
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 
BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE 

ISSN: 2147-3129/e-ISSN: 2147-3188 

VOLUME: 13 NO: 4 PAGE: 1023-1030 YEAR: 2024 

DOI: 10.17798/bitlisfen.1495657 

1023 

Numerical Solutions for Mixed Fractional Order Two-Dimensional 

Telegraph Equations 
 

Fatih ÖZBAĞ1*, Mahmut MODANLI1, Sadeq Taha ABDULAZEEZ2 
 

1 Harran University, Faculty of Arts and Sciences, Department of Mathematics, Şanlıurfa, Türkiye 
2 University of Duhok, College of Basic Education, Department of Mathematics, Duhok, Iraq 

(ORCID: 0000-0002-5456-4261) (ORCID: 0000-0002-7743-3512) (ORCID: 0000-0003-4515-1585) 

  

 

Keywords: Two-Dimensional 

Telegraph Equation, Caputo and 

ABC Fractional Derivatives, 

Finite Difference Technique, 

Numerical Solution. 

Abstract 

This research presents an innovative numerical approach to solving two-dimensional 

telegraph equations of mixed fractional order by integrating the fractional derivatives 

of Caputo and Atangana-Baleanu Caputo (ABC) into a single model. Using 

MATLAB as its implementation, the research creates a customized first-order 

difference scheme and analyses stability. The ability to manage mixed fractional 

derivatives in 2D telegraph equations, a situation that has not been tackled in 

literature before, is the method's innovative aspect. This development shows that 

these complicated equations may be efficiently and reliably modelled, opening up 

new avenues for the study of complex physical phenomena. The work makes a 

substantial contribution to the numerical analysis of fractional differential equations 

with mixed derivative types and opens up possible applications in areas like wave 

propagation and anomalous diffusion processes. 

 

 
1. Introduction 

 

Initial value problems of fractional order can be used 

to model a variety of scientific disciplines, helping us 

better understand how to characterize natural 

phenomena in fields like engineering, physics, 

economics, biology, and seismology. According to its 

applications in numerous engineering and scientific 

domains, such as [1]-[4], fractional calculus theory 

has grown in popularity and importance during the 

last few decades. Additionally, it has demonstrated 

success in simulating actual issues that arise in the 

field of chemistry [5], physics [6], biology [7], and 

other fields. 

Over the past few years, researchers have 

extensively studied different aspects of fractional 

models applied to the telegraph equation, for 

example, see [8]-[14]. The authors in [8] provided a 

hybrid approach built on the finite difference scheme 

and Sinc- Galerkin approach allows for a partial 

solution of the two-dimensional hyperbolic telegraph 

problem. The B-spline collocation method was 

introduced by the authors in [9] as a method for 
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solving the 1D hyperbolic telegraph equation, 

additionally, they demonstrated how the suggested 

method converges. The authors in [10] used a 

Galerkin-like approach to numerically present the 

two-dimensional hyperbolic telegraph equations. To 

solve a two-dimensional hyperbolic telegraph 

equation with both Dirichlet and Neumann boundary 

conditions, the authors in [11] developed a numerical 

solution based on the polynomial differential 

quadrature method. In [12], Oruç used the Hermite 

wavelet-based method for obtaining 2D hyperbolic 

telegraph equation solutions in numerical form. The 

approximate numerical solution and stability 

estimates for the two-dimensional telegraph equation 

were obtained employing finite difference schemes in 

[13]. In [14], the authors proposed a semi-discrete 

method utilizing shifting shape functions of least 

squares to provide numerical results of complicated 

variable-order time fractional 2-dimensional 

telegraph problems. Through the use of the Legendre 

wavelet collocation technique, the authors in [15], a 

collection of time-fractional telegraph equations that 

take the Caputo fractional derivative. The authors of 
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[16] employed a hybrid approach that incorporated 

the integration of the Legendre polynomials and the 

block-pulse functions. 

The finite difference method has been 

successfully used to solve a variety of issues, 

including fractional order telegraph equations [17], 

fractional chaotic systems in the sense of Caputo [18], 

and pseudo-hyperbolic telegraph equations based on 

the fractional operators [19]-[20], advection–

dispersion equations [21], generalized fractional 

derivative terms in the fractional telegraph equation 

[22] and the higher order mixed fractional differential 

equations [23]. One dimensional linear and nonlinear 

hyperbolic telegraph equation is studied in [24-30]. 

Moreover, our work extends the application of finite 

difference methods to the particular case of mixed 

Caputo and ABC fractional derivatives in the context 

of 2D telegraph equations, whereas previous studies 

like [17]–[23] have used these methods to various 

fractional order equations. This development makes it 

possible to represent complex physical systems more 

accurately in fields like engineering, physics, and 

biology, where the interaction between different types 

of fractional derivatives can be important for 

modeling real-world phenomena. In the present study, 

our main goals are twofold: firstly, to introduce an 

innovative formulation of the fractional order two-

dimensional telegraph partial differential equation, 

and secondly, to propose a finite difference technique 

for obtaining numerical approximations of these 

equations. Notably, since no previous research has 

directly addressed the fractional order two-

dimensional telegraph equation using the fractional 

derivatives of Caputo and ABC, our approach is 

unique in this regard. 

For this, we take into account the fractional 

order two-dimensional telegraph equation depending 

on the fractional derivatives, as follows 

 

𝐷𝑡
𝛼

0
𝐶 𝑣(𝑡, 𝑥, 𝑦) + 𝐷𝑡

𝛽
0

𝐴𝐵𝐶 𝑣(𝑡, 𝑥, 𝑦) + 𝑣(𝑡, 𝑥, 𝑦) =
𝑣𝑥𝑥(𝑡, 𝑥, 𝑦) + 𝑣𝑦𝑦(𝑡, 𝑥, 𝑦) + 𝑓(𝑡, 𝑥, 𝑦)            (1) 

0 < 𝑥, 𝑦 < 𝐿, 0 < 𝑡, 1 < α ≤ 2, 0 < β ≤ 1, 

 

with initial and boundary conditions 

 

𝑣(0, 𝑥, 𝑦) = 𝑣𝑡(0, 𝑥, 𝑦) = φ(𝑥), 0 ≤ 𝑥, 𝑦 ≤ 𝐿      (2)                                                           

𝑣(𝑡, 0, 𝑦) = 𝑣𝑡(𝑡, 𝐿, 𝑦) = σ(𝑥),   
0 ≤ 𝑡 ≤ 𝐶, 0 ≤ 𝑦 ≤ 𝐿                                             (3)                        

𝑣(𝑡, 𝑥, 0) = 𝑣𝑡(𝑡, 𝑥, 𝐿) = μ(𝑥), 
  0 ≤ 𝑡 ≤ 𝐶, 0 ≤ 𝑥 ≤ 𝐿                                            (4) 

 

where, 𝜑(𝑥), μ(𝑥), σ(𝑥), and 𝑓(𝑡, 𝑥, 𝑦) are known 

functions, but 𝑣(𝑡, 𝑥, 𝑦) is an unidentified function 

that should be examined. The initial and boundary 

conditions of the telegraph partial differential 

equation play a crucial role in determining the 

behavior of the solution, as they define how signals 

propagate in time and space along the transmission 

line. These are essential in ensuring the solution 

remains physically meaningful over the entire spatial 

domain.  

𝐷𝑡
𝛼

0
𝐶 𝑣(𝑡, 𝑥, 𝑦) is the Caputo fractional 

derivative that is defined as 

 

𝐷𝑡
𝛼

0
𝐶 𝑣(𝑡, 𝑥, 𝑦) =

1

(𝑛−)
∫

𝑣(𝑛)(𝑠,𝑥,𝑦)

(𝑡−𝑠)−n+1
𝑑𝑠,

𝑡

0
              

 

n − 1 < α ≤ n and 𝑛 = 1,2,… ∈ 𝑁. Also, 

𝐷𝑡
𝛽

0
𝐴𝐵𝐶 𝑣(𝑡, 𝑥, 𝑦) is the Atangana–Baleanu Caputo 

fractional derivative and defined as  

 

𝐷𝑡
𝛽

0
𝐴𝐵𝐶 𝑣(𝑡, 𝑥, 𝑦) =

𝐵(𝛽)

1−𝛽
∫ 𝑣′(𝑠, 𝑥, 𝑦)𝐸𝛽 [

−𝛽

1−𝛽
(𝑡 − 𝑠)𝛽] 𝑑𝑠

𝑡

0
.  

 

Here 𝐵(𝛽) = 1 − 𝛽 +
𝛽

Γ(𝛽)
  and 𝐸𝛽 [

−𝛽

1−𝛽
(𝑡 − 𝑠)𝛽] =

∑
[
−𝛽

1−𝛽
(𝑡−𝑠)𝛽]

𝑘

Γ(𝛽𝑘+1)
∞
𝑘=0   is the Mittag-Leffler function. 

  

The improved Caputo and ABC fractional 

derivatives facilitate the application of derivatives to 

non-integer orders, effectively representing memory 

effects in physical systems. The Caputo derivative is 

extensively utilized in domains such as 

viscoelasticity, anomalous diffusion, and control 

theory because it offers beginning conditions 

analogous to those of integer-order equations. The 

ABC fractional derivative improves this by 

incorporating a non-local and non-singular kernel, 

rendering it appropriate for intricate systems with 

long-range interactions. It is utilized in epidemiology, 

chaos theory, and financial modeling. By integrating 

these two derivatives in our examination of the two-

dimensional telegraph equation, we develop a more 

adaptable model that encompasses many physical 

phenomena, tackling situations where conventional 

fractional derivatives are unsatisfactory. 

To solve problem (1), the finite difference 

technique is implemented. First-order difference 

schemes were built for the suggested model. The 

explicit finite difference method is used to analyze the 

error estimates for the two-dimensional telegraph 

equation dependent on the Caputo and ABC fractional 

derivatives. The Von-Neumann analysis approach is 

then provided to generate stability estimations for the 

stated problem.  

This methodology provides a reliable and 

efficient mechanism for modeling these complex 

equations, as highlighted in the papers focused on 
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stability analysis. Given that the existing literature has 

not thoroughly explored this specific issue, the finite 

difference method's capacity to accommodate 

fractional derivatives of Caputo and Atangana-

Baleanu Caputo (ABC) makes it an appropriate 

selection for this research. 

The following is how the current paper is 

structured: Part 2 presents a finite difference 

technique for the proposed model with the addition of 

a stability analysis. Part 3 discusses the numerical 

calculations of the introduced model. The article's 

conclusions are provided in Part 4. 

 

2. Material and Method 

 

2.1. Finite Difference Technique and Stability 

Analysis 

 

We analyze the stability of the proposed model and 

devise a numerical method known as a finite 

difference scheme. The scheme is designed to solve a 

mixed fractional order two-dimensional telegraph 

partial differential equation. It incorporates the use of 

Caputo and ABC fractional derivative. 

To compute the numeric solution for the 

problem (1), the initial stage involves creating a 

difference scheme with first-order accuracy. This is 

achieved by adopting a specific grid spacing as 𝐺𝜏,ℎ =
[0, 𝐶]𝜏 × [0, 𝐿]ℎ with 𝑡𝑘 = 𝑘𝜏, 𝑥𝑛 = 𝑛ℎ, 𝑦𝑚 = 𝑚ℎ 

and 𝑘 = 1,2,… ,𝑁, 𝑛,𝑚 = 1,2, … ,𝑀. Also for 𝑥 and 

𝑦 axes, we take ℎ =
𝐿

𝑀
 and for t axes, 𝜏 =

𝐶

𝑁
. The finite 

difference techniques for Caputo and ABC fractional 

derivatives are then demonstrated. The following is 

how the Caputo fractional derivative of order 1 <
 ≤ 2 is constructed using a first-order difference 

technique. 

 

𝐷𝑡
𝛼

0
𝐶 𝑣(𝑡𝑘 , 𝑥𝑛, 𝑦𝑚) 

=
𝜏−𝛼

Γ(3 − 𝛼)
∑((𝑗 + 1)2− − 𝑗2−)(𝑣𝑛,𝑚

𝑘−𝑗+1

𝑘−1

𝑗=0

− 2𝑣𝑛,𝑚
𝑘−𝑗

+ 𝑣𝑛,𝑚
𝑘−𝑗−1

). 

 

For simplicity, we call  𝑏𝑗
𝛼 = ((𝑗 + 1)2− − 𝑗2−). 

Next, the ABC fractional derivative of order 

0 < 𝛽 ≤ 1 is thus supplied with a first-order 

difference technique as  

 

𝐷𝑡
𝛽

0
𝐴𝐵𝐶 𝑣(𝑡𝑘 , 𝑥𝑛, 𝑦𝑚) 

=
1

Γ(𝛽)
(∑

𝑣𝑛,𝑚
𝑘+1 − 𝑣𝑛,𝑚

𝑘

𝜏
((𝑡𝑗 − 𝑡𝑘+1)

1−𝛽

𝑘

𝑗=0

− (𝑡𝑗 − 𝑡𝑘)
1−𝛽

)). 

For simplicity, we call  

 

𝑑𝑗
𝑘=((𝑡𝑗 − 𝑡𝑘+1)

1−𝛽 − (𝑡𝑗 − 𝑡𝑘)
1−𝛽

). 

 

Then, we need to give the following 

difference formula of the model (1), as 

 

{
 
 
 
 

 
 
 
 

𝜏−𝛼

Γ(3 − 𝛼)
∑ 𝑏𝑗

𝛼(𝑣𝑛,𝑚
𝑘−𝑗+1

− 2𝑣𝑛,𝑚
𝑘−𝑗

+ 𝑣𝑛,𝑚
𝑘−𝑗−1

)𝑘−1
𝑗=0

+
1

Γ(𝛽)
(∑

𝑣𝑛,𝑚
𝑘+1 − 𝑣𝑛,𝑚

𝑘

𝜏
𝑑𝑗
𝑘𝑘

𝑗=0 ) + 𝑣𝑛,𝑚
𝑘               

            (5)     

=
𝑣𝑛+1,𝑚
𝑘 − 2𝑣𝑛,𝑚

𝑘 + 𝑣𝑛−1,𝑚
𝑘

ℎ2
+

𝑣𝑛,𝑚+1
𝑘 − 2𝑣𝑛,𝑚

𝑘 + 𝑣𝑛,𝑚−1
𝑘

ℎ2
+ 𝑓𝑛

𝑘.
  

 

After rewriting the formula (5), we obtain 

 

{
 
 
 
 
 

 
 
 
 
 

𝜏−𝛼

Γ(3 − 𝛼)
∑ 𝑏𝑗

𝛼(𝑣𝑛,𝑚
𝑘−𝑗+1

− 2𝑣𝑛,𝑚
𝑘−𝑗

+ 𝑣𝑛,𝑚
𝑘−𝑗−1

)𝑘−1
𝑗=1

−
1
ℎ2
𝑣𝑛+1,𝑚
𝑘 −

1
ℎ2
𝑣𝑛−1,𝑚
𝑘 + (

𝜏−𝛼

Γ(3 − 𝛼)
+

𝑑𝑗
𝑘

τΓ(𝛽)
) 𝑣𝑛,𝑚

𝑘+1

+
𝜏−𝛼

Γ(3 − 𝛼)
𝑣𝑛,𝑚
𝑘−1 +

(
−2𝜏−𝛼

Γ(3 − 𝛼)
−

𝑑𝑗
𝑘

τΓ(𝛽)
+ 1 +

4
ℎ2
)𝑣𝑛,𝑚

𝑘

−
1
ℎ2
𝑣𝑛,𝑚+1
𝑘 −

1
ℎ2
𝑣𝑛,𝑚−1
𝑘 = 𝑓𝑛

𝑘.              

(6)

  

 

 

For the stability of scheme (6) we give the 

following theorem. 

 

Theorem 2.1.  If the following condition is satisfied, 

the formula (6) have the stability estimates:   

 

 τ−𝜶 < Γ(3 − 𝛼)(1 +
8

ℎ2
).   

 

Proof. Using the Von-Neumann analysis method for 

the formula (6) and with the given condition, the proof 

of Theorem 2.1. can be shown easily. 

 

2.2. Numerical Results 

 

The present section offers the substantially numerical 

solutions for the mixed fractional order two-

dimensional telegraph problem that depend on the 

Caputo and ABC fractional derivatives. In the section 

that follows, we solve a test problem using the 



F. Özbağ, M. Modanlı, S. T. Abdulazeez/ BEU Fen Bilimleri Dergisi 13 (4), 1023-1030, 2024 

1026 

numerical method to demonstrate the usefulness of 

the strategy. We assess the method's performance by 

computing the maximum norm errors. Our focus is a 

computational evaluation of the mixed fractional 

order two-dimensional telegraph equation's initial 

boundary value problem.  

 

Example 1. We examine a set of mixed fractional 

order partial differential equations in a two-

dimensional telegraph system. 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝐷𝑡

𝛼
0
𝐶 𝑣(𝑡, 𝑥, 𝑦) + 𝐷𝑡

𝛽
0

𝐴𝐵𝐶 𝑣(𝑡, 𝑥, 𝑦) + 𝑣(𝑡, 𝑥, 𝑦)                     

= 𝑣𝑥𝑥(𝑡, 𝑥, 𝑦) + 𝑣𝑦𝑦(𝑡, 𝑥, 𝑦) + 𝑓(𝑡, 𝑥, 𝑦)                             

𝑓(𝑡, 𝑥, 𝑦) =
1

𝐵(𝛽)
(
6(1−𝛽)

Γ(4−𝛼)
𝑡3−𝛼 +

6𝛽𝑡𝛽+3−𝛼

Γ(𝛽+4−𝛼)
) 𝑠𝑖𝑛(𝑥)sin (𝑦)

+𝑡3𝑠𝑖𝑛(𝑥)𝑠𝑖𝑛(𝑦)                                                                      

+
3

𝐵(𝛽)
((1 − 𝛽)𝑡3 + 6𝛽

𝑡𝛽+3

𝛤(𝛽+4)
) 𝑠𝑖𝑛(𝑥) sin(𝑦)            (7)

1 < α ≤ 2, 0 < β ≤ 1,                                                            

𝑣(0, 𝑥, 𝑦) = 𝑣𝑡(0, 𝑥, 𝑦) = 0,   0 ≤ 𝑥, 𝑦 ≤ 𝜋,                       

𝑣(𝑡, 0, 𝑦) = 𝑣𝑡(𝑡, 𝐿, 𝑦) = 0, 0 ≤ 𝑡 ≤ 1, 0 ≤ 𝑦 ≤ 𝜋,         

𝑣(𝑡, 𝑥, 0) = 𝑣𝑡(𝑡, 𝑥, 𝐿) = 0, 0 ≤ 𝑡 ≤ 1, 0 ≤ 𝑥 ≤ 𝜋.         

         

 

One can easily check that the exact solution of (7) is 

 

𝑣(𝑡, 𝑥, 𝑦) =
1

𝐵(𝛽)
((1 − 𝛽)𝑡3 + 6𝛽

𝑡𝛽+3

Γ(𝛽 + 4)
)𝑠𝑖𝑛(𝑥)𝑠𝑖𝑛(𝑦).   

We use the formula (6), apply the similar numerical 

procedure in [13] and utilize a modified Gauss 

elimination method to solve the problem (7) for n and 

m. The MATLAB software is employed to acquire 

solutions for equation (7). We compute numerical 

solutions for various grid points of N and M, and the 

error is calculated using the subsequent formula; 

 

 = 𝑚𝑎𝑥
1≤𝑘≤𝑁−1,1≤𝑛≤𝑀−1

|𝑣(𝑡𝑘, 𝑥𝑛, 𝑦𝑚) − 𝑣(𝑡, 𝑥, 𝑦)| 

 

where 𝑣(𝑡𝑘 , 𝑥𝑛, 𝑦𝑚) is approximate and 𝑣(𝑡, 𝑥, 𝑦) is 

exact solution. In problem (7), we take α = 1.9 and 

β = 0.9 then calculate the error values in Table 1. 

 
Table 1. Error table for problem (7) 

𝑵,𝑴 Error values 

N=M=5 0.1873 

N=M=10 0.0869 

N=M=15 0.0507 

N=M=20 0.0358 

N=M=25 

N=M=30 

N=M=35 

N=M=40 

N=M=50 

0.0282 

0.0246 

0.0228 

0.0221 

0.0221 

The error margin can be seen in the error 

analysis table in the numerical calculations for the 

created difference scheme that existed less than one. 

The decreasing trend in maximum norm errors as the 

number of grid points increases highlights the 

sensitivity of the scheme. Table 1 confirms the 

accuracy of the generated difference scheme. 

Furthermore, numerical simulations are provided for 

N and M values to demonstrate the similarity between 

the exact and approximate solutions. Figure 1 and 

Figure 2 represent the exact solution and numerical 

solution of (7) respectively. From these figures, one 

can conclude that the solutions are almost identical. 

 

 

     
Figure 1.  Gives the exact solution of (7) from different 

angles when 𝑁 = 𝑀 = 25, 𝛽 = 0.9, and 𝛼 = 1.9. 
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Figure 2.  Gives the approximate solutions of (7) from 

different angles when 𝑁 = 𝑀 = 25, 𝛽 = 0.9, and 𝛼 = 1.9. 

 

Example 2. Consider the following mixed fractional 

order partial differential equations in a two-

dimensional telegraph system. 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝐷𝑡

𝛼
0
𝐶 𝑣(𝑡, 𝑥, 𝑦) + 𝐷𝑡

𝛽
0

𝐴𝐵𝐶 𝑣(𝑡, 𝑥, 𝑦) + 𝑣(𝑡, 𝑥, 𝑦)                            

= 𝑣𝑥𝑥(𝑡, 𝑥, 𝑦) + 𝑣𝑦𝑦(𝑡, 𝑥, 𝑦) + 𝑓(𝑡, 𝑥, 𝑦)                                    

𝑓(𝑡, 𝑥, 𝑦) =
1

𝐵(𝛽)
(
6(1−𝛽)

Γ(4−𝛼)
𝑡3−𝛼 +

6𝛽𝑡𝛽+3−𝛼

Γ(𝛽+4−𝛼)
) (𝑥 − 𝑥2)(𝑦 − 𝑦2)

+𝑡3(𝑥 − 𝑥2)(𝑦 − 𝑦2) +
1

𝐵(𝛽)
((1 − 𝛽)𝑡3 + 6𝛽

𝑡𝛽+3

𝛤(𝛽+4)
)         

((𝑥 − 𝑥2)(𝑦 − 𝑦2) + 2(𝑥 − 𝑥2) + 2(𝑦 − 𝑦2))              (8)    

1 < α ≤ 2, 0 < β ≤ 1,                                                                    

𝑣(0, 𝑥, 𝑦) = 𝑣𝑡(0, 𝑥, 𝑦) = 0,   0 ≤ 𝑥, 𝑦 ≤ 1,                              

𝑣(𝑡, 0, 𝑦) = 𝑣𝑡(𝑡, 𝐿, 𝑦) = 0, 0 ≤ 𝑡 ≤ 1, 0 ≤ 𝑦 ≤ 1,                

𝑣(𝑡, 𝑥, 0) = 𝑣𝑡(𝑡, 𝑥, 𝐿) = 0, 0 ≤ 𝑡 ≤ 1, 0 ≤ 𝑥 ≤ 1.                

         

 

The exact solution of (8) is 

 

𝑣(𝑡, 𝑥, 𝑦) =
1

𝐵(𝛽)
((1 − 𝛽)𝑡3 + 6𝛽

𝑡𝛽+3

Γ(𝛽 + 4)
) (𝑥 − 𝑥2)(𝑦 − 𝑦2).   

By applying the same procedure as in the first 

example, we compute numerical solutions and the 

error is calculated using the subsequent formula; 

 

 = 𝑚𝑎𝑥
1≤𝑘≤𝑁−1,1≤𝑛≤𝑀−1

|𝑣(𝑡𝑘, 𝑥𝑛, 𝑦𝑚) − 𝑣(𝑡, 𝑥, 𝑦)| 

 

where 𝑣(𝑡𝑘 , 𝑥𝑛, 𝑦𝑚) is approximate and 𝑣(𝑡, 𝑥, 𝑦) is 

exact solution. We take α = 1.9 and β = 0.9 then 

calculate the error values in Table 2.  

 
Table 2. Error table for problem (8) 

𝑵,𝑴 Error values 

N=10, M=5 0.0073 

N=20, M=10 0.0033 

N=30, M=15 0.0020 

N=40, M=20 0.0015 

N=50, M=25 

N=60, M=30 

N=70, M=35 

0.0011 

0.0010 

0.0009 

 

In Table 2, again the error margin can be seen 

that they are less than 1. Moreover, error values keep 

decreasing as grid values keep increasing. Table 2 

also confirms the accuracy of the generated difference 

scheme. 

We conclude that the empirical data gathered 

in this study provides strong confirmation for the 

suggested methodology based on what is evident from 

example 1 and 2. The accuracy and dependability of 

the recommended technique are highlighted by the 

strong agreement between the numerical results and 

the predicted theoretical outcomes. This innovation 

not only solves the issue at hand but also paves the 

way for prospective applications in related fields. Its 

accuracy and applicability represent a substantial 

improvement in the discipline and provide both 

researchers and practitioners with an invaluable tool. 

This novel strategy has the potential to completely 

alter how we tackle comparable problems in the 

future. 

 

3. Conclusion and Suggestions 

 

This research paper focuses on evaluating mixed 

fractional order two-dimensional telegraph equations 

using a combination of Caputo and ABC fractional 

derivatives. The authors employed a finite difference 

approach to analyze the problem presented in the 

study. Stability estimates were obtained via Von- 

Neumann analysis method. Error analysis data was 

computed by using the finite difference technique. 

MATLAB applications were used for calculating the 

error analysis results.  



F. Özbağ, M. Modanlı, S. T. Abdulazeez/ BEU Fen Bilimleri Dergisi 13 (4), 1023-1030, 2024 

1028 

The results of our analysis illustrate the 

suggested method's exceptional accuracy and 

underscore its adaptability in addressing a range of 

intricate issues. This efficacy highlights the method's 

prospective uses in domains such as wave 

propagation, anomalous diffusion processes, and 

other intricate physical phenomena that incorporate 

mixed fractional derivatives. This strategy is 

especially effective in situations when conventional 

procedures are inadequate for addressing the 

complexities of fractional calculus. 

This approach might be expanded to higher-

dimensional systems, nonlinear situations, and 

various forms of fractional derivatives in future study 

to enhance its application. Furthermore, investigating 

actual applications in telecommunications, materials 

science, and signal processing may enhance 

understanding of its importance and promote 

additional improvements to the approach. 

Contributions of the authors 

 

F. Ozbag: software development, methodology, 

visualization, revision. M. Modanlı: designing the 

study, methodology, stability analysis. S.T. 

Adulazeez: literature review, writing, editing and 

resources. 

 

Conflict of Interest Statement 

 

There is no conflict of interest between the authors. 

 

Statement of Research and Publication Ethics 

 

The study is complied with research and publication 

ethics 

 

References 

 

[1] A. Atangana and J. F. Gómez-Aguilar, “Decolonisation of fractional calculus rules: Breaking 

commutativity and associativity to capture more natural phenomena,” Eur. Phys. J. Plus, vol. 133, no. 

4, 2018. 

 

[2] A. Atangana, “Blind in a commutative world: simple illustrations with functions and chaotic attractors, 

Chaos,” Chaos, Solitons & Fractals, vol. 114, pp. 347–363, 2018. 

 

[3] A. Atangana, “RETRACTED ARTICLE: Derivative with two fractional orders: A new avenue of 

investigation toward revolution in fractional calculus,” Eur. Phys. J. Plus, vol. 131, no. 10, 2016. 

 

[4] M. Modanli, K. Karadag, and S. T. Abdulazeez, “Solutions of the mobile–immobile advection–

dispersion model based on the fractional operators using the Crank–Nicholson difference scheme,” 

Chaos Solitons Fractals, vol. 167, no. 113114, p. 113114, 2023. 

 

[5] S. B. Yuste, L. Acedo, and K. Lindenberg, “Reaction front in an A+ B→ C reaction-subdiffusion 

process,” Physical Review E, vol. 69, no. 3, 2004. 

 

[6] A. Atangana, “Non validity of index law in fractional calculus: A fractional differential operator with 

Markovian and non-Markovian properties,” Physica A, vol. 505, pp. 688–706, 2018. 

 

[7] S. B. Yuste and K. Lindenberg, “Subdiffusion-limited A+A reactions,” Phys. Rev. Lett., vol. 87, no. 11, 

p. 118301, 2001. 

 

[8] E. Hesameddini and E. Asadolahifard, “A new spectral Galerkin method for solving the two dimensional 

hyperbolic telegraph equation,” Comput. Math. Appl., vol. 72, no. 7, pp. 1926–1942, 2016. 

 

[9] M. Zarebnia and R. Parvaz, “A new approach for solution of telegraph equation,” International Journal 

of Nonlinear Analysis and Applications, vol. 12, no. 1, pp. 385–396, 2021. 

 

[10] Ş. Yüzbaşı and M. Karaçayır, “A Galerkin-like scheme to solve two-dimensional telegraph equation 

using collocation points in initial and boundary conditions,” Comput. Math. Appl., vol. 74, no. 12, pp. 

3242–3249, 2017. 



F. Özbağ, M. Modanlı, S. T. Abdulazeez/ BEU Fen Bilimleri Dergisi 13 (4), 1023-1030, 2024 

1029 

[11] R. Jiwari, S. Pandit, and R. C. Mittal, “A differential quadrature algorithm to solve the two dimensional 

linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions,” Appl. Math. 

Comput., vol. 218, no. 13, pp. 7279–7294, 2012. 

 

[12] Ö. Oruç, “A numerical procedure based on Hermite wavelets for two-dimensional hyperbolic telegraph 

equation,” Eng. Comput., vol. 34, no. 4, pp. 741–755, 2018. 

 

[13] M. Modanli and F. Ozbag, “Stability of finite difference schemes for two-space dimensional telegraph 

equation,” Pramana, vol. 96, no. 4, 2022. 

 

[14] M. Hosseininia and M. H. Heydari, “Meshfree moving least squares method for nonlinear variable-order 

time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel,” Chaos Solitons 

Fractals, vol. 127, pp. 389–399, 2019. 

 

[15] X. Xu and D. Xu, “Legendre wavelets direct method for the numerical solution of time-fractional order 

telegraph equations,” Mediterr. J. Math., vol. 15, no. 1, 2018. 

 

[16] N. Mollahasani, M. M. (mohseni) Moghadam, and K. Afrooz, “A new treatment based on hybrid 

functions to the solution of telegraph equations of fractional order,” Appl. Math. Model., vol. 40, no. 4, 

pp. 2804–2814, 2016. 

 

[17] F. Ozbag and M. Modanli, “On the stability estimates and numerical solution of fractional order 

telegraph integro-differential equation,” Phys. Scr., vol. 96, no. 9, p. 094008, 2021. 

 

[18] D. Baleanu, S. Zibaei, M. Namjoo, and A. Jajarmi, “A nonstandard finite difference scheme for the 

modeling and nonidentical synchronization of a novel fractional chaotic system,” Adv. Differ. Equ., vol. 

2021, no. 1, 2021. 

 

[19] F. Ozbag and M. Modanli, “Numerical solutions of fractional order pseudo hyperbolic differential 

equations by finite difference method,” Afyon Kocatepe Univ. J. Sci. Eng., vol. 22, no. 5, pp. 998–1004, 

2022. 

 

[20] M. Modanli, F. Ozbag, and A. Akgülma, “Finite difference method for the fractional order pseudo 

telegraph integro-differential equation,” J. Appl. Math. Comput. Mech., vol. 21, no. 1, pp. 41–54, 2022. 

 

[21] T. Liu and M. Hou, “A fast implicit finite difference method for fractional advection-dispersion 

equations with fractional derivative boundary conditions,” Adv. Math. Phys., vol. 2017, pp. 1–8, 2017. 

 

[22] K. Kumar, R. K. Pandey, and S. Yadav, “Finite difference scheme for a fractional telegraph equation 

with generalized fractional derivative terms,” Physica A, vol. 535, no. 122271, p. 122271, 2019. 

 

[23] S. O. Abdulla, S. T. Abdulazeez, and M. Modanli, “Comparison of third-order fractional partial 

differential equation based on the fractional operators using the explicit finite difference method,” Alex. 

Eng. J., vol. 70, pp. 37–44, 2023. 

 

[24] M. Modanli and F. Ozbag, “Stability of finite difference schemes to pseudo-hyperbolic telegraph 

equation,” Journal of Mathematical Sciences and Modelling, vol. 5, no. 3, pp. 92–98, 2022. 

 

[25]  W. M. Abd-Elhameed, E. H. Doha, Y. H. Youssri, and M. A. Bassuony, “New Tchebyshev‐Galerkin 

operational matrix method for solving linear and nonlinear hyperbolic telegraph type 

equations,” Numer. Methods Partial Differ. Equ., vol. 32, no. 6, pp. 1553–1571, 2016. 

 

[26] E. H. Doha, W. M. Abd-Elhameed, and Y. H. Youssri, “Fully Legendre spectral Galerkin algorithm for 

solving linear one-dimensional telegraph type equation,” Int. J. Comput. Methods, vol. 16, no. 08, p. 

1850118, 2019. 



F. Özbağ, M. Modanlı, S. T. Abdulazeez/ BEU Fen Bilimleri Dergisi 13 (4), 1023-1030, 2024 

1030 

[27] Y. H. Youssri, W. M. Abd-Elhameed, and A. G. Atta, “Spectral Galerkin treatment of linear one-

dimensional telegraph type problem via the generalized Lucas polynomials,” Arab. J. Math., vol. 11, 

no. 3, pp. 601–615, 2022. 

 

[28] A. G. Atta, W. M. Abd-Elhameed, G. M. Moatimid, and Y. H. Youssri, “Advanced shifted sixth-kind 

Chebyshev tau approach for solving linear one-dimensional hyperbolic telegraph type problem,” Math. 

Sci., vol. 17, no. 4, pp. 415–429, 2023. 

 

[29] H. T. Taghian, W. M. Abd-Elhameed, G. M. Moatimid, and Y. H. Youssri, “Shifted Gegenbauer–

Galerkin algorithm for hyperbolic telegraph type equation,” Int. J. Mod. Phys. C., vol. 32, no. 09, p. 

2150118, 2021. 

 

[30] R. M., Hafez, and Y. H. Youssri. "Shifted Jacobi collocation scheme for multidimensional time-

fractional order telegraph equation." Iranian Journal of Numerical Analysis and Optimization, 10(1), 

195-223, 2020. 

 


