps 

understanding these phenomena. Different mathematical 
models are applied to study the growth of microbials. 

Microbial growth kinetics is the study of the relation-
ship between the specific growth rate µ of a particular 
microbial population and the substrate concentration S. 
The first microbial growth equation was given by Blackman 
[1] in 1905. In 1913, Michaelis [2] derived a mathematical 
model to analyze the enzyme activity based on substrate 
concentration. In 1942 Monod [3] introduced a growth 
model based on specific growth rate. Contois [4] and 
Pfeffer [5] established that the Monod model is not ade-
quate to explain the degradation of municipal waste. The 
Monod model cannot be applied when a substrate exhibit 
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inhibition [6]. Also, the Monod model does not adequately 
represent the lag phase and the death phase of the growth 
[7,8] process. To overcome these limitations Moser, Powell, 
Haldane, and Webb modified the Monod model and intro-
duced their own models to study microbial growth. In 
1958, Moser [9] modified the Monod model by introducing 
an adjustable parameter (m) which gives flexibility in fitting 
experimental data and describing the dynamic behavior in 
bioreactor [10]. At high substrate concentration the Moser 
model is capable of representing the lag phase [7] of micro-
bial growth process. Krishnan [11] used the parameter (m) 
of the Moser model to describe substrate inhibition. The 
mathematical form of the Moser model is given by

  
(1)

 

where µ represents the specific growth rate, S represents 
the substrate concentration at time t and µmax is the maxi-
mum growth rate. The constant ks is called the half satura-
tion constant as when , S = ks. The constant (m) 
represents the dynamic behavior in the bioreactor. 

  In 1930 Haldane [12] introduced a model and the 
mathematical form of the model is given by

  
(2)

where µ is the specific growth rate and S is the substrate 
concentration at time t and µmax is the maximum growth 
rate. The constant ks is the half saturation constant and ki is 
called the inhibition constant. The Haldane model is capa-
ble of describing all the growth phases: lag, exponential, 
stationery and death phase [13]. This model is also capable 
of representing the growth rate at high and low substrate 
concentration [6,14].

In 1967 Powell [15] added a new parameter (p), to the 
Monod model which is known as maintenance parameter. 
The mathematical form of the Powell Model is given by

  
(3)

where µ represents the specific growth rate and S is the 
substrate concentration at time t. µmax is the maximum 
growth rate. The constant ks is the half saturation constant 
and p is called the Powell cell maintain parameter. The 
Powell model does not consider substrate inhibition, hence 

it finds difficulties in describing the lag phase and the death 
phase [16]. 

Webb [17] introduced a model in 1963 to study micro-
bial growth. In this model the specific growth rate is rep-
resented as a function of substrate concentration. The 
characteristics of the Webb model is that it represents the 
inhibition effect properly. This model is an extension of the 
Haldane model. The mathematical form of the Webb model 
is given by

  
(4)

where µ is the specific growth rate, S is the substrate 
concentration, µmax is the maximum growth rate, ki is 
the inhibition constant and ks is half saturation constant. 
Putting  the Webb model can be written in the form

  (5)

MATERIALS AND METHODS

The five new methods are based on arbitrary points and 
partial sums which are obtained from the data set. The idea 
is taken from Borah and Mahanta [18]. The mathematical 
formulation of the new methods is explained along with 
each model separately. The performance of the models is 
analyzed by using a selection criterion given in the section 
of Selection Criteria for the best fit model. A standard data 
set representing the growth of Escherichia coli [10] is used 
in this study. The data set contains bacterial growth rate 
and substrate concentration of a culture of Escherichia coli 
bacteria which is presented in Table

Methods of Estimation

Haldane model

Method I 
Let S1, S2 and S3 be three arbitrary data points represent-

ing substrate concentration and µ1, µ2 and µ3 be the corre-
sponding specific growth rate in the data set. Then from the 
Haldane model we can write the three equations,

  
(6)

 

Table 1. Bacterial growth rate data of Escherichia Coli.

S(1/h) 5.1 8.3 13.3 20.3 30.4 37 43.1 58 74.5 96.5 112 161 195 266 386
µ(mg/L) .059 .091 .124 .177 .241 .302 .358 .425 .485 .546 61 .662 .725 .792 .852
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(7)

 

   
(8)

By solving the equations (6), (7) and (8) the parameters 
are estimated as

 

Method II 
Let us consider two arbitrary data points S1 and S2 rep-

resenting substrate concentration of the data set. Suppose 
µ1 and µ2 be the corresponding specific growth rate in the 
data set. Form the Haldane model we can write the two 
equations,

  
(9)

  
(10)

Assuming the parameter ks as known from Method I. 
Then by solving the equations (9) and (10) we can estimate 
the other two parameters as

Method III 
Let the total n points of the data set be divided into three 

equal parts. Let . The first partial sum is obtained from 
the data set which contains 1st to rth data point, the second par-
tial sum is calculated from (r + 1)th to 2rth data point and the 
third partial sum is obtained from (2r + 1)th to nth observation 
of the data set. Then we can write the three equations from 
the Haldane model, as 

  (11) 

  (12)

  (13)

Considering,

 Then the equations (11), (12) and (13) become

  (14)

  (15)

  (16)

 By solving the equations (14), (15) and (16) the param-
eters are estimated as 

Method IV
Let us divide the total n points of the data set into two 

equal parts. Let . The first partial sum is calculated 
using the data points from 1st to rth observations, the second 
partial sum is calculated from (r + 1)th to nth observations 
of the data set. Then from the Haldane model we can have, 
the two equations, 

  (17) 

  (18)

Considering,
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Now assume that the parameter ks as known from 
Method III. Then by solving the equations (17) and (18) 
the parameters are estimated as,

Method V 
In this method, the Haldane model is linearized with 

some suitable parameterization. After having the linear 
form, the method of least square [19] is used to estimate the 
parameters. The linear form of the Haldane model is given 
by, y = (ax2 + bx +c),   

where , , ,  and 

Powell Model

Method I 
Let S1, S2 and S3 be three arbitrary data points represent-

ing substrate concentration and µ1, µ2 and µ3 be the corre-
sponding specific growth rate in the data set. Then from the 
Powell Model can be write the three equations,

  (19)

  (20)

  (21)

By solving the equations (19), (20) and (21) we estimate 
the parameters as

Method II 
Let S1 and S2 be two arbitrary data points and µ1 and µ2 

be the corresponding specific growth rate. Then from the 
Powell Model we can write the two equations

   (22)

  (23)

Assuming ks as a known parameter from method I and 
solving the equations (22) and (23) the other parameters 
are estimated as    

Method III 
Suppose there are n points in the data set. Divide the 

data points into three equal parts. Let . The first par-
tial sum is obtained from the first part of the data set which 
contains 1st to rth data point, the second partial sum is cal-
culated from the second part containing (r + 1)th to 2rth data 
point and the third partial sum is obtained from (2r + 1)th to 
nth observation of the data set. Then from the Powell model, 
we can write the three equations, 

  (24) 

  (25) 

  (26)

Considering,

By solving the equations (24), (25) and (26) the param-
eters are estimated as

 

Method IV
Let us first divide the given data n points into two equal 

parts. Let . The first partial sum is calculated using 
the first part containing  1st to rth data point , the second par-
tial sum is derived using second part containing (r + 1)th to 
nth observation of the data set. Then from the Powell model 
we can have the following two equations,
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  (27)

  (28)

Considering,

and assuming ks as a known from Method III, and solv-
ing the equations (27) and (28) the parameters are esti-
mated as 

Method V
 The Powell model can be linearized in the form  y = (cx 

+ d) by assuming ks as known from Method III and by put-
ting y = μ, ,  c = (μmax + p) and d = -p. After having 
the linear form, the method of least square [19] is used to 
estimate the parameters.

Moser Model

Method I 
 Consider two arbitrary data points S1 and S2 represent-

ing substrate concentrations with corresponding specific 
growth rate µ1 and µ2 of the used data set. Taking the nat-
ural log on both sides of the Moser model we have the two 
equations 

  (29)

   (30)

From the properties of the parameters of Moser Model, 
we come to know that the parameter µmaxdefines the maxi-
mum specific growth rate. So, in this method we are consid-
ering the value of the parameter µmax is the largest value of µ 
in the data set. Then by solving the equations (29) and (30), 
the other two parameters can be estimated as

Method II 
Let S1 and S2 be two arbitrary data points and µ1 and 

µ2 be the corresponding specific growth rate. The Moser 
model can be written as

  (31)

  (32)

Assuming m as a known parameters from Method I and 
then by solving (31) and (32) we can estimate µmax and ks as

 

Method III 
Let the total observations n of the data set be divided 

into two equal groups. Let . The first partial sums 
contain 1st to rth observation, the second partial sums con-
tain (r + 1)th to nth observation. Taking the natural log on 
both sides of the Moser model we get the following three 
equations,

  (33) 

  (34)

   (35)

Assuming µmax as a known parameter from Method II, 
and solving the equations (34) and (35) we can estimate the 
parameters as

Method IV 
Suppose there are n points in the data set.
Let us divide the n points of data set into two equal 

parts. Let . The first partial sum is obtained from 
the first part which contains first rth observations and the 
second partial sum is obtained from the second part which 
contains (r + 1)th to nth observations of the data set. Then 
from the Moser model we can write the two equations,

  (36)
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   (37)

Considering,

and assuming the parameter m as a known parameter 
from Method I and by solving the equations (36) and (37), 
we estimate the parameters 

 

Method V 
The Moser model can be linearized in the form y = (ax 

+ b) by considering the parameter m known from Method 
III and by substituting , , , . 
After having the linear form, the method of least square [10] 
is used to estimate the parameters. 

Webb Model

Method I 
Let S1, S2 and S3 be three arbitrary data points represent-

ing substrate concentration and µ1, µ2 and µ3 be the corre-
sponding specific growth rate in the data set. Then from the 
Webb model we can have the three equations, 

   (38)

  (39)

  (40)

After simplification the above equations we have a qua-
dratic equation in λ, which is 

   (41)

Where, 

The real positive root of the quadratic equation (41) is 
considered as the estimated parameter .

To estimate the parameter ks rewrite the equations (38) 
and (39) in the form

  (42) 

  (43)

After simplification of the equations (42) and (43) the 
parameters are estimated as

Method II
Let S1 and S2 be two arbitrary points of the data set 

which represent substrate concentration and µ1, µ2 the 
corresponding specific growth rate. Then from the Webb 
model we have,

  (44)

  (45)

From the properties of the parameters of Webb Model, 
we come to know that the parameter µmax defines the max-
imum specific growth rate. So, in this method we are con-
sidering the value of the parameter µmax is the largest value 
of µ in the data set. Also, by considering,

 , the parameters λ 

and ks are estimated as 

 

Method III 
Let the total observations n of the data set be divided 

into two equal groups. Let . The first partial sums 
contain 1st to rth observation, the second partial sums con-
tain (r + 1)th to nth observation of the data set. Then we have 
from the Webb model the two equations, 

  (46)

  (47)

Considering,
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Then equations (46) and (47) reduce to

  (48)

  (49)

Assuming  as a known parameter from method II 
and solving equations (48) and (49) the parameters ks and 
µmax are estimated as

Method IV 
Let the total observations n of the data set be divided 

in to two equal parts. Let . The first partial sums 
contain the 1st to rth observations, the second partial sums 
contain (r + 1)th to nth point of the data set. Then from the 
Webb model we can write the two equations,

  (50)

  (51)

From the properties of the parameters of Webb Model, 
we come to know that the parameter µmax defines the max-
imum specific growth rate. So, in this method we are con-
sidering the value of the parameter µmax is the largest value 
of µ in the data set. Also, by considering

 

and solving (50) and (51) we can estimate ks and  
as 

 

Method V 
The Webb model is linearized in the form 

y = (px + q) by considering the parameter ki known from 

Method II and by substituting , , , 

. After having the linear form, the method of least 

square [19] is used to estimate the parameters. 

SELECTION CRITERIA FOR THE BEST FIT 
MODEL

After fitting the growth models using the new methods 
of estimation, the best fit model is selected based on a selec-
tion criterion. The selection criteria are adopted from the 
paper [20] which consists of five distinct steps.

Step I: Logical Consistency test.
Step II: Chi-Square (χ2) test.
Step III: Root Mean Square Error (RMSE) test.
Step IV: Coefficient of Determination (R2) and Adjusted 

Coefficient of Determination (R2
a) test.

Step V: Approximate R2 for prediction (R2
pre) test.

RESULTS AND DISCUSSION 

 The estimated parameters of the models and the values 
of χ2, RMSE (Root Mean Square Error), R2, R2

a and R2
pre for 

the five new methods are given in the Table 2. 
In this study it is observed that the parameters of the 

Haldane model produce some unexpectedly large estimates 
for the methods I, II, and IV. Also, it is observed that, the 
method V for both the Powell and the Webb model pro-
duce unexpectedly small estimates of µmax than the highest 
tabulated value of µmax. Therefore, these methods are elimi-
nated in step -1. Due to logically and biologically consistent 
values of the estimated parameters, the other methods for 
their respective growth models are promoted to the next 
step. 

In step -2, it is observed that the calculated Chi-square 
(χ2) are above 99.5% level of significance for all the methods 
with respect to the corresponding degrees of freedom asso-
ciated with each candidate model.

In step-3, the top five methods are selected from all 
the methods and the candidate models by comparing the 
RMSE. The RMSE of the methods whose estimated values 
are less than or equal to 0.0170 (up to four digits after deci-
mal sign) are considered in our study. 
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If the value of R2
prediction is r and the value of R2 is m, 

then about r% of the variability could be expected from 
the model to explain in prediction of new observations. 
In step-4 in our study we considered only those methods 
having R2 greater than 99%, R2

a above 0.99 and R2
pre above 

99.7%.
After following all the steps of the selection criteria, it is 

concluded that the Powell model in case of method IV is the 
best fit among all the candidate models in our study. 

All the eliminated methods along with the results are 
displayed through the shaded area in Table 2.

Several applications of the Haldane, Moser, Powell and 
the Webb model are available in the literature. Some of the 
application of these models using traditional parameter 
estimation methods and results obtained are highlighted 
and compared with our study. 

The Haldane model was fitted satisfactorily by Mohanty 
[21] for a mixed microbial culture and estimated R2 value 
as 74.4%. Krishnan [11] observed satisfactory fit of the 
Haldane model on his study of biodegradation kinetics of 
Azo dye mixture with estimated R2 as 94.7%. The Moser 
model was fitted satisfactorily by Choi and Lee [22] on 
micro algal biomass production and estimated R2 value as 
95.7%. Ardestani [23] fitted the Moser model on growth 
of Pseudomonas putida and calculated R2 as 91.3%. The 
Powell model was fitted satisfactorily by Mahanta [10] on 
Escherichia Coli with estimated R2 value as 99.6%. Dutta 

[13] reported satisfactory fit of the Webb model on growth 
kinetics of Pseudomonas cepacian and estimated R2 value 
as 93.3%. 

In our study we have observed that these models are 
fitted satisfactorily to the growth data of Escherichia Coli 
while using the newly introduced estimation methods.

CONCLUSION

In general, the traditional estimation methods require 
more calculations and time. The newly developed methods 
are simple and require lesser amount of time to estimate the 
parameters and better results can be obtained.

In this study it is found that all the newly developed 
methods produce satisfactory results. The Powell model 
produces the best results with respect to method IV com-
pared to the other models with estimated (χ2) value 0.0195, 
RMSE value 0.0128, R2 value 99.75%, R2

a value 0.9970 and 
R2

pre value as 99.72% . On the basis of the findings of this 
study we conclude that all these models as well as these new 
methods can be applied to study any microbial growth phe-
nomenon in a comprehensive way. 
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Table 2. Estimated parameters with the statistical analysis

Model Method
Parameters

χ2 RMSE R2
a

R2

(In %)
R2
pre

(In %)ks µmax ki m p

Haldane

I 92.7081 1.1316 4388.229 0.0166 0.0197 0.9929 99.3950 99.3036
II 92.7081 1.2018 2496.271 0.0245 0.0262 0.9875 98.9313 98.9313
III 145.3654 1.5251 771.468 0.0166 0.0248 0.9887 99.0383 98.7600
IV 145.3654 0.9782 732.029 1.2154 0.1747 0.4468 52.5889 37.6748
V 98.7702 1.1150 7100.315 0.0068 0.0122 0.9972 99.7662 99.7341

Powell

I 80.2710 1.0297 0.0027 0.0156 0.0170 0.9947 99.5506 99.5116
II 80.2710 1.0297 0.0027 0.0156 0.0170 0.9947 99.5506 99.5116
III 78.9884 1.0312 0.0292 0.0262 0.0133 0.9967 99.7220 99.6960
IV 78.9884 1.0320 0.0245 0.0195 0.0128 0.9970 99.7430 99.7170
V 78.9884 0.0206 1.0291 0.0148 0.0127 0.9970 99.7489 99.7219

Moser

I 103.6765 0.8520 1.1896 0.0556 0.0387 0.9727 97.6679 97.2094
II 76.2564 1.1753 1.1896 0.01545 0.0185 0.9937 99.4669 99.3772
III 60.8693 0.8520 0.9060 0.1335 0.0699 0.9113 92.4007 89.9835
IV 146.833 0.9337 1.1896 0.01767 0.0155 0.9959 99.6246 99.5538
V 95.6606 1.3428 0.9060 0.02325 0.0312 0.9823 98.4839 97.9424

Webb

I 34.9998 2.0518 27.5899 0.07374 0.0383 0.9733 97.7183 97.4991
II 90.7722 0.8520 117.6560 0.01301 0.0174 0.9945 99.5296 99.3785
III 89.3791 0.8771 117.6560 0.01260 0.0184 0.9938 99.4703 99.3418
IV 96.1564 0.8520 75.3356 0.02299 0.0252 0.9893 99.0079 98.7717
V 58.6506 0.6898 117.6560 0.1291 0.0724 0.9048 91.8434 88.5318
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