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Abstract   Öz 

Effective identification of weed species is critical for 

efficient agricultural management, enabling targeted 

eradication and optimized farming practices. In this study, 

ResNet, VggNet and DenseNet were used to evaluate the 

performance of deep learning models in accurately 

classifying different weed species. The dataset consisted of 

high-resolution images of different weed species taken 

under different environmental conditions. The 

experimental results demonstrated the ability of these 

models to identify multiple weed species with high 

accuracy. Evaluation metrics, accuracy, precision, recall 

and confusion matrices, validated the effectiveness of the 

models in discriminating between species. Of the 

convolutional neural network architectures tested, VggNet 

showed the highest classification accuracy of 99.21%. The 

results underscored the potential of deep learning-based 

classification systems in advancing scalable and efficient 

weed species identification and management for 

agricultural applications. 

 Yabancı ot türlerinin etkili bir şekilde tespiti, verimli 

tarımsal yönetim için kritik öneme sahiptir ve hedefe 

yönelik yok etme ve optimize edilmiş tarım uygulamalarını 

mümkün kılar. Bu çalışmada, ResNet, VggNet ve 

DenseNet derin öğrenme modellerinin farklı yabancı ot 

türlerini doğru bir şekilde sınıflandırmadaki 

performanslarını değerlendirmek için kullanılmıştır. Veri 

seti, farklı çevresel koşullarda çekilmiş çeşitli yabancı ot 

türlerine ait yüksek çözünürlüklü görüntülerden 

oluşmaktadır. Deneysel sonuçlar, bu modellerin birden 

fazla yabancı ot türünü yüksek doğrulukla tespit etme 

yeteneğini göstermiştir. Değerlendirme metrikleri, 

doğruluk, hassasiyet, hatırlama ve hata matrisi, modellerin 

türler arasındaki ayrımı yapmadaki etkinliğini 

doğrulamıştır. Test edilen evrişimli sinir ağı mimarileri 

arasında, VggNet %99.21’lik en yüksek sınıflandırma 

doğruluğunu sergilemiştir. Sonuçlar, derin öğrenmeye 

dayalı sınıflandırma sistemlerinin, tarımsal uygulamalar 

için ölçeklenebilir ve verimli yabancı ot türü tespiti ve 

yönetimi konusunda büyük bir potansiyele sahip olduğunu 

vurgulamıştır. 

Keywords: Agricultural management, Classification, Deep 

learning, Multi-class, Precision agriculture, Weed species 

identification 

 Anahtar kelimeler: Tarımsal yönetim, Sınıflandırma, 
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1 Introduction 

Agriculture is the practice of growing plants to fulfill 

human needs for food, fiber, and bioenergy. Various factors 

can limit the crop production process in agriculture [1], with 

weeds being one of the most significant. Weeds generally 

refer to plant species that grow spontaneously in natural 

environments without human cultivation. These plants are 

not intentionally grown for agriculture or horticulture but 

emerge naturally. Weeds may be native to a specific region 

and are often considered undesirable in fields, gardens, or 

lawns [2]. While some weeds can be harmful, others 

contribute to the natural balance. Certain weeds offer 

nutritional value and can be utilized in traditional medicine 

or cooking. Despite their occasional benefits, weeds are 

typically seen as undesirable due to the damage they cause 

to agricultural fields, gardens, and ecosystems. One of the 

primary negative effects of weeds is their competition with 

agricultural crops and native plants. Weeds compete for 

essential resources such as water, nutrients, and light, 

thereby inhibiting the growth of crops [3]. Furthermore, 

weeds can reduce agricultural yield, as their presence can 

negatively impact crop development, leading to a smaller 

harvest. In addition, some weeds serve as hosts for diseases 

and pests, facilitating the spread of plant diseases and pests. 

Weed infestations can also increase the labor and costs 

associated with weed control and land cleaning, resulting in 

additional time, financial resources, and effort required by 

agricultural enterprises [4]. Moreover, in natural ecosystems, 

weeds can outcompete native plant species, disrupting 

ecological balance and causing biodiversity loss. The 

negative consequences of weeds on both ecosystems and 

agricultural land emphasize the importance of effective weed 

control and management. Among the various control 

methods, herbicides play a vital role in managing weed 
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growth [5]. As technological advancements continue to 

progress, the agricultural sector, in particular, is increasingly 

adopting technology to replace labor. Weed control methods 

are evolving alongside these technological developments. 

One of the most significant innovations in weed management 

is the use of data analytics. Data analytics employs modern 

technologies to identify and assess weed densities in 

agricultural fields. Drones or sensors capture images that 

detect weeds, and this data can be analyzed using artificial 

intelligence or machine learning techniques to map weed 

distribution and assist in targeting herbicide application [6], 

[7]. 

The literature on weed species identification and 

categorization has mainly focused on data analysis-based 

methods. Numerous studies have investigated the application 

of artificial intelligence approaches, including deep learning 

and machine learning, to weed detection [8]. Using 

techniques such as pattern recognition and data analysis, 

these methods have identified and categorized different weed 

species. For example, Espejo-Garcia et al. had introduced a 

plant identification system that combined features extracted 

from traditional machine learning classifiers such as support 

vector machines (SVM), XGBoost and logistic regression. 

Their system had also used pre-trained convolutional neural 

networks (CNNs) such as Xception, Inception-ResNet, 

VggNet, MobileNet and DenseNet. They had evaluated the 

approach using a dataset containing two crop species - cotton 

and tomato - and two weed species - black nightshade and 

velvetleaf. Their results showed that the combination of an 

SVM with a fine-tuned DenseNet resulted in a micro-F1 

score of 99.29% [9]. Hu et al. had proposed a novel graph-

based deep learning architecture, Graph Weeds Net (GWN), 

to identify different weed species from RGB images of 

complex pastures. Their approach achieved a classification 

accuracy (CA) of 98.10% [10]. Similarly, Tang et al. had 

used convolutional neural networks combined with K-means 

feature learning for weed identification. By using K-means 

pre-training, they achieved a CA of 92.89% [11]. Trong et 

al. had developed a classification strategy based on late 

fusion of deep neural networks (DNNs) to improve the 

accuracy of weed identification. They had applied their 

method to two datasets, including the Chonnam National 

University (CNU) seedling and weed datasets, using five 

different DNN models such as NasNet, ResNet, Inception-

ResNet, MobileNet and VggNet. Their results had shown a 

CA of 98.77% for the CNU weed dataset and 97.31% for the 

seedling dataset [12]. Olsen et al. had used an openly 

available multi-class image dataset of Australian rangeland 

weed species. This dataset contained 17509 labelled images 

of eight prominent weed species from northern Australia. 

They had used benchmark deep learning models, specifically 

Inceptionv3 and ResNet50, to assess classification 

performance. These models had achieved average 

classification accuracies of 95.10% and 95.70% respectively 

[13]. In addition, Jin et al. had investigated the use of grid 

cells to train deep learning models for accurate identification 

of weed locations in photographs. They evaluated several 

neural networks, including DenseNet, EfficientNetV2, 

ResNet, RegNet and VggNet, for the detection and 

differentiation of weed species in turfgrass. VggNet stood 

out by achieving an F1 score of 0.950 for identifying 

common dandelion and F1 scores of ≥0.983 for recognizing 

subspecies such as dallisgrass, purple nutsedge and white 

clover. In addition, multi-classification approaches using 

DenseNet, EfficientNetV2 and RegNet achieved F1 scores 

of ≥0.984 for the detection of dallisgrass and purple 

nutsedge. In their study, EfficientNetV2 also excelled in a 

binary classification framework, achieving F1 scores of 

≥0.981 for distinguishing turfgrass from weeds [14]. 

These studies have highlighted the critical importance of 

effective weed control strategies in achieving high 

agricultural yields. To control weeds with uneven spatial 

distribution patterns, herbicides were applied by ground or 

aerial robots. Before herbicides are applied, computer vision 

algorithms detect weeds in the field, making these algorithms 

central to the herbicide application process. As a result, large 

datasets of agricultural weeds were essential for the 

development of advanced computer vision algorithms. This 

work used deep learning algorithms to detect weeds for 

precision herbicide application. Weed classification was 

performed using an image dataset previously reported in 

[15]. This study further advanced computer vision-based 

weed detection techniques for in-field spot spraying 

applications. In addition, by emphasizing the ability of 

computer vision models to extract weed-related information 

from complex backgrounds, it extended the applicability of 

weed identification to difficult areas within crop fields. 

The structure of this manuscript is organized as follows: 

Section 2 presents the experimental setup, including a 

comprehensive description of the image dataset and the 

methodologies employed. Section 3 discusses the 

experimental findings and evaluates the performance of the 

proposed approach against several deep learning 

classification methods. Lastly, Section 4 concludes the study 

with a summary of the key insights and implications. 

2 Materials and methods 

2.1 Comprehensive data description 

The dataset used in this study focused on categorizing 

weed species to facilitate precision pesticide application. The 

data was collected by Rai et al. [15] who collected image data 

in two categories: aerial weed images and individual weed 

images. However, only the individual weed category was 

used in this study. To replicate real world conditions, plants 

were placed close together to mimic a natural field 

environment. Aerial photographs were then used to identify 

and extract individual weeds for further analysis. Data were 

collected from three different sites, all following consistent 

field organization and image collection protocols. North 

Dakota State University (NDSU) collected the data from 

these sites in the United States [15].  

The dataset contains 3975 photographs of five common 

weed species in North Dakota: waterhemp (amaranthus 

tuberculatus), kochia (bassia scoparia), ragweed (ambrosia 

artemisiifolia), horseweed (erigeron canadensis), and redroot 

pigweed (RRPW) (amaranthus retroflexus). The greenhouse 

data set was collected under varying light and background 

conditions over several days and times. Field data were 
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collected using a DJI Phantom 4 Pro (V2.0), a commercially 

available unmanned aerial system (UAS). To ensure that the 

data accurately represented real-world conditions, several 

field factors were taken into account, including different 

background textures, vegetation masking, shadows, image 

blur, and the presence of similar-looking objects and weeds. 

The dataset is available in two compressed files in the 

Mendeley repository: Aerial_Weeds.rar and 

Individual_Weed.rar.  

The Aerial_Weeds.rar file contains the ‘images’ and 

‘labels’ folders. The ‘labels’ folder is further subdivided into 

three subfolders for different label formats (JSON, TXT, 

XML), while the ‘images’ folder contains high resolution 

JPG aerial images. A similar hierarchical structure is 

followed in the Individual_Weed.rar file, where photos and 

labels for each weed species are organised within their 

respective species classes. Figure 1 illustrates the class 

design of a particular weed category as defined by Rai et al. 

The aerial photographs were taken at a resolution of 

5472×3648 pixels and saved in JPG format. Details of these 

images are given in Table 1, with the data divided into four 

weed species types. The individual weed dataset was 

developed by extracting specific classes of each weed 

species from aerial images, followed by manual annotation 

in multiple formats. To increase the diversity of the training 

set, a small number of photographs taken in greenhouses 

using a Canon 90D handheld camera were also included. 

After manually annotating 3424 photographs, a total of 7700 

trials were generated across the four weed groups. Figure 2 

shows the weed species trials together with the annotated 

photographs exported in various formats. 

To increase the size and diversity of the dataset, data 

augmentation techniques were used by Rai et al. [15], [16]. 

The original dataset consisted of 785 photos of kochia, 448 

of horseweed, 355 of ragweed and 115 of RRPW. Various 

augmentation methods were applied to these images and the 

final output is summarized in Table 1. Furthermore, Rai et 

al. conducted image collection in Casselton during late May 

and early June of 2021, while data from Carrington was 

gathered between mid-July and late August of the same year. 

At Grand Farm, image acquisition took place from mid-

August to the end of September in 2022. Altogether, this 

effort resulted in the collection of two years’ worth of image 

data. 

 

Table 1. Distribution of images for each weed species [15] 

Individual 
Weed 

Weed Species 

Kochia Horseweed Ragweed RRPW Total 

Total 
images 

1150 1032 878 364 3424 

Total 

instances 
2600 1700 2000 1400 7700 

 

 
Figure 1. Flowchart folder representation of weed 

species [15] 

 

 
Figure 2. Individual weed species from cropped original images [15] 
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2.2 Methods 

CNNs are a specific class of deep learning models that 

excel at processing visual data, particularly images [17]. 

Their architecture is designed to automatically extract 

hierarchical patterns and relationships within input data, 

enabling the identification of spatial structures. A key 

component of CNNs is the convolutional layer, which uses 

filters or kernels to scan the input data and capture basic 

features such as edges, textures and shapes. These filters 

traverse the input data, allowing the network to recognize 

different aspects of the image. Pooling layers are 

incorporated to reduce the spatial size of the feature maps 

and focus the network’s attention on the most relevant 

features [18].  

Common pooling strategies include average pooling and 

maximum pooling. To enhance the network's ability to 

model complex patterns, activation functions such as the 

rectified linear unit introduce non-linearity. In the final 

layers, fully connected layers connect neurons across 

successive layers, enabling the model to learn higher-level 

abstractions and make accurate predictions. CNNs have had 

a profound impact on several fields, particularly computer 

vision, due to their ability to automatically learn complex 

feature hierarchies, and have achieved significant success in 

tasks such as image classification, object detection, and face 

recognition [19].  

The design of CNNs, in particular the convolutional and 

pooling layers, allows for the efficient capture of spatial 

dependencies in visual data, which contributes to their 

success in these applications [20]. The architecture used in 

this research is illustrated in Figure 3, which shows the 

overall methodology. In this design, the convolution and 

pooling layers form the initial stages of the network, while 

the final stages consist of a fully connected layer followed 

by a categorization layer. In essence, CNNs consist of 

successive trainable segments culminating in a 

discriminative classifier [21]. The layers work together to 

perform the training process, starting with the collection of 

input data. CNN architectures, ResNet, VggNet and 

DenseNet, were used to classify the four classes of weed 

images used in this study. All classification tasks were 

performed on a computer equipped with 16 GB of RAM and 

an Intel Core i7 processor running at 2.92 GHz. 

2.2.1 ResNet 

The ResNet architecture addresses the vanishing gradient 

problem common to very deep neural networks [22]. This 

problem, where gradients diminish as they move backwards 

through layers, can make it difficult for early layers to learn 

effectively. ResNet introduces residual learning, which 

allows the network to learn residual mappings rather than the 

full intended mappings directly.  

The main feature of ResNet architectures is the inclusion 

of residual blocks, which contain shortcut connections that 

bypass certain layers. These shortcuts improve the flow of 

gradients during backpropagation, helping to mitigate 

problems such as the vanishing gradient problem and 

facilitating the training of very deep networks. In each 

residual block, the input is combined with the output of the 

convolutional layers, promoting a more efficient learning 

process. 

ResNet models typically use global mean pooling, 

followed by fully connected layers and a softmax layer for 

classification tasks [23]. This design has proven highly 

effective in tasks such as image classification, object 

detection and semantic segmentation. ResNet has achieved 

cutting-edge performance on popular datasets such as 

ImageNet, and its robust results have made it a staple in 

many computer vision applications. 

2.2.2 VggNet 

VggNet is designed primarily as a series of convolutional 

layers, each followed by a max-pooling layer for 

downsampling, ensuring that the network remains simple 

and uniform in structure [24]. A notable feature of VggNet 

is the use of small filter sizes, such as 1×1 convolutional 

layers combined with 3×3 filters, which help to reduce 

dimensionality while capturing fine-grained features in the 

input images. This approach allows the network to 

effectively detect intricate details across images. In addition, 

the depth of the VggNet is another defining characteristic, 

with the network stacking multiple convolutional layers, 

enhancing its ability to learn increasingly discriminative and 

hierarchical representations of features [25]. The depth of the 

network contributes significantly to its performance, as each 

additional layer helps to refine the feature extraction process. 

In the later stages of the network, VggNet includes fully  

 

 
Figure 3. The general architecture of CNNs typically consists of convolutional and pooling layers 
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connected layers, followed by a softmax classifier to perform 

image classification. VggNet is also available in different 

configurations, such as Vgg16 and Vgg19, which differ 

mainly in the number of layers. Vgg16 consists of 16 

weighting layers, while Vgg19 has 19 weighting layers [25]. 

These variations allow the network to be tailored for 

different levels of complexity, depending on the specific 

requirements of the task. VggNet has achieved remarkable 

success in image classification benchmarks, demonstrating 

its ability to learn robust and detailed feature representations. 

Its simple architecture and design principles have made it a 

popular choice for computer vision researchers and 

practitioners [26]. 

2.2.3 DenseNet 

DenseNet is a neural network architecture introduced by 

Huang et al. [27]. The distinguishing feature of DenseNet is 

its dense connectivity, which differs from traditional 

architectures such as ResNet by connecting each layer to 

every other layer in a feed-forward fashion. In this 

configuration, each layer receives feature maps from all 

previous layers and forwards its own feature maps to all 

subsequent layers within a dense block, promoting extensive 

information sharing throughout the network. Dense blocks 

are the core elements of DenseNet. Each dense block consists 

of several layers, including activation, batch normalization, 

and convolutional layers, which work together in a tightly 

coupled fashion. Later layers in the block receive the 

accumulated feature maps from earlier layers, allowing 

efficient feature propagation and reuse throughout the 

network. DenseNet also incorporates a parameter called the 

growth rate, which determines the number of additional 

feature maps generated at each layer within a dense block, 

directly influencing the width of the network and its capacity 

for feature learning [28]. 

Between dense blocks, DenseNet uses transition layers 

that manage the spatial dimensions and regulate the number 

of feature mappings. These transition layers often consist of 

convolution, batch normalization, and pooling operations 

that effectively adjust the number of channels and 

downsample feature mappings. DenseNet also includes 

bottleneck layers, typically implemented as 1×1 

convolutions, which streamline the computational 

requirements by reducing the input feature maps prior to the 

computationally intensive 3×3 convolutions. For 

classification tasks, DenseNet concludes with global average 

pooling, a fully connected layer and a softmax classifier, 

enabling the network to provide class predictions. 

DenseNet’s densely connected architecture encourages 

feature reuse, facilitates effective gradient flow, and 

improves information transfer across layers, contributing to 

robust feature propagation. This structure effectively 

mitigates problems such as the vanishing gradient problem, 

supporting more efficient training and improved 

performance [29]. 

2.3 Classification metrics 

Classification is a fundamental concept in machine 

learning and statistics, involving the categorization of data 

into distinct categories or classes based on specific features. 

The primary goal is to develop a model that can accurately 

predict the category of unseen data by learning patterns from 

a training data set. In this study, CA was used as a 

performance metric, calculated using the confusion matrix 

[30]. A multiclass confusion matrix is a tabular 

representation of the performance of a classification 

algorithm for multiple classes. It is structured as a square 

matrix, with rows representing the actual classes and 

columns representing the predicted classes. Each cell reflects 

the number of instances from a particular actual class that 

were predicted to belong to a particular class. 

For example, Table 2 displays a confusion matrix for a 

four-class problem, A, B, C, and D. The rows correspond to 

the actual classes, while the columns represent the predicted 

classes [31]. The diagonal cells contain the number of 

correctly classified examples, such as the number of 

instances of class A that were correctly predicted as class A. 

Off-diagonal cells indicate misclassifications, such as the 

number of instances of class B that were incorrectly 

classified as class C. This matrix provides valuable insight 

into the performance of the model across all classes, 

allowing a detailed evaluation of its effectiveness. 

 

Table 2. Four-class confusion matrix 

Confusion 

Matrix 

Predicted Classes 

Predicted 

Class A 

Predicted 

Class B 

Predicted 

Class C 

Predicted 

Class D 

Actual Class A AP1 BP1 BN1 BN1 

Actual Class B BN2 AP2 BP2 BN2 

Actual Class C BN3 BN3 AP3 BP3 
Actual Class D BN4 BN4 BP4 AP4 

 

A multi-class classification problem with four categories, 

Class A, Class B, Class C and Class D, is represented by the 

confusion matrix shown in Table 2. Each cell in this matrix 

quantifies the number or frequency of instances belonging to 

a particular true class and its corresponding predicted class. 

For example, the correctly classified instances of class A are 

represented as AP1, while BP1 denotes instances that were 

misclassified as class A but actually belong to another class. 

Similarly, the matrix contains entries for true positives (AP), 

false positives (BP) and false negatives (BN) for each class. 

The overall CA for a four-class problem can be derived from 

this confusion matrix using Equation 1. The total number of 

trials is represented by the sum of all entries in the matrix, 

which includes correctly and incorrectly classified instances 

across all classes: AP1 + BP1 + BN1 + BN1 + BN2 + AP2 

+ BP2 + BN2 + BN3 + BN3 + AP3 + BP3 + BN4 + BN4 + 

BP4 + AP4. This comprehensive representation allows a 

detailed evaluation of the performance of the classification 

model. 

Recall (RC) and Precision (PRC) are key performance 

metrics used to assess the effectiveness of classification 

models, particularly in multi-class classification scenarios 

[32]. PRC quantifies the accuracy of the model's positive 

predictions for each specific class. In a multi-class 

classification with four classes, the accuracy for each class is 

determined by the ratio of true positives to the total number 
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of predicted instances for that class [33]. On the other hand, 

RC measures the ability of the model to correctly identify all 

instances that belong to a particular class out of the total 

number of instances that truly belong to that class. For each 

class in a four-class classification task, recall is calculated as 

the ratio of true positives to the total number of true instances 

of that class. Equations 2 and 3 define the mathematical 

expressions for RC and PRC respectively. In Equation 2, the 

variable Ax is the sum of the true positives and false 

negatives for each class: 𝐴𝑥= 𝐴𝑃1 + 𝐵𝑁1 +  𝐴𝑃2 +
𝐵𝑁2 +  𝐴𝑃3 + 𝐵𝑁3 +  𝐴𝑃4 + 𝐵𝑁4. In Equation 3, Ab 

represents the sum of the true positives and false positives 

for each class: 𝐴𝑃1 + 𝐵𝑃1 +  𝐴𝑃2 + 𝐵𝑃2 +  𝐴𝑃3 +
𝐵𝑃3 + 𝐴𝑃4 + 𝐵𝑃4. These formulas allow the calculation of 

the recall and precision values, which are crucial for 

understanding the performance of the classification model. 

 

𝐶𝐴 =
(𝐴𝑃1 +  𝐴𝑃2 +  𝐴𝑃3 +  𝐴𝑃4)

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑎𝑙𝑠
𝑥100 (1) 

𝑅𝐶 =
(𝐴𝑃1 +  𝐴𝑃2 +  𝐴𝑃3 +  𝐴𝑃4) 

𝐴𝑥
𝑥100 (2) 

𝑃𝑅𝐶 =
(𝐴𝑃1 +  𝐴𝑃2 +  𝐴𝑃3 +  𝐴𝑃4) 

𝐴𝑏
𝑥100 (3) 

3 Results 

In this study, transfer learning techniques were used for 

weed species classification. The starting point for training 

was the pre-trained parameters of three CNN models, 

ResNet, VggNet and DenseNet. These models, which are 

widely used for large datasets such as ImageNet, benefit 

from their ability to use extensive pre-training. The images 

within the ImageNet dataset are standardized to a resolution 

of 224×224 pixels, a size that balances computational 

efficiency with optimal performance for deep neural 

networks. Accordingly, all training and test images in this 

study were resized to 224×224 pixels prior to 

experimentation. A 5-fold cross-validation approach was 

used to evaluate model performance, and details of the CNN 

architectures used are shown in Table 3. 

During training, the first five layers of the VggNet model 

were frozen to preserve pre-trained features, while batch 

sizes varied between 8 and 128 depending on the 

performance of each model. Of the architectures, DenseNet 

had the smallest number of layers and parameters, while 

VggNet had the simplest structure with 24 layers. All models 

were trained for 20 epochs at a learning rate of 0.001, and the 

best performing parameters based on validation set accuracy 

were selected for testing. To comprehensively assess the 

performance of the models, evaluation metrics such as 

accuracy, precision, recall and the confusion matrix were 

used, particularly due to the unbalanced distribution of the 

weed species dataset. 

For model evaluation, 80% of the dataset was used for 

training and validation to optimize the CNN parameters, 

while the remaining 20% was reserved for testing. The 

dataset consisted of 3424 images for each weed species, 

randomly divided into training and test sets. Specifically, the 

training set contained 1032, 1150, 878, and 364 images for 

horseweed, kochia, ragweed, and redroot pigweed, 

respectively, while the test set contained 207, 230, 175, and 

73 images for these classes. The results of the confusion 

matrix for the ResNet architecture during the 5-fold cross-

validation are shown in Figure 4. As shown in Figure 4a, the 

CA for the first fold reached 99.00%, with 207 trials of class 

A, 223 trials of class B, 175 trials of class C and 73 trials of 

class D being correctly classified. 

 

Table 3. Details of the CNN architectures used in the study 

Model 

Parameters 

Batch 

size 

Number 

of layers 

Max 

Epochs 
Optimizer 

Base 
learning 

rate 

ResNet 8 72 15 SGD 0.0001 

VggNet 8 41 15 SGD 0.0001 
DenseNet 8 709 15 SGD 0.0001 

 

As depicted in Figure 4b, the classification accuracy 

(CA) for the second fold was 98.10%. In this fold, 205 trials 

of class A, 230 trials of class B, 166 trials of class C, and 71 

trials of class D were accurately classified. Moving to the 

third fold, shown in Figure 4c, the CA increased to 99.10%, 

with correct classifications of 206 trials for class A, 229 for 

class B, 173 for class C, and 71 for class D. For the fourth 

fold, represented in Figure 4d, the CA was calculated as 

98.80%. Specifically, 202 trials of class A, 228 of class B, 

175 of class C, and 72 of class D were classified correctly. 

Similarly, the fifth fold achieved a CA of 99.00%, as shown 

in Figure 4e. In this case, 206 trials of class A, 227 of class 

B, 173 of class C, and 71 of class D were accurately 

identified. Finally, Figure 4f illustrates the combined 

confusion matrix for the 5-fold cross-validation. The average 

results show that 205.20 trials of class A, 227.40 of class B, 

172.40 of class C, and 71.60 of class D were correctly 

classified across all folds. 

Figure 5 showed the confusion matrix result for each fold 

of the 5-fold cross-validation using the VggNet architecture. 

The first fold had a CA of 99.70%, as shown in Figure 5a. 

Specifically, 206 trials were correctly classified as class A, 

229 trials as class B, 175 trials as class C, and 73 trials as 

class D. Furthermore, a CA of 98.50% was calculated for the 

second fold, as shown in Figure 5b. Specifically, 204 trials 

were correctly classified as class A, 228 trials as class B, 173 

trials as class C, and 70 trials as class D. In Figure 5c, the 

third fold had a CA of 99.10% and 205 class A trials, 226 

class B trials, 175 class C trials and 73 class D trials were 

correctly classified. For the fourth fold, shown in Figure 5d, 

a CA of 99.00% was obtained and 200 trials of class A, 230 

trials of class B, 175 trials of class C and 73 trials of class D 

were correctly classified. Furthermore, as shown in Figure 

5e, the 5-fold had a CA of 99.70% and 206 trials of class A, 

228 trials of class B, 176 trials of class C and 72 trials of class 

D were correctly classified. Figure 5f showed the 5-fold 

validation confusion matrix. In this case 204.20, 228.20, 

172.80 and 72.20 trials of class A, B, C and D respectively 

were correctly classified. 

Figure 6 illustrated the confusion matrix results for each 

fold of the 5-fold cross-validation using the DenseNet 

architecture. In the first fold, as shown in Figure 6a, CA  
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Confusion 

Matrix 

Predicted Classes 

Predicted 

Class A 

Predicted 

Class B 

Predicted 

Class C 

Predicted 

Class D 

Actual 

Class A 
205.20 0.40 0.60 0.20 

Actual 

Class B 
1.60 227.40 1.00 0.00 

Actual 
Class C 

0.80 2.00 172.40 0.40 

Actual 

Class D 
0.20 0.60 0.40 71.60 

 

f) 

 

Figure 4. Confusion matrix result of a) 1st, b) 2nd, c) 3rd, d) 4th, e) 5th fold and f) mean 5-fold validation for ResNet 
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Figure 5. Confusion matrix result of a) 1st, b) 2nd, c) 3rd, d) 4th, e) 5th fold and f) mean 5-fold validation for VggNet 
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Predicted 

Class C 

Predicted 

Class D 

Actual 

Class A 
204.40 0.20 1.40 0.40 

Actual 

Class B 
0.40 228.80 1.80 0.00 

Actual 
Class C 

0.20 1.60 173.60 0.20 

Actual 

Class D 
0.40 0.20 0.80 71.40 

 

f) 

Figure 6. Confusion matrix result of a) 1st, b) 2nd, c) 3rd, d) 4th, e) 5th fold and f) mean 5-fold validation for DenseNet 
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reached 99.90%, with correct classifications of 206 trials for 

class A, 230 for class B, 175 for class C, and 73 for class D. 

For the second fold, depicted in Figure 6b, the CA was 

calculated as 98.20%, with 201 trials correctly classified as 

class A, 229 as class B, 173 as class C and 70 as class D. The 

third fold achieved a CA of 99.70%, with 206 trials correctly 

classified as class A, 230 as class B, 175 as class C and 72 as 

class D. The fourth fold, illustrated in Figure 6d, achieved a 

CA of 98.80%, with 204 trials correctly classified as class A, 

229 as class B, 174 as class C, and 70 as class D. Lastly, as 

shown in Figure 6e, the fifth fold recorded a CA of 98.50%, 

with 205 trials correctly classified as class A, 226 as class B, 

171 as class C and 72 as class D. The overall results for the 

5-fold validation are summarized in Figure 6f, with the 

average number of correctly classified trials being 204.40 for 

class A, 228.80 for class B, 173.60 for class C and 71.40 for 

class D.  

The classification results for CA, RC and PCR for all 

CNN architectures are shown in Table 4. As shown in the 

table, the highest CA is achieved by VggNet with 99.21%. 

The CA achieved with VggNet exceeds that of ResNet and 

DenseNet by 0.41% and 0.17% respectively. Furthermore, 

the RC values were calculated as 98.70%, 99.22% and 

98.86% for ResNet, VggNet and DenseNet respectively, 

while the PCR values were calculated as 98.87%, 99.15% 

and 99.03%, respectively. These CA results highlight the 

effectiveness of the VggNet architecture in classifying these 

4-class weed images. In addition to the results, an example 

image obtained from the training process for each weed 

images class is shown in Figure 7. 

 

Table 4. Classification results for each CNN architecture 

Model 
Classification Results (%) 

CA RC PRC 

ResNet 98.80 98.70 98.87 

VggNet 99.21 99.22 99.15 
DenseNet 99.04 98.86 99.03 

 

 

Figure 7. Example image for each weed image class 

 

Table 5 showed the average central processor (CPU) 

times for training three deep learning models: VggNet, 

ResNet and DenseNet. Of these, VggNet had the shortest 

processing time, with an average of 350.03 minutes, due to 

its relatively simpler architecture. ResNet required more 

time, with an average of 425.15 minutes, reflecting the 

additional computational overhead introduced by its residual 

links. DenseNet, with its densely connected layers, had the 

highest CPU time of 530.20 minutes, highlighting the 

increased computational demands of its complex structure. 

These results demonstrate the correlation between model 

complexity and CPU time, with more complex architectures 

tending to require greater computational resources. 

 

Table 5. Average central processor time results 

Results in terms of 

minutes 

Each CNN architecture 

VggNet ResNet DenseNet 

Average CPU time 350.03 425.15 530.20 

 

4 Conclusion 

This study represents a significant advance in the 

accurate and simultaneous identification of multiple weed 

species using deep learning techniques, in particular the 

VggNet model. The exceptional performance of VggNet, 

which achieved an impressive CA of 99.21%, highlights its 

effectiveness in accurately distinguishing between different 

weed species. The inclusion of high resolution images from 

different environmental conditions in the dataset further 

emphasizes the robustness and adaptability of the proposed 

models. A thorough evaluation using metrics such as 

accuracy, precision, recall and confusion matrix analysis 

highlights the effectiveness of the deep learning models in 

addressing the challenges of weed species discrimination. 

These results highlight the potential of integrating deep 

learning-based classification systems into agricultural 

practices. Such systems can provide scalable and efficient 

solutions for weed identification and management, thereby 

supporting precision agriculture and increasing crop 

productivity. 

Future research can explore the integration of additional 

environmental and biological factors to further refine model 

performance, and expand the dataset to include more weed 

species and scenarios. The promising results of this study lay 

the foundation for the development of automated, non-

invasive tools that can significantly contribute to sustainable 

agricultural practices. 
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