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Abstract 

Determining changes in forest resources and land cover/land use is crucial for sustainable forest planning. This 
study aims to determine changes in land cover classes, including forest areas, agricultural areas, settlement areas, 
other non-forest areas, and water bodies in the study area located in Cyprus between 1990 and 2014. The study 
utilized digital management plans, a high-resolution base map, and Landsat satellite images for the relevant years. 
Necessary preprocessing steps were applied to prepare the satellite data for classification. Initially, unsupervised 
classification was conducted on the images to determine the number of distinguishable sub-information classes. 
Subsequently, supervised classification was performed using the maximum likelihood algorithm with the provision 
of training areas. The sub classes generated based on the supervised classification were consolidated into five main 
classes. After the classification process, the accuracy of the classification for each image was determined. 
Accordingly, the overall classification accuracy of the map from the 1990 Landsat 5 TM satellite image was 92%, 
with 0.90 Kappa Statistics. The overall classification accuracy of the map from 2014 Landsat 8 OLI satellite image 
was 89.20%, with 0.87 Kappa statistics. Then, land cover change analysis was conducted to compare a twenty-
four-year period within the study area.   

Keywords: Remote sensing, Change analysis, Post-classification comparison method, Image classification, 
Forestry

1. Introduction 
Spatio-temporal determination of forest resources is 

crucial for sustainable forest management and planning. 
Remote Sensing (RS), in conjunction with geographic 
information Science (GIS), offers an effective and 
innovative approach to rapidly detect the spatial 
structural characteristics of forest and natural resources 
and their surroundings (Koç and Selik, 2004; Yener and 
Koç, 2006). Numerous studies have been conducted on 
land use land cover classification (LULCC) and change 
detection employing different methods along with 
different RS data sources. A study by Berberoglu and 
Akin (2009) detected land cover/land use changes in the 
Mediterranean region using Landsat TM images for three 
different periods (1985, 1993, and 2005). Four different 
change detection techniques were applied, and object-
based supervised classification was employed as a cross-
classification approach to determine ‘from–to’ changes, 
allowing for the evaluation of all four methods. The 
results indicated that change vector analysis achieved the 
highest overall accuracy of 75.25% for the 1985–1993 
period and 75.55% for the 1993–2005 period-for the 
Mediterranean region. 

Mas (1999) conducted a study to determine LULC 
and changes in the Terminos Lagoon region (Mexico) 
using Landsat Multispectral Scanner (MSS) images from 
different periods. Six change detection methods were 
employed, including image differencing, vegetative 
index differencing, selective principal components 
analysis (SPCA), direct multi-date unsupervised 
classification, post-classification differencing, and a 
combination of image enhancement and post-
classification comparison. The accuracy assessment was 
conducted for the change detection results obtained from 
the six methods. Ultimately, the results noted that the 
post-classification comparison method provides the 
highest overall accuracy of 86.87% and a kappa value of 
0.6191. 

Sunar (1998) analyzed land cover change and the 
significant development pressure on the environment in 
Ikitelli, Istanbul. Four different change detection 
methods were used: image overlay, image differencing, 
principal components analysis and post-classification 
comparison. Landsat TM images acquired in for two 
different periods (1984, 1992). It was noted that image 
overlay and image differencing methods were easily 
applicable, while classified images through principal 
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components analysis highlighted differences attributable 
to change. Each of the change detection methods 
possessed certain values concerning ease, information 
content, and interpretability. 

There is a wide variety of alternatives for the 
combination of change detection methods and 
classification procedures, all of which possess varying 
degrees of flexibility and validity (Lu et al., 2004). Each 
change detection method has different merits, and a 
single approach is not optimal for all situations (Lu et al., 
2004). In this study, the post-classification comparison 
method was used to determine land use land cover 
classification and change detection. The post-
classification comparison method is a commonly used 
quantitative change detection method. In this technique, 
which necessitates the classification and accuracy 
assessment of each remotely sensed image, the images 
are compared pixel by pixel using a change matrix 
(Jensen, 1996). While some techniques only provide 
information on whether change has occurred or not, the 
greatest advantage of the post-classification comparison 
method is its ability to provide a complete matrix of 
change directions (Lu et al., 2004). 

To perform such spatio-temporal analysis, satellite 
imagery with consistent temporal coverage and wide 
accessibility is required. Satellite images, which provide 
a rapid and effective data collection method over large 
areas, were utilized (Yener and Koç, 2006). The data 
transmitted by the Landsat satellite are received and 
archived by ground stations, thereby enabling the 
temporal analysis of land surface changes through 

remote sensing techniques. The availability of archived 
imagery, thanks to the wide spatial coverage, consistent 
data characteristics, and relatively low cost of satellite 
images, has made Landsat data a widely used source in 
scientific research related to natural resources (Çoban, 
2006). Data from the TM sensor are utilized in various 
applications, including resource management, mapping, 
environmental monitoring, and change detection (CCRS, 
2009). The OLI sensor is useful for approaches to land 
cover, condition, disturbance monitoring, and change 
determination, as well as for large-area land cover 
monitoring and mapping applications (Roy et al., 2014). 

The primary aim of this study is to detect and analyze 
land cover changes that occurred between 1990 and 2014 
in the designated study area on the island of Cyprus. The 
findings of the study are also expected to contribute to 
research and decision-making processes concerning 
forest resources and land management in the region. 

 
2. Materials and Methods 
2.1. Study Area and Data 

With a total area of 9251 km², Cyprus is the third 
largest island in the Mediterranean after Sicily and 
Sardinia. The study area covers approximately 3,242 km² 
of the island of Cyprus, situated between the north 
latitudes of 34° 33′ - 35° 42′ and east longitudes of 32° 
16′ - 34° 36′ (Figure 1). It is anticipated that factors such 
as population growth and forest fires occurring in the 
region between 1990 and 2014 have led to changes in 
land use patterns. 

 

 
Figure 1. Study area located in the north of Cyprus  
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To determine the temporal changes in the study area, 
satellite data sets from two different dates were used 
(Table 1). For change detection analysis, it is 
recommended that there be no significant seasonal and 
temporal differences between the image acquisition 
dates. However, the dataset from 1990 covering a 
relatively small portion of the study area has dense cloud 
cover, resulting in inadequate quality. Therefore, a 
dataset that met the required quality standards and 
closely matched the nearest seasonal and temporal 
parameters was identified and used for classification. 

 

Table 1. Information of the used satellite data 
Landsat Satellite                           

path and row 
numbers 

1990 Data                                               
Landsat 5 TM 

2014 Data                                                
Landsat 8 OLI 

p175 r35 10.08.1987 - 
07:43:25 

15.08.2014 - 
08:16:09 

p176 r35 08.04.1990 - 
07:42:16 

22.08.2014 - 
08:22:20 

p176 r36 08.04.1990 - 
07:42:40 

22.08.2014 - 
08:22:44 

 

The characteristic of the sensors used in the study 
(TM and OLI) are provided in Table 2.  To determine the 
forest cover and other land use land cover types and the 

changes between 1990 and 2014, the 6 bands of the 1990 
Landsat 5 TM data set and the 7 bands of the 2014 
Landsat 8 OLI data set were used. Digital forest 
management plans were used to identify the training 
areas for classifying the satellite images for both years. 
The high-resolution base map provided by Esri was 
utilized for accuracy assessments after visually 
comparing the classified 2014 satellite image and the 
base map to determine whether they were generated in 
the same year. These images are obtained from various 
providers, including satellite and aerial imagery at one-
meter resolution or better for most of the world’s 
landmass, alongside lower-resolution satellite imagery 
worldwide (ESRI, 2024). For this study, Erdas Imagine 
2014 and ArcMap 10.1 were used. 
 
2.2. Classification Process 

Pre-classification preparatory works include layer 
stacking spectral bands as shown in Figure 2, mosaicking 
frames that constitute the study area, generating 
vegetation indices, and clipping images. Firstly, the 
spectral bands of the satellite data were combined. The 6 
bands of the Landsat 5 TM images for 1990 (1, 2, 3, 4, 5, 
7) and the 7 bands of the Landsat OLI images for 2014 
(1, 2, 3, 4, 5, 6, 7) were combined layer, study area. 

 
Tablo 2. Technical characteristics of TM and OLI sensors (USGS, 2024) 

Satellite/ 
Sensor 

Band 
number 

Spectral 
resolution 

(μm) 

Spatial             
resolution          

(m) 

Radiometric                 
resolution                                

(bit) 

Swath        
width          
(km) 

Revisit 
period                     
(day)             

Band name 

Landsat5/
TM 1 0.45 - 0.52 30 8 185 16 Blue  

 2 0.52 - 0.60 30 8 185 16 Green 
 3 0.63 - 0.69 30 8 185 16 Red 
 4 0.76 - 0.90 30 8 185 16 Near Infrared (NIR) 

 5 1.55 - 1.75 30 8 185 16 Shortwave Infrared 
(SWIR) 1 

 6 10.4 - 12.5 120 8 185 16 Thermal 

  7 2.08 - 2.35 30 8 185 16 Shortwave Infrared 
(SWIR) 2 

Landsat8/
OLI TIRS 1 0.43 - 0.45 30 12 185 16 Coastal aerosol 

 2 0.45 - 0.51 30 12 185 16 Blue  
 3 0.53 - 0.59 30 12 185 16 Green 
 4 0.64 - 0.67 30 12 185 16 Red 
 5 0.85 - 0.88 30 12 185 16 Near Infrared (NIR) 

 6 1.57 - 1.65 30 12 185 16 Shortwave Infrared 
(SWIR) 1 

 7 2.11 - 2.29 30 12 185 16 Shortwave Infrared 
(SWIR) 2 

 8 0.50 - 0.68 15 12 185 16 Panchromatic 
 9 1.36 - 1.38 30 12 185 16 Cirrus 

 10 10.60 - 11.19 100* 12 185 16 Thermal Infrared 
(TIRS) 1 

  11 11.50 - 12.51 100* 12 185 16 Thermal Infrared 
(TIRS) 2 

  *Bands 10 and 11 (TIRS 1 and TIRS 2) are resampled to 30 meters spatial resolution. 
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Figure 2. Flow chart of study 

 
When image data is recorded by sensors aboard 

satellites and aircraft, errors may arise in geometry and 
the measured brightness values of pixels (Richards, 
2013). The satellite images utilized in this study were 
downloaded in orthorectified form, thus obviating the 
necessity for geometric correction. Then, a mosaicking 
process was applied, which allows the merging of images 
consisting of several frames into a single image. In this 
stage, three full Landsat 5 TM images were used for the 
1990, while three full Landsat 8 OLI images were used 
for the 2014. Histogram matching technique was 
employed during the mosaicking procedures. The 
primary purpose of utilizing this method is the 
calibration of the mosaic images. In this study, nine 
different vegetation indices were generated separately 
for Landsat 5 TM and Landsat 8 OLI images (Table 3). 
Subsequently, a new composite image, consisting of 15 

bands with the six original bands of Landsat 5 TM 
images with the vegetation index images derived from 
these bands for the 1990 dataset, was created. Similarly, 
another new composite image consisting of 16 bands was 
generated by layer stacking of the seven original bands 
of Landsat 8 OLI with the indices created for the 2014 
dataset. In the subsequent step, forest management plans 
pertaining to the study area were referenced in the 
ArcGIS program to delineate the study area boundaries 
in shapefile format. These boundaries were then 
converted to the AOI (Area of Interest) format using the 
ERDAS program. Then, the mosaic images from 1990 
and 2014 were clipped to match the study area 
boundaries. To reduce their impact on classification, 
areas with dense cloud cover in the images were digitized 
into polygons and removed.
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Table 3. Generated vegetation indices and their formulas 
Index Index description Formula Reference      

DVI Difference Vegetation 
Index 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅      (Tucker, 1979) 

IR/R Infrared divided by Red 𝑁𝑁𝑁𝑁/𝑁𝑁𝑅𝑅𝑅𝑅 (Jordan, 1969)      

MSAVI2 Modified Soil Adjusted 
Vegetation Index 2 ((2𝑁𝑁𝑁𝑁𝑁𝑁 + 1 −�(2𝑁𝑁𝑁𝑁𝑁𝑁 + 1)2 − 8(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅))/2 (Qi et al., 1994) 

NDVI Normalized Difference 
Vegetation Index (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)/(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅) (Rouse et al., 

1974) 

RDVI Renormalized Difference 
Vegetation Index (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)/�(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅) (Roujean and 

Breon, 1995) 

RVI Ratio Vegetation Index 𝑁𝑁𝑅𝑅𝑅𝑅/𝑁𝑁𝑁𝑁𝑁𝑁 (Rondeaux et 
al., 1996) 

SAVI Soil Adjusted Vegetation 
Index 

(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)(1 + 𝐿𝐿)/(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅 + 𝐿𝐿) 
L=0.5 Vegetation Cover Correction Factor (Huete, 1988)      

SQRT(IR/R) Square root of (Infrared/ 
Red) �(𝑁𝑁𝑁𝑁𝑁𝑁/𝑁𝑁𝑅𝑅𝑅𝑅)      (Tucker, 1979)           

TNDVI 
Transformed Normalized 
Difference Vegetation 
Index 

�((𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)/(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅)) + 0.5)  (Deering et al., 
1975)      

 
2.3 Determination of land cover types and 
classification of images 

With the addition of vegetation indices to the 1990 
and 2014 images, the number of bands was increased to 
16 and 17, respectively. Then, an unsupervised 
classification was conducted with varying numbers of 
classes to explore potential sub-information classes 
within the images with the ERDAS software. After forest 
management data was defined in the same projection 
system as the satellite data, the training data were created 
using the ArcGIS software. For the 1990 image, training 
data were defined using the unsupervised classification 
derived from the 1990 image, forest stand type maps 
from the 1992 forest management plans, and the 1990 
Landsat 5 TM satellite image. When determining the 
training areas for the 2014 image, subclasses resulting 
from the unsupervised classification applied to the 2014 
image, forest stand type maps from the 2013 forest 
management plans, the 2014 Landsat 8 OLI satellite 
image, and the high-resolution base map provided by 
ArcGIS online service were utilized. Five different land 
use classes were identified to classify the images 
obtained in 1990 and 2014 and detect changes. For 
representation of these classes, 434 training areas were 
selected from the 1990 image and 419 training areas 
from the 2014 image. 

The training areas, each considered a separate 
subclass, were imported into the Erdas software and 
incorporated into the 'signature editor' section of the 
subclassification module. Spectral reflectance curves of 
vegetation indices were generated. Through the 
examination of these spectral reflectance curves, similar 
spectral classes were identified, and those mixed with 
others were determined. Upon evaluating the spectral 
reflectance curves, it was found that the DVI, IR/Red, 
and NDVI vegetation indices provided the highest 
differences. Thus, three vegetation indices derived using 
6-band Landsat 5 TM sensor imagery and 7-band 

Landsat 8 OLI sensor imagery were combined (bands 
were selected for classification based on signature 
analysis) to generate a 9-band image for 1990 (Blue, 
Green, Red, Near Infrared, Shortwave Infrared 1, 
Shortwave Infrared 2, DVI, IR/Red, NDVI) and a 10-
band image (Coastal Aerosol, Blue, Green, Red, Near 
Infrared, Shortwave Infrared 1, Shortwave Infrared 2, 
DVI, IR/Red, NDVI). Then, supervised classification 
was applied to the images using the maximum likelihood 
algorithm. 

The classification process advanced by recoding the 
sub-information classes into the 5 main information 
classes based on the objectives. The main land use 
classes were generated along with their corresponding 
code values (Table 4). The recoding process was carried 
out among classes with adjacency and the highest rate of 
inter-class mixture. 

To ensure the validity of the classification, the 
accuracy assessment was performed using Erdas 
software. For the analysis, a total of 250 random ground 
control points (GCPs) were allocated, with 50 points 
assigned to each main information class for each year. 
The reference codes for the GCPs in 1990 were 
determined using Google Earth images and forest 
management plans. Forest management plans are 
prepared according to the act by the General Directorate 
of Forestry. A multi-layered approach is employed in the 
preparation of these plans. In brief, initial stand draft data 
is generated using aerial photographs, followed by 
ground measurements for sampling to create forest 
management plans (Mevzuat Bilgi Sistemi, 2024) For 
the determination of reference codes for the GCPs in 
2014, satellite images, forest management plans, and a 
high-resolution base map were utilized. Subsequently, 
accuracy reports and error matrices for both years were 
obtained through the accuracy assessment module of the 
Erdas software. 
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Table 4. Major land use classes, where subclasses are combined, and their code values 
Subclasses Major land use classes Code Values 
Coniferous forests 

Forest areas 1 
Deciduous forests 
Plantation areas 
Coppice areas 
Maquis  
Cultivated agricultural areas 

Agricultural areas 2 Non-cultivated agricultural areas 
Irrigated agricultural areas 
Residential areas 

Settlement areas 3 Asphalt roads 
Airports 
Forest soil 

Other non-forest areas 4 

Pasture areas 
Sandy areas 
Rocky areas 
Mining areas 
Soil roads 
Sea 

Water bodies 5 Ponds 
Dams 

 
3. Results and Discussion 
3.1. Determination of changes in land cover types 

The study aims to determine land use land cover 
changes using a post-classification comparison method 
with classified satellite images from 1990 and 2014. To 
accomplish this, a matrix operation was applied to the 
classified images in Erdas. The resulting image obtained 
from this application is shown in Figure 3. There is no 
general rule to determine the reliability of assessments 
obtained through remote sensing at which level of 

accuracy. However, it is generally assumed that 
classifications are considered accurate and reliable if the 
accuracy rate of assessments obtained through remote 
sensing is equal to or greater than 80%. In this study, the 
classification accuracies for both years exceed this 
threshold. The overall accuracy rates obtained for the 
classifications of 1990 and 2014 are 92.0% and 89.20%, 
respectively. Based on these results, the classification has 
achieved a sufficient level of accuracy and reliability. 

 

     
Figure 3. Thematic map depicting changes in land use forms between 1994 and 2000 
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Table 5 shows the classification results, their 
coverage for 1990 and 2014, along with the areal changes 
between the periods. The areal information for the codes 
in Figure 2 and the main information classes they 
represent can be found in Table 6. Specifically, codes 

such as 1-1, 2-2, 3-3, 4-4, 5-5 signify areas that remained 
unchanged between 1990 and 2014. Conversely, codes 
other than these signify inter-class changes in land use 
classes over the 24-year period. 

 
Table 5. A comparison of land use classes between 1990 and 2014 

Code Class 
Land use in 1990 Land use in 2014 Change (difference) 

Area 
(ha) 

Percent 
(%) 

Area 
(ha) 

Percent 
(%) 

Area 
(ha) 

Percent 
(%) 

1 Forest  58236.91 17,00 69910.67 20.48 11673.76 3.41 
2 Agricultural 226084.74 65.99 202551.91 59.12 -23532.83 -6.87 
3 Settlement  2627.28 0.77 17891.6 5.15 15264.32 4.46 
4 Other non-forest  45424,00 13.26 41901.21 12.23 -3522.79 -1.03 
5 Water bodies 10226.07 2.98 10343.61 3.02 117.54 0.03 

  Total 342599 100 342599 100     
 

Table 6. Changes occurring in land use classes between 1990 and 2014 
Changing 

codes Land use classes in 1990 Land use classes in 2014 Area (ha) Percent  
(%) 

1 - 1 Forest areas Forest areas 45720,97 13,35 
2 - 2 Agricultural areas Agricultural areas 176221,00 51,44 
3 - 3 Settlement areas Settlement areas 1560,51 0,46 
4 - 4 Other non-forest areas Other non-forest areas 12161,80 3,55 
5 - 5 Water bodies Water bodies 10009,98 2,92 
1 - 2 Forest areas Agricultural areas 7724,07 2,25 
1 - 3 Forest areas Settlement areas 1252,08 0,37 
1 - 4 Forest areas Other non-forest areas 3539,79 1,03 
1 - 5 Forest areas Water bodies 0 0 
2 - 1 Agricultural areas Forest areas 13575,70 3,96 
2 - 3 Agricultural areas Settlement areas 10646,60 3,11 
2 - 4 Agricultural areas Other non-forest areas 25595,90 7,47 
2 - 5 Agricultural areas Water bodies 45,54 0,01 
3 - 1 Settlement areas Forest areas 0 0 
3 - 2 Settlement areas Agricultural areas 675,00 0,20 
3 - 4 Settlement areas Other non-forest areas 391,77 0,11 
3 - 5 Settlement areas Water bodies 0 0 
4 - 1 Other non-forest areas Forest areas 10614,00 3,10 
4 - 2 Other non-forest areas Agricultural areas 17927,70 5,23 
4 - 3 Other non-forest areas Settlement areas 4432,41 1,29 
4 - 5 Other non-forest areas Water bodies 288,09 0,08 
5 - 1 Water bodies Forest areas 0 0 
5 - 2 Water bodies Agricultural areas 4,14 0,00 
5 - 3 Water bodies Settlement areas 0 0 
5 - 4 Water bodies Other non-forest areas 211,95 0,06 
Total     342599 100 

3.2. Examining the changes in land cover types      
The research conducted within this study aimed to 

evaluate the expansion and contraction of land cover 
classes, particularly forest lands, both in terms of areal 
and spatial distribution. Subsequently, the causes of these 
changes were examined. When examining Table 6, it 

becomes evident that 71.72% of the total area exhibits no 
changes in land use classes, while changes are observed 
in 28.28% of the area. According to the change analysis 
results from 1990 to 2014, it was determined that the 
most significant change in the study area occurred in the 
transition from Agricultural Areas to Other non-forest 
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Areas, accounting for 7.47% of the total area. Upon 
examining transitions from one main information class 
to another, it was revealed that the most substantial 
change occurred in transitions from Agricultural Areas in 
1990 to other main information classes, constituting 
14.55% of the total area. Additionally, among all 
transitions from various main information classes in 
1990, the most significant shift was toward the Other 
non-forest Areas class, which accounted for 8.67% of the 
total area. 

When examining the spatio-temporal changes in 
forest areas, it is noted that despite two major forest fires 
occurring between 1990 and 2014 (the Great Besparmak 
Mountains Fire in 1995 and the Güzelyurt District 
Forestry Directorate Hacibayram I Series Fire in 1998) 
and a significant increase in population in the region, 
areas classified as forests have shown an increase of 
3.41%. Reviewing Table 6 shows that an area of 1252.08 
hectares has transitioned from Forest Areas to Settlement 
Areas. It can be said that these areas have irreversibly 
lost their forest quality. 

When examining Table 5, a decrease of 6.87% is 
observed in Agricultural Areas. Upon reviewing Table 6, 
it is noted that an area of 25,595.90 hectares has 
transitioned from the Agricultural Areas main 
information class to the Other non-forest Areas main 
information class. In this transition, Agricultural Areas 
cultivated in 1990 were probably either harvested or left 
fallow by 2014. 

Upon reviewing Tables 5 and 6, it is evident that there 
has been a significant increase of 4.46% in Settlement 
Areas. This main information class has experienced the 
highest transition from Agricultural Areas and Other 
non-forest Areas main information classes. The findings 
of this study highlight significant land cover changes in 
Cyprus between 1990 and 2014, characterized by the 
conversion of agricultural lands to other non-forest areas, 
alongside an increase in forest and settlement areas. 
These changes are consistent with patterns observed in 
other regions and underscore broader trends in land use 
dynamics.      

Brown et al. (2005) utilized multi-temporal Landsat 
data to analyze urban sprawl in North America. They 
observed that urban expansion often displaces 
agricultural and natural areas, leading to notable 
environmental impacts. Our findings are analogous to 
those in Cyprus, where transitions from agricultural to 
urban land uses have also been observed. 

Yong et al. (2003) employed Landsat-5 TM, Landsat-
7 ETM+, and JERS-1 SAR data to study land cover 
changes and forest recovery in Changqing Forest Farm, 
Northeast China, following a 1987 forest fire. Their 
comparison of 1987 and 2000 Landsat images revealed 
successful forest and shrub land recovery from burn 
scars, alongside conversions to other land use types. 
Similarly, our study in Cyprus supports these findings, 
illustrating the effectiveness of afforestation and natural 
regeneration after wildfires. 

The post-classification comparison method utilized in 
this study has been validated by various researchers for 
its robustness in detecting land cover changes 
(Bhattacharjee et al., 2021; Das and Angadi, 2022; 
Andualem et al., 2023;Thien and Phuong, 2023). 
Furthermore, Chungtai et al. (2021) conducted a 
comprehensive review of different change detection 
methods across diverse study areas, highlighting the 
unique applicability of the post-classification approach 
compared to other methods. 

Tewabe and Fentahun (2020) focused on identifying 
land cover and land use changes in the Tana basin using 
Landsat data. Their findings underscored the critical role 
of change detection in monitoring land cover dynamics 
and devising strategies to mitigate adverse land use 
changes. This emphasizes the importance of continuous 
monitoring and the application of remote sensing 
techniques, as demonstrated in our study, for sustainable 
land management planning. In conclusion, the observed 
land cover changes in Cyprus between 1990 and 2014 
reflect broader global trends. Using Landsat imagery and 
post-classification comparison methods has proven to be 
an effective approach for detecting these changes, 
providing essential insights into sustainable land 
management and planning. 
 
4. Conclusions 

The determination of temporal land cover changes, 
both spatial and areal, is essential for sustainable 
planning. In this study, satellite images acquired from 
different sensors for the years 1990 and 2014 were used 
to detect land cover changes in Cyprus. The results were 
evaluated using the post-classification comparison 
method. The overall classification accuracy for both 
years exceeded 85%. While these accuracy levels are 
considered sufficient, further improvement was 
constrained by the heterogeneous structure of the study 
area and low spectral separability among certain land 
cover classes. According to the change matrix analysis, 
land cover changes were observed across 96,924.74 
hectares (28.28%) of the total 342,599-hectare study 
area, while no changes were detected in the remaining 
245,674.26 hectares (71.72%). A decrease was identified 
in areas classified as agricultural land and other non-
forest areas, whereas forest and settlement areas showed 
an increase. Water bodies exhibited minimal or no 
significant change. While forest management plans 
provide a snapshot of the current condition of forested 
areas, land cover change analyses offer insights into 
temporal dynamics, thereby facilitating more informed 
and effective planning. This study enhances the 
understanding of land use dynamics in Cyprus. Future 
research should prioritize the long-term monitoring of 
land use patterns, particularly in the context of climate 
change and natural resource sustainability. Additionally, 
comparative analyses across different regions and time 
periods may support the development of more 
comprehensive policy recommendations. 
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