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1. Introduction  

Agriculture is one of the most essential human needs 

for the world after water and has become one of the 

cornerstones of life. Due to this importance, it attracts 

great attention worldwide, especially in Turkey. 

Agriculture is one of the most critical factors necessary 

for the country's development, which is why it is 

supported with all kinds of resources in our country and 

worldwide. However, the agricultural sector, which 

cannot meet the world's increasing human population, 

faces severe dangers due to unconscious practices. 

The increase in salt content due to practices such as 

uncontrolled use of fertilizers and excessive irrigation 

worldwide causes problems such as lands that become 

unfit for agriculture. With the advancement of 

technology, artificial intelligence applications have 

begun to play a role in disease detection and plant 

species classification in the agricultural field [1]. Artificial 

intelligence methods enable efficient use of time and 

reduce work intensity thanks to their high reliability and 

rapid classification [2]. 

Tomato has a significant market share due to its high 

global consumption. Preventing tomato diseases is 

essential for efficient tomato production. In this study, a 

classification was made to diagnose diseases occurring 

on the leaves of tomato plants. Leaf miner disease, one 

of the common tomato plant diseases, occurs by creating 

irregular, white-yellow tunnels in the plant leaves. These 

tunnels cause the leaves to lose chlorophyll and reduce 

their photosynthetic capacity. The tissue around these 

tunnels often becomes pale, and the damaged leaves 

dry out and fall off the plant over time. Tomatoes usually 

continue to ripen even as disease symptoms progress 

on the plant. 

In this study, diseases were detected and classified in 

tomato leaves using pre-trained deep learning 

algorithms such as ResNet-50 [3], DarkNet-53 [4], 

AlexNet [5], GoogleNet [6], and MobileNet-V2 [7]. The 

classification accuracy of these algorithms has been 

examined in detail. As a result of the analysis, the 

accuracy rate was increased by combining the CNN 
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architectures with the highest accuracy for detecting 

tomato leaf diseases. There are studies in the literature 

that detect diseases in tomato leaves. Mohanty et al. He 

used AlexNet and GoogleNet methods and achieved a 

success rate of 99.34%. The study used a dataset of 

54,308 images with 38 classes [8]. 

Tan et al. aimed to determine the most accurate ML/DL 

models for tomato disease classification using the 

PlantVillage dataset. They used different methods to 

extract disease features for machine learning algorithm 

applications manually. Their study, 52 texture features 

were extracted using local binary pattern (LBP) and gray 

level co-occurrence matrix (GLCM) methods, and 105 

color features using color moment and color histogram 

methods. By comparing different methods, they found 

the metrics (accuracy, precision, recall, F1 score) of the 

tested deep learning networks (AlexNet, VGG16, 

ResNet34, EfficientNet-b0, and MobileNetV2). They 

found that the measured machine learning algorithms 

were better than support vector machine (SVM), k-

nearest neighbors (kNN), and random forest (RF). They 

also found that among the ML/DL algorithms tested for 

our dataset and classification task, the ResNet34 

network achieved the best results with 99.7% accuracy, 

99.6% precision, 99.7% recall, and 99.7% F1 score [9]. 

Sibiya et al. used a CNN network to recognize and 

classify maize leaf disease images collected by 

smartphone cameras. The average accuracy value of 

92.85% obtained in the research showed the applicability 

of CNN in this field [10].  

Al-Amin proposed the Convolutional Neural Network 

(CNN) model to predict potato disease from potato 

leaves. The proposed approximation models achieved 

the highest accuracy of 98.33% [11]. 

Suryawati et al. used tomato leaf color image samples 

from the PlantVillage dataset to train the model and 

achieved test accuracies of 91.52%, 89.68%, and 

95.25%, respectively [12]. 

Agarwal et al. A CNN architecture was used. They 

achieved an average accuracy of 91.2% on a 10-class 

dataset. In Reference 5, images of tomato leaves 

comprising seven classes from the PlantVillage dataset 

are given as Toalexnet and VGG16 architectures. The 

impact of parameters such as image number, mini-batch 

size, and bias on classification accuracy was observed, 

and under the best conditions, Alexnet and VGG16 

achieved 97.29% and 97.49%, respectively. 

Preprocessing was applied to the image to improve the 

performance of the convolution network structure 

proposed in Reference 6. The method, consisting of 

eight hidden layers, achieved 98.4% success on the 

relevant dataset [13]. 

Cheng et al. used ResNet and Alexnet to identify 

agricultural damages. They also conducted comparative 

experiments with SVM and BP neural networks. 

Ultimately, they achieved the best accuracy of 98.67% 

by ResNet-101 [14]. Their study of 13,689 images and 

four classes achieved 97.92% accuracy rates with 

AlexNet and GoogleNet methods [15]. 

The rest of the article presents the material and method 

section. In this section, the dataset used in the study, the 

CNN architectures used, and the mRMR method are 

examined. The third part presents the application result 

and, finally, the convulsion part. 

2. Material and Methods 

In this section, the dataset consisting of tomato leaf 

diseases used in the study, CNN architectures, SVM 

classifier, mRMR method used for feature selection and 

the proposed model are examined. 

2.1. Dataset 

In this study, a dataset consisting of 7 diseased and 1 

healthy class and 4526 tomato leaf images was used. 

The images and classes in the publicly accessible 

Kaggle tomato leaf disease dataset [16, 17] are shown 

in Figure 1. 

Figure 1. Sample images from the dataset 

In this study, 496 images were used for Early Blight 

disease, 216 images were used for Healthy conditions, 

904 for Late Blight disease, 1024 for Leaf Miner disease, 

937 for Magnesium Deficiency, 360 for Nitrogen 

Deficiency, 72 for Potassium Deficiency, and 517 for 

spotted wilt virus disease. In total, 4526 images were 

used for this study, and the dataset used included 7 

diseased conditions and 1 healthy condition. 

2.2. Proposed Model 

As a result of the research conducted in this study, 

ResNet-50, DarkNet-53, AlexNet, GoogleNet, and 

MobileNet-V2, which are CNN-based pre-trained 

architectures, were used, and ResNet-50, DarkNet-53 

out of 5 architectures were selected according to the 

performance results and the balance of Confusion matrix 

values. MobileNet-V2 architectures' features were 

combined, and a 3621*3000 feature set was obtained. 

This feature table gave 88.9% success with Cubic SVM 

and the One-vs-All classification method. With the 

mRMR method [18], feature selection was made to make 

this table 3621 * 2200, and again with the Cubic SVM 

[19] and One-vs-All classification method, the success 

rate was increased to 93.1%, and tomato diseases were 

detected on tomato leaves. It was determined by 

optimizing with the all classification method. 

To extract features from unstructured data, it must first 

be converted into a mathematically representable form. 
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Then, features are extracted from this represented data 

using various methods, and finally, these features can be 

subjected to a classification process. CNN architectures 

consist of different layers for extracting and classifying 

features from visual data, and these architectures 

generally provide high accuracy rates. 

This study examined five different CNN architectures, 

namely AlexNet, ResNet-50, GoogleNet, MobileNetV2, 

and DarkNet-53, and analyzed their accuracy rates. 

According to the results, ResNet-50, MobileNetV2, and 

DarkNet-53 models were found to have high accuracy 

rates. Therefore, feature extraction was performed by 

combining the pre-trained network architectures of these 

three models. 

In the proposed approach, feature extraction is 

performed by combining these three models. This 

approach aims to combine different features for the 

same images from different architectures and create a 

more comprehensive feature extraction. 

2.3. Convolutional Neural Network  

CNNs are artificial neural networks that bring 

revolutionary innovations in the field of deep learning and 

especially image processing. One of the reasons why 

CNN architectures, which went through a stable period, 

are popular is that the Alexnet model won the ILSVRC 

ImageNet competition in 2012. Another reason why CNN 

architectures are becoming popular is that the amount of 

information held in databases is increasing with 

developing technology and powerful machines to 

process these large datasets [20]. CNN architectures, 

which stagnated due to the positive developments and 

the need, are becoming more popular daily [21]. Another 

reason why CNN architectures have become popular 

recently is that the feature extraction problem in classical 

machine learning architectures has been solved in CNN 

architectures. In classical machine learning methods, 

feature extraction is a very troublesome process. In this 

process, experts in their field are needed. This situation 

has negative aspects both in terms of cost and time. 

Unlike classical machine learning methods, CNN 

architectures can perform the learning process directly 

on the model. In ESA architectures, data is given directly 

to the model through the input layer. No pre-processing 

steps are required here. 

CNNs' basic components consist of convolution layers, 

activation functions, pooling layers, and fully connected 

layers. Convolution layers create feature maps from 

input data by using filters to extract features in images. 

These layers are often equipped with non-linear 

activation functions such as ReLU. While pooling layers 

reduce the size of feature maps and reduce the 

computational load, fully connected layers sit at the end 

of the network and perform tasks such as classification. 

This study used CNN models ResNet-50, DarkNet-53, 

AlexNet, GoogleNet, and MobileNet-V2. 

2.4. mRMR  

Minimum Redundancy Maximum Relevance (mRMR) is 

a feature selection method used in data analytics. This 

method is used to identify the most essential features in 

the dataset. It is based on two basic principles: minimum 

repetition and maximum relevance. According to the 

principle of minimum duplication, the similarity between 

the selected features should be low. That is, the selected 

features should be as little interconnected as possible. 

According to the principle of maximum relevance, the 

selected features should have as high a relationship as 

possible with the target variable (for example, class 

labels). The selected features should be directly related 

to the target variable. 

The mRMR algorithm calculates a feature score based 

on features' relevance and redundancy measurements. 

It then ranks the features based on these scores and 

selects the ones with the highest scores. In this way, 

features with a high relationship with the target variable 

are selected while the similarity between the selected 

features is reduced as much as possible. 

In this study, 5000 features were extracted with five 

architectures on 4526 images, and the three 

architectures with the highest and most balanced 

success rates were selected and reduced to 3000 

features. Applying mRMR to the remaining feature matrix 

reduced it to 2200 features. 

2.5. Support Vector Machines 

Support Vector Machine (SVM) is a powerful 

classification and regression method widely used in 

machine learning. SVM finds a hyperplane to distinguish 

between data. Essentially, SVM focuses on finding an 

optimal discrete hyperplane to classify a dataset. This 

hyperplane is used to classify data points and tries to 

maximize the margin between data points. The main 

goal of SVM is to find a hyperplane that maximizes the 

margin between classes, thus achieving the best 

separation between classes. 

One of the most important features of SVM is that it can 

also handle nonlinear datasets. This is achieved by using 

different kernel functions. Kernel functions transform 

data points into a higher-dimensional space in the 

feature space, making them linearly separable. In this 

way, even nonlinear problems become linearly 

separable. 

It is stated that SVM was initially proposed for two-class 

problems but was later extended to multi-class 

classification problems [22]. 

After completing the preprocessing and feature 

extraction steps, the SVM classifier can classify images. 

It is trained on the feature vectors, and then the resulting 

model is evaluated using the test data. 

 The study used cubic SVM, a variant of SVM that uses 

a third-order kernel function. This function transforms the 

data points into a higher-dimensional space in the 

feature space, making them linearly separable. Thus, it 

can be used effectively in complex and nonlinear 

datasets. 
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3. Application Results 

Confusion matrix is a metric used to measure the 

performance rates of models. This matrix shows the 

relationship between predicted and actual values. True 

Positive (TP) represents data points the classifier 

correctly identifies as positive, while True Negative (TN) 

refers to data correctly identified as negative. False 

Positive (FP) contains data points that belong to the 

negative class but are incorrectly identified as positive. 

False Negative (FN) represents data that belongs to the 

positive class but is incorrectly classified as negative. In 

the study, Accuracy, Precision, Recall, and F-score 

metrics were used to measure the performance of the 

models. 

This study was created with artificial intelligence for 

conscious agriculture and aimed to raise farmers' 

awareness by detecting diseases in tomato leaves. 

Using the tomato leaf dataset consisting of 4526 images, 

a total of 5000 features were extracted from 5 CNN 

architectures, namely ResNet-50, DarkNet-53, AlexNet, 

GoogleNet, and MobileNet-V2 architectures, which are 

pre-trained CNN architectures, and this number was 

divided into 3 CNN architectures (ResNet-V2) depending 

on the performance rate. 50, DarkNet-53, and 

MobileNetV2) and reduced to 3000 and 2200 features 

using mRMR (Minimum Redundancy Maximum 

Relevance). This feature matrix was trained with Cubic 

SVM, and a model was created. Satisfactory values were 

obtained in the tests performed on the created model. 

According to the experimental results obtained, it has 

been observed that the Cubic SVM classifier can achieve 

high classification accuracy by determining the correct 

parameters and using an optimized approach. 

Additionally, it has been determined that there are 

savings in terms of cost and time thanks to the mRMR 

method. The results of the studies reveal that high 

accuracy rates can be achieved in the classification 

process by determining appropriate parameters. These 

findings show that the Cubic SVM classifier can be used 

effectively in practical applications to detect tomato leaf 

disease. 

To compare the proposed model's performance, feature 

maps of the images in the dataset were first obtained 

using 5 pre-trained CNN architectures. These feature 

maps were then classified in the SVM classifier. 

In this study, features were extracted from the dataset 

consisting of tomato leaves with AlexNet, one of the pre-

trained architectures of CNN, and the accuracy rate was 

obtained as 82.4% as a result of training and testing 

processes with the Cubic SVM method. The Confusion 

matrix resulting from this process is given in Figure 3. 

 

Figure 2. Confusion matrix of AlexNet + SVM 

AlexNet + SVM structure: Of the 32 images used for 

testing in Early Blight disease, 27 were predicted 

correctly, and 5 were predicted incorrectly. In the Healthy 

condition, out of 13 images used for testing, 6 were 

predicted correctly, and 7 were predicted incorrectly. Of 

the 58 images used for testing in Late Blight disease, 53 

were predicted correctly, and 5 were incorrect. Of the 65 

images used for testing in Leaf Miner disease, 51 were 

predicted correctly, and 14 were predicted incorrectly. Of 

the 58 images used for testing in Magnesium Deficiency 

disease, 54 are correct, and 4 are incorrect predictions. 

Of the 23 images used for testing in Nitrogen Deficiency 

disease, 20 are correct, and 3 are incorrect. In 

Potassium Deficiency disease, 2 of the 4 images used 

for testing are correct, and 2 are incorrect. Of the 34 

images used for Spotted Wilt Virus disease testing, 25 

are correct, and 9 are incorrect. 

In the study, features were extracted from the dataset 

consisting of tomato leaves with GoogleNet, one of the 

pre-trained architectures of CNN, and the accuracy rate 

was found to be 83.4% as a result of training and testing 

with the Cubic SVM method. The Confusion matrix 

resulting from this process is given in Figure 3. 

 

Figure 3. Confusion matrix of GoogleNet + SVM 

Of the 33 images used for testing in Early Blight disease 

in this study, 22 were correct, and 11 were incorrect 

predictions. In the Healthy condition, of the 14 images 

used for testing, 6 are of the correct uterus, and 8 are of 
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the incorrect uterus. Of the 58 images used for testing in 

Late Blight disease, 54 are correct, and 4 are incorrect 

guesses. Of the 65 images used for testing in Leaf Miner 

disease, 55 are correct predictions, and 10 are incorrect. 

Of the 59 images used for testing in Magnesium 

Deficiency disease, 55 are correct, and 4 are incorrect 

predictions. Of the 24 images used for testing in Nitrogen 

Deficiency disease, 22 are correct predictions, and 2 are 

incorrect predictions. In Potassium Deficiency disease, 3 

of the 5 images used for testing are correct, and 2 are 

incorrect predictions. Of the 33 images used for testing 

in Spotted Wilt Virus disease, 24 are correct, and 9 are 

incorrect predictions. 

Another architecture used for feature extraction of 

images in the dataset consisting of tomato leaves is 

MobileNet-V2. Features were taken with MobileNet-V2, 

one of the pre-trained architectures of CNN, and the 

accuracy rate was obtained as 87.9% after training and 

testing with the Cubic SVM method. The confusion 

matrix resulting from this process is given in Figure 4. 

 

Figure 4. Confusion matrix of MobileNet-V2 + SVM 

In this study, 27 of the 31 images used for testing in Early 

Blight disease were correct, and 4 were incorrect 

predictions. In the Healthy condition, out of 13 images 

used for testing, 6 are correct guesses, and 7 are 

incorrect. Of the 57 images used for testing in Late Blight 

disease, 53 are correct, and 4 are incorrect predictions. 

Of the 66 images used for testing in Leaf Miner disease, 

57 are correct predictions, and 9 are incorrect. Of the 60 

images used for testing in Magnesium Deficiency 

disease, 57 are correct, and 3 are incorrect predictions. 

Of the 24 images used for testing in Nitrogen Deficiency 

disease, 24 are correct, and 0 are incorrect. In 

Potassium Deficiency disease, 3 of the 4 images used 

for testing are correct, and 1 is an incorrect prediction. Of 

the 34 images used for testing in Spotted Wilt Virus 

disease, 27 are correct, and 7 are incorrect predictions. 

Another architecture used for feature extraction of 

images in the dataset consisting of tomato leaves is 

DarkNet53. Features were taken with DarkNet53, one of 

the pre-trained architectures of CNN, and the accuracy 

rate was obtained as 87.9% after training and testing 

with the Cubic SVM method. The confusion matrix 

resulting from this process is given in Figure 5. 

 

 

Figure 5. Confusion matrix of DarkNet53 + SVM 

DarkNet53, out of 32 images used for testing in Early 

Blight disease, 29 are correct predictions, and 3 are 

incorrect. In the Healthy condition, 7 of the 14 images for 

the test are correct, and 7 are incorrect predictions. Of 

the 57 images used for testing in Late Blight disease, 54 

are correct, and 3 are incorrect predictions. Of the 66 

images used for testing in Leaf Miner disease, 61 are 

correct predictions, and 5 are incorrect. Of the 59 images 

used for testing in Magnesium Deficiency disease, 57 

are correct, and 2 are incorrect predictions. Of the 23 

images used for testing in Nitrogen Deficiency disease, 

19 are correct, and 4 are incorrect predictions. In 

Potassium Deficiency disease, 3 of the 5 images used 

for testing are correct, and 2 are incorrect predictions. Of 

the 33 images used for testing in Spotted Wilt Virus 

disease, 24 are correct, and 9 are incorrect predictions. 

The last architecture used for feature extraction of 

images in the tomato leaf dataset is ResNet-50. Features 

were taken with ResNet-50, one of the pre-trained 

architectures of CNN, and the accuracy rate was 

obtained as 90.7% after training and testing with the 

Cubic SVM method. The confusion matrix resulting from 

this process is given in Figure 6. 

 

Figure 6. Confusion matrix of ResNet-50 + SVM 

Of the 31 images used for testing in ResNet-50 Early 

Blight disease, 30 are correct, and 1 is an incorrect 

prediction. In healthy situations, 7 of the 14 images used 

for testing are correct, and 7 are incorrect predictions. Of 
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the 57 images used for testing in Late Blight disease, 54 

are correct, and 3 are incorrect predictions. Of the 65 

images used for testing for Leaf Miner's disease, 62 are 

correct predictions, and 3 are incorrect. Of the 59 images 

used for testing in Magnesium Deficiency disease, 57 

are correct, and 2 are incorrect predictions. Of the 24 

images used for testing in Nitrogen Deficiency disease, 

21 are correct predictions, and 3 are incorrect 

predictions. In Potassium Deficiency disease, 1 out of 5 

pictures used for testing is correct, and 4 are incorrect 

guesses. Of the 34 images used for testing in Spotted 

Wilt Virus disease, 30 are correct, and 4 are incorrect 

predictions. 

Training and testing were carried out on the ResNet-50, 

DarkNet-53, GoogleNet, AlexNet, and MobileNet-V2 

models used in the study on the dataset consisting of 

tomato leaves, and the features of the 3 architectures 

that gave the most successful results (ResNet-50, 

DarkNet-53, and MobileNet-V2) were combined and 

analyzed. A 3621*3000 feature matrix was obtained, and 

by applying mRMR to this feature matrix, the size of this 

matrix was reduced to 3621*2200. Afterward, a 93.1% 

accuracy value was obtained by applying the optimized 

feature map SVM method. The confusion matrix of the 

proposed model is presented in Figure 7. 

 

Figure 7. Confusion matrix of Proposed Model 

The proposed model correctly predicted 31 out of 31 

images used for testing in Early Blight disease, with no 

incorrect predictions. In Healthy cases, 11 of the 13 

images used for the test were guessed correctly, while 2 

were guessed incorrectly as Leaf Miner. While 57 of the 

58 images used for testing in Late Blight disease were 

correctly predicted, 1 was incorrectly predicted as Leaf 

Miner. Of the 66 images used for testing in Leaf Miner 

disease, 60 were predicted correctly, while 6 were 

mispredicted (5 of them Spotted Wilt Virus, 1 of them 

Early Blight). While 59 of the 60 images used for testing 

in Magnesium Deficiency disease were guessed 

correctly, 1 of them was guessed incorrectly as Leaf 

Miner. While 21 of the 24 images used for testing in 

Nitrogen Deficiency disease were predicted correctly, 3 

were predicted incorrectly (2 of them Magnesium 

Deficiency, 1 of them Late Blight). While 3 of the 4 

images used for testing in Potassium Deficiency disease 

were correctly predicted, 1 was incorrectly predicted as 

Nitrogen Deficiency. In Spotted Wilt Virus disease, 27 of 

the 33 images used for testing were predicted correctly, 

while 6 were predicted incorrectly. 

AUC/ROC curves obtained in the proposed model are 

presented in Figure 8. 

  

  

 
 

  

Figure 8. AUC/ROC curves of Proposed Model 

As seen in Figure 8, the proposed model showed class-

based performance. 

4. Conclusions 

Agriculture is among the important factors for life 

worldwide and has had a significant place in human life 

since gathering. In addition, carrying out this agriculture 

consciously, using the resources and lands required for 

agriculture, and trying to preserve the naturalness of the 

product obtained with this awareness is as important as 

agriculture. Our aim in this study is to provide a vision for 

artificial intelligence applications used in agriculture, to 

inform farmers about the disease of their products so that 

they can approach the product more consciously, and to 

get rid of traditional wrong agricultural moves. In this 

study, the model we developed using the tomato leaf 

dataset of the tomato we chose as the pivot provides 

93.1% success. This study is considered a step that is 

expected to provide sufficient success against tomato 

diseases and make an important contribution as one of 

the steps toward conscious agriculture. 
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