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Abstract: Advancing the field of multi-criteria decision making (MCDM), this study proposes the Spearman Rank 

Correlation-based Expanded CRITIC Method (SRCBECM) as a novel and objective method for computing criteria 

weight coefficients. Leveraging the intricate revised CRITIC method, SRCBECM aims to enrich and contribute the 

MCDM landscape. Drawing upon criterion values extracted from Freedom in the world (FIW) index assessments 

for 19 G20 member nations, the study showcases the sensitivity of SRCBECM in objectively deriving criteria 

weights for diverse contexts. Further bolstering its credibility and reliability, comparative analyses reveal 

MIEXCF's alignment with established methodologies such as ENTROPY, CRITIC, SD, SVP, LOPCOW, and 

MEREC. Notably, the simulation analysis underscores SRCBECM's exceptional and stability in discerning criteria 

weights and its remarkable stability across diverse scenarios. In conclusion, SRCBECM emerges as a robust and 

objective criterion weighting technique, poised to make significant contributions to the burgeoning field of the 

broader MCDM corpus.     
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1. Introduction 

Multi-criteria decision-making (MCDM) is a widely utilized methodology in intricate decision-making 

processes and mathematical modeling, often encompassing various factors. MCDM aims to assess and 

prioritize alternatives based on the preferences and priorities of decision-makers. To achieve this, it is 

crucial to establish the weights of the criteria, which reflect the decision-makers' preferences [1]. 

The field of MCDM provides a diverse range of techniques, including ENTROPY, CRITIC, SD, SVP, 

MEREC, and LOPCOW, for the computation of criterion weights. These methods leverage two 

fundamental characteristics of objective criterion weights: 1) the extent of performance contrast among 

decision alternatives for each criterion, reflecting the range between maximum and minimum values, 

and the distinctiveness or conflict among criteria. By comprehending and utilizing these inherent data 

characteristics, decision-makers can obtain valuable insights to steer their decision-making process [2]. 

Consequently, in the literature on MCDM criterion weighting, the logic of criterion weighting may 

vary in methods that consider the relationships between criteria (CRITIC, DEMATEL, MEREC). 

One of the most notable features of the CRITIC method is that it is fundamentally based on the Pearson 

correlation coefficient between criteria [2]. The Pearson correlation coefficient is a parametric method, 

and it can only measure the correlation value between variables that exhibit a normal distribution. 

Therefore, the correlation values between variables that do not exhibit a normal distribution may not 

yield accurate results with this method [3]. In contrast, the relationships between variables that do not 

exhibit a normal distribution can be measured using the non-parametric Spearman Rank Correlation 

(rho) coefficient [4]. Moreover, the rho coefficient can also be used to calculate relationships between 
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variables that exhibit a normal distribution [5]. Hence, it can be considered that the rho correlation 

coefficient is more advantageous compared to the Pearson correlation coefficient. The primary 

motivation of this study is to propose the use of the rho correlation coefficient instead of the Pearson 

correlation coefficient for determining the relationships between criteria when calculating the weight 

values of criteria within the CRITIC method, regardless of whether the criteria values exhibit a normal 

distribution. This approach ensures a more accurate calculation of the relationships between criteria. 

The second motivation of this study is to expand the criteria weighting calculation logic of the CRITIC 

method. The logic of CRITIC method relies on the differentiation or antagonism among criteria. This is 

because in the CRITIC method, the weight of a criterion increases with the growth of negative 

relationships among other criteria (along with a decrease in positive relationships) [2]. In contrast, the 

DEMATEL method considers not only the antagonism among criteria but also takes into account the 

similarity among them based on the logic of the method [6]. If a criterion influences other criteria both 

negatively and positively, and is influenced by other criteria, its weight increases in the DEMATEL 

method [7]. Therefore, in the DEMATEL method, the separation and similarity among criteria are 

considered on equal terms when calculating the weight of a criterion. Accordingly, the DEMATEL 

method possesses a more inclusive characteristic in terms of criterion weighting logic compared to the 

CRITIC method. Therefore, to make the CRITIC method more comprehensive (by considering both the 

contrasts and similarities between criteria), it is necessary to implement its calculation logic similar to 

the DEMATEL method. In this context, in the research, a method called Spearman Rank 

Correlation-based Expanded CRITIC Method (SRCBECM) is proposed, which forms equations that 

explain relationships among criteria more meaningfully, provide more separation and similarity 

among criteria, and thus, more effectively determine the characteristic features of criteria compared to 

the CRITIC method. The SRCBECM method aims to measure the weight coefficients of criteria 

objectively. 

The data set of the study consists of the values of 12 criteria for the Freedom in the world (FIW) of 19 

countries in the G20 group. In this sense, the methods of calculating criterion weights in the scope of 

MCDM, rho and CRITIC techniques are explained in the method section of the study. The 

implementation plan of the proposed method is shown in Figure 1. 

 

 
Figure 1. Implementation Plan of Proposed Method 

2. Materials and Methods 

2.1. Methods for calculating criterion weights in the scope of MCDM 

Navigating the intricacies of decision-making often hinges on identifying the optimal choice amidst a 

tapestry of alternatives. However, each option may exhibit varying degrees of effectiveness across diverse 

criteria. This underscores the criticality of pinpointing the relative importance of these criteria to 

accurately compare the performance of potential solutions and ultimately arrive at the most suitable one 

[8]. Traditionally, this significance is quantified through the assignment of weight coefficients within the 

framework of MCDM problems [2]. 
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The burgeoning field of Multi-Criteria Decision Making (MCDM) boasts a rich tapestry of objective 

weighting methods. These include CRITIC (Criteria Importance Through Inter-Criteria Correlation), 

ENTROPY, CILOS (Criterion Impact Loss Optimization System), IDOCRIW (Integrated Determination of 

Objective Criteria Weights), SVP (Statistical Variance Procedure), SD (Standard Deviation), MEREC 

(Method Based on Removal Effects of Criteria), LOPCOW (Logarithmic Percentage Change-driven 

Objective Weighting), and SECA (Simultaneous Evaluation of Criteria and Alternatives) [2]. 

The CRITIC method taps into the inherent information within a system by privileging criteria that exhibit 

greater disorder or distinctiveness compared to others, marking their heightened importance. This 

approach values the interconnectedness of criteria by meticulously examining their correlations to expose 

any inconsistencies. These contradictions, meticulously quantified using the standard deviation, inform 

the determination of criterion weight coefficients. The CRITIC method unfolds by first constructing a 

decision matrix and then normalizing its values. By analyzing the correlations between these normalized 

values, the method quantifies the relative weight of each criterion [9-12]. 

The ENTROPY method adds a valuable tool to the decision-making field. Building on the constructed 

decision matrix, this method leverages the standardized values and the calculated ENTROPY measure of 

each criterion to derive their corresponding ENTROPY-based weights [8-13]. 

The CILOS method prioritizes criteria based on their ability to influence the performance of other criteria 

relative to their ideal maximum and minimum values. In essence, criteria that cause the least deviation in 

others receive higher weight coefficients. This approach follows a structured process, beginning with the 

calculation of the decision matrix, normalization, and square matrix formation. Subsequently, a system of 

linear equations is solved to uncover the weight coefficients for each criterion [14-15]. 

The IDOCRIW method bridges the gap between the ENTROPY and CILOS approaches, forging a hybrid 

path to criterion weight determination. This innovative method delves into the relative impact of a 

missing index, initially leveraging the decision matrix and both ENTROPY and CILOS methodologies to 

calculate individual weight coefficients. Subsequently, it seamlessly integrates the ENTROPY and CILOS 

weights, culminating in the final IDOCRIW weights [14]. 

The SVP method, a champion of objectivity in weighting criteria, stands tall amidst subjective biases. This 

method calculates criterion weights with an unwavering impartiality, eliminating the influence of expert 

opinions or subjective interpretations. SVP dives deep into the variance metrics associated with each 

criterion, treating them as the sole compass for determining their significance. Following the calculation of 

individual criterion variances, the method simply divides each value by the total variance across all 

criteria, yielding their respective weights. In essence, SVP empowers data-driven decision-making, 

transforming variance into a quantifiable measure of criterion importance [16-18]. 

The SD method shines a light on the inherent variability of criteria by leveraging their deviation from the 

average. This straightforward approach first normalizes the values within the decision matrix, ensuring a 

level playing field. Then, it delves into the standard deviations of each criterion, using these measures as a 

compass to navigate their relative importance. In essence, SD empowers data-driven decision-making by 

translating variability into quantifiable weights [19-20]. 

Like other weighting methods, MEREC lays the groundwork by constructing the decision matrix and its 

normalized counterpart. Then, it ventures into the realm of performance, calculating the overall 

effectiveness of each decision alternative through a natural logarithm-powered framework. Building on 

this foundation, MEREC re-evaluates the performance of each alternative, factoring in the influence of 

each remaining criterion. This iterative process, driven by natural logarithms, ultimately culminates in the 

calculation of criterion weight coefficients. These weights reflect the "removal effect" of each criterion, 

essentially the sum of their absolute influence on the performance of other alternatives. In essence, 

MEREC recognizes that as a criterion's impact on decision alternatives grows, so too does its weight 

coefficient [21-22]. 

The LOPCOW method harnesses the power of multidimensional data, weaving together information from 

various sources to craft a tapestry of optimal criterion weights. This approach seeks to level the playing 

field between the most and least influential criteria, while acknowledging the intricate web of connections 

that bind them. The journey begins with meticulously constructing the decision matrix, followed by a 
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rigorous normalization process that ensures all voices are heard equally. To overcome the disparities 

arising from data magnitudes, LOPCOW deploys a potent metric: the average square value expressed as a 

percentage of the criterion's standard deviation. This measure serves as a compass, guiding us towards the 

final weight coefficients and ultimately, a balanced and insightful weighting scheme [23]. 

The SECA method takes a holistic approach, simultaneously unveiling the true potential of decision 

alternatives and weighing the importance of criteria that shape their performance. This innovative method 

begins by leveling the playing field through decision matrix standardization. Then, it delves into the realm 

of disagreement, employing the standard deviation as its tool to quantify discrepancies. These insights, 

along with standardization values, form the bedrock for determining criterion weights. Finally, SECA 

leverages the power of multi-objective linear programming, optimizing a model to arrive at the optimal 

set of weights [24]. 

The decision matrix in the DEMATEL method is created by obtaining the opinions of experts, and thus, 

the method is recognized as one of the subjective criterion weighting methods. This is because it involves 

determining the impact values of variables on each other through the input of experts or their opinions [2]. 

The relationship structure of variables, including their contributions to the relational structure, influence, 

relational density, and relational quality (as influencers or influenced), can be determined through the 

DEMATEL MCDM method [25-26]. Therefore, in the DEMATEL method, variables that possess the 

quality of being an "influencer" within the relationship structure are considered as causes, while variables 

that have the quality of being "influenced" are considered as outcomes in said relational structure [23]. The 

DEMATEL method has demonstrated successful applications in various technical and social problems. In 

addition to identifying the relationship structure between variables, the DEMATEL method allows for the 

calculation of the significance values of variables [10]. In the DEMATEL method, for the preparation of the 

decision matrix, the impact values of variables on each other can be determined subjectively by obtaining 

the opinion of an expert or the opinions of multiple experts [2]. Apart from this, In the DEMATEL method, 

the weight of a criterion increases as its impact on other criteria, either positively or negatively, and its 

susceptibility to the influence of other criteria become more significant. Additionally, one of the most 

crucial features of the DEMATEL method is that in determining the weights of criteria, the interactive 

structure among criteria considers both positive and negative influences equally. This is because the 

weights of criteria can be calculated by taking the square root of the sum of the squares of the total of 

positive and negative impact values and the square of the difference between positive and negative impact 

values [27]. 

2.2. Spearman Rank Correlation Coefficient 

The Spearman Rank Correlation Coefficient (𝑟ℎ𝑜) is a non-parametric correlation coefficient and is 

referred to as an alternative to the Pearson correlation coefficient. In this sense, the rho correlation 

coefficient is utilized to measure the linear relationship between two variables that do not exhibit a 

normal distribution feature [28-29]. Additionally, when variables possess the normal distribution 

feature, the relationship between the two variables can also be assessed using the rho coefficient. A 

coefficient value of -1 indicates a perfect negative relationship, whereas a value of +1 signifies a perfect 

positive relationship. If the coefficient value is 0, it implies no relationship between the two variables. 

The rho coefficient also possesses a symmetrical property; therefore, the relationship coefficient 

remains the same even if the roles of the variables change between dependent and independent 

variables. To measure the rho relationship coefficient between two variables, the following steps are 

followed [30-39]. 

Step 1: Calculation of the total values of row entries in the contingency table (𝑡′) 

Let 𝑡 represent the sum of each row. Therefore, the sum of the row values in the contingency table is 

shown in Equation 1. 

𝑡′ =
(∑ 𝑡3 − ∑ 𝑡)

12
                                                                                                                                                                       (1) 

Step 2: Calculate the sum of the column values in the contingency table (𝑢′) 

Let 𝑢 represent the sum of each column. Therefore, the sum of the column values in the contingency 

table is shown in Equation 2. 
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𝑢′ =
(∑ 𝑢3 − ∑ 𝑢)

12
                                                                                                                                                                   (2)     

Step 3: Calculation of the rho (𝑟𝑟ℎ𝑜) 

𝑟𝑟ℎ𝑜 =
𝑛3 − 𝑛 − 6 ∑ 𝑑2 − 6(𝑡′ + 𝑢′)

√𝑛3 − 𝑛 − 12𝑡′√√𝑛3 − 𝑛 − 12𝑢′
                                                                                                                           (3)  

When the correlation coefficient literature is examined, it is possible to come across many studies that 

measure the relationships between two variables with the 𝑟ℎ𝑜 coefficient. Studies related to the current 

𝑟ℎ𝑜 correlation coefficient are shown in Table 1. 

Table 1. 𝑟ℎ𝑜 literature 

Author(s) Method(s) Theme 

[40]  rho Relationship between atmospheric stability and cloud tops temperature of 

Himawari-8 IR satellite images 

[41]  rho 
Relationship between communication skills and emotional intelligence 

among nurses 

[42]  rho Relationships between various cyber threats and their patterns with 

respect to duration, IP address, target systems/ports 

[43]  rho Relationship between hemoglobin and lactate dehydrogenase 

[44]  rho Relationship between Dysphonia and voice fatigue 

[45]  rho 
Relationship between aortopulmonary collaterals and common 

non-invasive clinical variables 

[46]  rho Relationship between  bilateral dFIWcit and maximal sprint speed judo 

test, maximal aerobic speed Judo test and special judo fitness test 

[47]  rho 
Relationship between performance of magnetic resonance imaging and 

histopathology 

[48]  rho 
Relationship between abundance of short-chain fatty acids (SCFAs) and 

lipopolysaccharide 

[49] rho 
Relationship between neutrophil-to-lymphocyte ratio and 

alzheimer-related biomarkers in cerebrospinal fluid 

 

2.3. CRITIC method 

The CRITIC (Criteria importance through inter criteria correlation) method is a technique that objectively 

measures the weight coefficients or importance levels of criteria based on the data of decision alternatives 

regarding the criteria [19]. The foundation of the method is based on the intensity of the dichotomy within 

the structure of the decision-making problem [2]. Furthermore, this method provides an analytical 

approach to revealing all the information inherent within the criteria [50]. The most significant feature that 

sets the CRITIC method apart from other weight coefficient calculation techniques is that it calculates the 

weight coefficients of criteria not based on subjective results provided by expert opinions, but by taking 

into account standard deviation and correlation analysis of the criteria [2]. In this context, the application 

steps of the method are explained below [50]. 

𝐴𝑖: Decision alternative 𝑖 

𝐶𝑗: 𝐽 − 𝑡ℎ evaluation criterion 

𝑥𝑖𝑗: The value of alternative 𝑖 according to evaluation criterion 𝑗. 

𝑥𝑗
𝑚𝑎𝑘: The maximum value of decision alternatives according to criterion 𝑗. 

𝑥𝑗
𝑚𝑖𝑛: The minimum value of decision alternatives according to criterion 𝑗. 

𝑟𝑖𝑗: The value received by alternative 𝑖 according to evaluation criterion 𝑗. 

𝑝𝑗𝑘: Relationship coefficients between any 𝑗 criterion and 𝑘 criterion 

𝜎𝐽: Standard deviation value of criterion 𝑗 (𝑗 =  1,2, … , 𝑛) 

𝑤𝐽: Weight of evaluation criterion (𝑗 =  1,2, … , 𝑛). 

Step 1: Acquisition of the Decision Matrix (𝑋) 
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𝑋 =

𝐴1

𝐴2

⋮
𝐴𝑚

[

𝑥11 𝑥12 𝑥1𝑛
𝑥21

⋮
𝑥22

⋮
𝑥2𝑛

⋮
𝑥𝑚1 𝑥𝑚2 𝑥𝑚𝑛

]                                                                                                                                                    (4) 

2. Step: Normalization Process of the Decision Matrix.  

For Benefit-Oriented Criteria 

𝑟𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥𝑗

𝑚𝑖𝑛

𝑥𝑗
𝑚𝑎𝑘𝑠 − 𝑥𝑗

𝑚𝑖𝑛
… … … . . 𝑗 = 1,2, … . , 𝑛                                                                                                                         (5) 

For Cost-Oriented Criteria 

𝑟𝑖𝑗 =
𝑥𝑗

𝑚𝑎𝑘𝑠 − 𝑥𝑖𝑗

𝑥𝑗
𝑚𝑎𝑘𝑠 − 𝑥𝑗

𝑚𝑖𝑛
… … … . . 𝑗 = 1,2, … . , 𝑛                                                                                                                         (6) 

3. Step: Creation of the Relationship Coefficient Matrix (𝑝𝑗𝑘) 

𝑝𝑗𝑘 =
∑ (𝑟𝑖𝑗 − 𝑟𝑗). (𝑟𝑖𝑘 − 𝑟𝑘)𝑚

𝑖=1

√∑ (𝑟𝑖𝑗 − 𝑟𝑗)2. (𝑟𝑖𝑘 − 𝑟𝑘)2𝑚
𝑖=1

     𝑗, 𝑘 = 1,2, … , 𝑛                                                                                                     (7) 

4. Step: Measurement of 𝐶𝑗 Values 

𝜎𝑗 = √
∑ (𝑟𝑖𝑗−𝑟𝑗)2𝑚

𝑖=1

𝑚−1
                                                                                                                                                                     (8)       

𝐶𝑗 = 𝜎𝑗 . ∑(1 − 𝑝𝑗), 𝑗 = 1,2, … , 𝑛

𝑛

𝑘=1

                                                                                                                               (9) 

5. Step: Measurement of Criterion Weights (Importance Degrees) (𝑤𝑗) 

𝑤𝑗 =
𝐶𝑗

∑ 𝐶𝑗
𝑛
𝑘=1

                                                                                                                                                                               (10)     

When the MCDM literature is examined, it is observed that many researchers have benefited from the 

CRITIC method in calculating the weights of criteria according to decision alternatives. The current 

research related to the CRITIC method is explained Table 2. 

Table 2. CRITIC literature 

Author(s) Method(s) Theme 

[51]  CRITIC based MARCOS 
Evalation of zero-carbon measures for sustainable 

transportation in smart cities 

[52]  CRITIC based TOPSIS Optimum Site Selection for Solar PV Farm 

[53]  CRITIC based TOPSIS Analytically Identify the Air Pollutant's 

[54] CRITIC based GRA investment portfolio selection 

[55]  CRITIC based TOPSIS Solving the material handling equipment selection problem 

[56]  Fuzzy CRITIC based TOPSIS Smartphone addiction assessment 

[57]  CRITIC based EDAS Geometric aggregation operator 

[58]  CRITIC based TOPSIS Stakeholder assessment in construction projects 

[59]  CRITIC based MultiMOORA Warehouse manager selection 

[60]  CRITIC-SD based GRA and TOPSIS Assessing the energy security of European Union countries 

 

2.4. Proposed method: Spearman Rank Correlation Coefficient-based expanded CRITIC method 

(SRCBECM) 

The Pearson correlation coefficient is a parametric measure, so it can be used to measure the 

relationships between criteria under the assumption of normal distribution of the data. However, when 

the relationship between criteria in a dataset that does not follow the normal distribution is measured 

with the Pearson correlation coefficient, the relationship between the criteria may not reflect reality [4]. 

In contrast, the rho coefficient is a non-parametric measure, so the normal distribution assumption is 

not required for measuring the relationship between criteria [35]. In addition, the rho coefficient can be 

used to obtain real results in detecting nonlinear relationships between variables [61]. In this context, 

the rho coefficient is considered to be more advantageous than the Pearson correlation coefficient for 

calculating the weights of criteria due to its aforementioned properties [62]. Therefore, the 

relationships between criteria can be calculated with the rho coefficient in the CRITIC method. 
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In the ENTROPY method, as the uncertainty level of a criterion increases relative to other criteria, the 

weight coefficient of the criterion decreases. Consequently, the criterion with the highest degree of 

uncertainty attains a more pronounced significance compared to other criteria [2]. In the MEREC 

method, the weight of a specific criterion increases when the absolute difference between the averages 

of criteria concerning decision alternatives, either by excluding or considering the criterion, becomes 

smaller [21]. As a result, the criterion with the highest weight exerts the greatest influence on decision 

alternatives. In the SD method, the weight of a criterion is maximized when its standard deviation is 

the highest [19]. Similarly, in the SVP method, the weight of a criterion is maximized when its variance 

is the highest [20]. In the LOPCOW method, the mean square value of each criterion is calculated as a 

percentage of the standard deviations, effectively addressing the discrepancy (gap) arising from the 

dimensionality of the data. Consequently, a decrease in the standard deviation of a criterion diminishes 

the gap attributed to the data size for that criterion, resulting in an increase in the weight assigned to 

the criterion [23]. Therefore, in these methods, the weight calculation logic is based on the degree of 

separation (contrast) of the criteria from each other; the more a criterion is separated or contrasted, the 

higher its weight value. 

As is well known, the increase in the weight coefficient of a criterion in the CRITIC method depends on 

the intensity of its contrast with other criteria. Therefore, if the contrast intensity of a criterion with 

other criteria increases, the weight value of the criterion also increases [2]. This is because, according to 

Equation 9 in the CRITIC method, the importance and weight of a criterion is highest if its negative 

relationship with other criteria is the greatest and its positive relationship is the least [19]. Therefore, if 

a criterion is the most distinct from other criteria, the weight of that criterion is greater. In conclusion, 

the method's logic takes into account the degree of separation of the criteria from each other. 

In addition to Equation 9, the CRITIC method also takes into account the standard deviation values of 

the criteria. In the CRITIC method, the standard deviation only provides information on how far the 

average value of any criterion's data set is from the mean or how different the criterion's data are from 

each other. Therefore, when the standard deviation values of any criterion are calculated, the standard 

deviation values of other criteria are not taken into account. Thus, the standard deviation value in 

Equation 8 does not support the separation (contrast) logic of the CRITIC method. This is because the 

standard deviation value shown in Equation 8 shows how far each criterion deviates from the mean 

based on its own data. In this case, the separation (contrast) between criteria that constitute the logic of 

the CRITIC method is supported excluded standard deviation only by the process in Equation 9 

(∑ (1 − 𝑝𝑗))𝑛
𝑘=1 . 

To increase the contrast of a criterion with another criterion in the CRITIC method, the standard 

deviation shown in Equation 9 (𝜎𝑗 . ∑ (1 − 𝑝𝑗))𝑛
𝑘=1  can be replaced with the absolute difference between 

the arithmetic mean of the normalization values of any criterion and the arithmetic mean value of all 

criteria (MDV), which shows how much the mean value of the criterion deviates from the arithmetic 

mean values of all criteria. This will strengthen the degree of separation (contrast) between criteria by 

multiplying the calculated deviation value (𝑀𝐷𝑉) with the Equation 9 (𝑀𝐷𝑉𝑗. ∑ (1 − 𝑝𝑗))𝑛
𝑘=1 . 

In the DEMATEL method, the criterion weighting logic is more comprehensive than in the CRITIC 

method. This is because in the DEMATEL method, the weight coefficient of a criterion increases as it 

affects other criteria both positively and negatively, and is affected by other criteria. Accordingly, in the 

DEMATEL method, the weight coefficient of a criterion is reflected by the square root of the sum of the 

squares of the values of the criterion affecting and being affected by other criteria, and the sum of the 

squares of the difference between the values of the criterion affecting and being affected by other 

criteria [25]. This situation is illustrated in Equation 11, which shows the criterion weights in the final 

step of the DEMATEL method [23-24]. 

In the DEMATEL method, the criterion weighting logic is more comprehensive than in the CRITIC 

method. This is because in the DEMATEL method, the weight coefficient of a criterion increases as it 

affects other criteria both positively and negatively, and is affected by other criteria. Accordingly, in the 

DEMATEL method, the weight coefficient of a criterion is reflected by the square root of the sum of the 

squares of the values of the criterion affecting and being affected by other criteria, and the sum of the 
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squares of the difference between the values of the criterion affecting and being affected by other 

criteria [25]. This situation is illustrated in Equation 11, which shows the criterion weights in the final 

step of the DEMATEL method [25-26]. 

𝑤 = Weight of criteria. 

𝑑 = Total influence value of a criterion on other criteria. 

𝑟 = Total influenced value of a criterion by other criteria. 

𝑤 = √(𝑑 + 𝑟)2 + (𝑑 − 𝑟)2                                                                                                                                                   (11) 

The similarities and contrasts between criteria shown in Equation 11 are explained in Table 3. 

Table 3. The similarities and contrasts of a criterion with other criteria according to the DEMATEL method 

𝒅 𝒓 Conditions 𝒅 + 𝒓 𝒅 − 𝒓 

𝑑 > 0 𝑟 > 0 𝑑 > 𝑟 Similarity Similarity 

𝑑 > 0 𝑟 > 0 𝑑 < 𝑟 Similarity Similarity 

𝑑 < 0 𝑟 < 0 |𝑑| > |𝑟| Contrast Contrast 

𝑑 < 0 𝑟 < 0 |𝑑| < |𝑟| Contrast Contrast 

𝑑 > 0 𝑟 < 0 𝑑 > |𝑟| Similarity Similarity 

𝑑 > 0 𝑟 < 0 𝑑 < |𝑟| Contrast Contrast 

𝑑 < 0 𝑟 > 0 |𝑑| < 𝑟 Similarity Similarity 

𝑑 < 0 𝑟 > 0 |𝑑| > 𝑟 Contrast Contrast 

 

According to the eight scenarios explained in Table 13, the similarities and contrasts of a criterion with 

other criteria in terms of influencing and being influenced by them within the DEMATEL method are 

demonstrated. When Table 3 is examined, it is evident that the positive or negative nature of a 

criterion's relationships (influence and being influenced) with other criteria reflects the criterion's 

similarity or contrast with those criteria. Therefore, in the DEMATEL method, the importance of 

criterion weight is evaluated not only by the criterion's separation from other criteria (the negative 

impact of criteria on each other and negative being affected by each other), but also by its similarity (the 

positive impact of criteria on each other and positive being affected by each other). As a result, in the 

DEMATEL method, the weight of a criterion is considered equally in terms of the criterion's negative 

impact on other criteria and being affected by other criteria, as well as the criterion's positive impact on 

other criteria and being affected by other criteria. Therefore, the DEMATEL method is based on a more 

comprehensive criterion weighting logic than the CRITIC method. In light of all this information, the 

CRITIC method can be improved by taking into account the advantages of the rho correlation 

coefficient over the Pearson correlation coefficient (𝑟ℎ𝑜 is non-parametric and gives better results than 

Pearson correlation for non-linear relationships) and the advantageous comprehensiveness feature of 

the DEMATEL method over the CRITIC method. 

Taking into consideration the aforementioned points, in the context of the proposed method 

(SRCBECM), the application steps are outlined as follows: in the first step, decision is formulated using 

Equation 4, and in the second step, normalized decision matrix is constructed with Equation 5. The 

third step of the method involves calculating the divergence (𝑀𝐷𝑉𝑗) through Equation 14, based on 

Equations 12 and 13 and similarity (𝑀𝑆𝑉𝑗) values for each criterion through Equation 14.  

Third Step: Determination of divergence (𝑀𝐷𝑉𝑗) and similarity (𝑀𝑆𝑉𝑗) values for each criterion 

relative to the mean values. 

Case 1: Calculation of the mean value for each normalized criterion(𝑉𝑗) 

𝑉𝑗 =
∑ 𝑟𝑖

𝑚
𝑖=1

𝑚
                                                                                                                                                                               (12)  

Case 2: Calculation of the mean value of the normalized criteria relative to the overall mean value (𝑉𝑉) 

𝑉𝑉 =
∑ 𝑉𝑗

𝑛
𝑗=1

𝑛
                                                                                                                                                                            (13) 

Case 3: Measure the deviation value of each criterion from the mean value (𝑀𝐷𝑉𝑗) 

For each criterion, the divergence value: 

𝑀𝐷𝑉𝑗 = |𝑉𝑗 − 𝑉𝑉|                                                                                                                                                                   (14)        
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Case 4: Measure the inverse of the deviation value of each criterion from the mean value (𝑀𝑆𝑉𝑗) 

For each criterion, the similarity value: 

Similarly, within the context of the expansion of the logical foundation of the CRITIC method, the 

situation of similarity among criteria can be determined by comparing the value of 1 with the 𝑀𝐷𝑉𝑗 

value. This is because as the 𝑀𝐷𝑉𝑗  value decreases (increases), the similarity among criteria will 

increase (decrease). 

𝑀𝑆𝑉𝑗 =
1

𝑀𝐷𝑉𝑗
                                                                                                                                                                          (15) 

Fourth Step: Calculation of 𝑟ℎ𝑜 correlation coefficient values among criteria 

In the fourth step of the method, the 𝑟ℎ𝑜 relationship matrix among criteria is constructed using 

Equations 1, 2, and 3. Statistical programs such as SPSS can be utilized for the calculation of these 

correlation coefficient values. 

Fifth Step: Determination of divergence (𝐶𝐷𝑉𝑗) and similarity (𝐶𝑆𝑉𝑗) values for criteria according to 

𝑟ℎ𝑜 correlation analysis. 

Case 1: Divergence of criteria according to 𝑟ℎ𝑜 correlation analysis (𝐶𝐷𝑉𝑗) 

In the 4th step of the CRITIC method, the increase in the difference between the Pearson correlation 

values of criteria, excluding the 1 value in Equation 9, results in an increase in the weight coefficients of 

criteria for negative relationships (divergence). Therefore, the divergence degree of criteria according 

to 𝑟ℎ𝑜 correlation analysis can be calculated using Equation 16 in the 4th step of the CRITIC method, 

utilizing Equation 9 excluding standard deviation. 

𝐶𝐷𝑉𝑗 = ∑(1 − 𝑟ℎ𝑜𝑖), 𝑖 = 1,2, … 𝑚, 𝑗 = 1,2, … , 𝑛

𝑚

𝑖=1

                                                                                                 (16) 

Case 2: Identification of the inverse of the divergence value according to 𝑟ℎ𝑜 correlation analysis 

(similarity) (𝐶𝑆𝑉𝑗) 

Taking into account Equation 16, the degree of similarity among criteria can be calculated as shown in 

Equation 16, which involves summing the rho coefficients between criteria with a value of 1. 

𝐶𝑆𝑉𝑗 = ∑(1 + 𝑟ℎ𝑜𝑖), 𝑖 = 1,2, … 𝑚, 𝑗 = 1,2, … , 𝑛

𝑚

𝑖=1

                                                                                                 (17) 

Sixth Step: Calculation of Divergence (𝑆𝐸𝑗)  and Similarity Values (𝑆𝐼𝑗) for Criteria 

Case 1: Calculation of divergence values for criteria (𝑆𝐸𝑗) 

The value (𝑆𝐸𝑗) for each criterion is calculated by dividing the product of the deviation from the mean 

value for criteria 𝑀𝐷𝑉𝑗  and the divergence value according to rho correlation analysis 𝐶𝐷𝑉𝑗  by the total 

divergence values of criteria. 

𝑆𝐸𝑗 =
𝑀𝐷𝑉𝑗 . 𝐶𝐷𝑉𝑗

∑ 𝑀𝐷𝑉𝑗 . 𝐶𝐷𝑉𝑗
𝑛
𝑗=1

                                                                                                                                                         (18)   

Case 2: Calculation of similarity values for criteria (𝑆𝐼𝑗) 

The similarity values for each criterion are explained by the summation of the product of the inverse of 

the deviation from the mean value for each criterion (𝑀𝑆𝑉𝑗) and the similarity according to rho 

correlation analysis (𝐶𝑆𝑉𝑗) as described in Equation 19, which represents the total similarity values for 

criteria. 

𝑆𝐼𝑗 =
𝑀𝑆𝑉𝑗 . 𝐶𝑆𝑉𝑗

∑ 𝑀𝑆𝑉𝑗 . 𝐶𝑆𝑉𝑗
𝑛
𝑗=1

                                                                                                                                                            (19)        

Seventh Step: Calculation of criterion weights (𝑤𝑗) 

Case 1: Taking into account the equal-weight divergence and similarity situations of criteria (𝐸𝑊𝑗) 

Considering the divergence and similarity situations of criteria with equal weight, the values of criteria 

(𝐸𝑊𝑗) are determined, as explained in Equation 20. 

𝐸𝑊𝑗 =
𝑆𝐸𝑗 + 𝑆𝐼𝑗

2
                                                                                                                                                                     (20)  

Case 2: Calculation of criterion weights 

𝑤𝑗 =
𝐸𝑊𝑗

∑ 𝐸𝑊𝑗
𝑛
𝑗=1

                                                                                                                                                                        (21)       
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In light of the above, the SRCBECM method has some advantages compared to other methods. Firstly, 

one of the advantages of the SRCBECM method is its insensitivity to 0 and negative values. In contrast, 

in the ENTROPY and MEREC methods, when there are 0 or negative values in the decision matrix, 

calculations can become undefined as these methods allow for logarithmic transformation. 

Consequently, negative values in the decision matrix can be transformed using Z-score. However, the 

presence of a 0 value in the decision matrix poses a challenge to the calculation of criterion weights in 

these methods. Secondly, the foundation of the method is based on the rho correlation coefficient 

among criteria. Especially in the CRITIC method, the relationships between criteria are measured with 

the Pearson correlation coefficient, which has a parametric structure. Therefore, the Pearson correlation 

coefficient may not yield accurate results, especially among criterion data that do not exhibit a normal 

distribution. In contrast, in the SRCBECM method, the relationships among criteria, without the 

assumption of a normal distribution, are measured using the non-parametric 𝑟ℎ𝑜  correlation 

coefficient. Thirdly, another advantage is that the SRCBECM method considers both divergence 

(opposition) and similarity conditions among criteria on equal terms, similar to the DEMATEL method. 

In contrast, in methods such as ENTROPY, CRITIC, SD, SVP, MEREC, and LOPCOW, the logic of the 

weights of criteria focuses solely on the divergence (opposition) of criteria from each other. Therefore, 

the weighting logic of the SRCBECM method is more comprehensive than other methods. Finally, due 

to the broad focus of the SRCBECM method, the weights of criteria in SRCBECM have more 

characteristic features compared to other methods. Thus, the characteristic features of criteria with 

prominent characteristics result in more differences in the weight coefficients of criteria between them 

and other criteria compared to other methods. 

The SRCBECM method offers a more balanced weighting by considering both similarities and 

differences among criteria, providing a more comprehensive analysis compared to methods that 

typically focus solely on differences. Its insensitivity to zero and negative values, along with its lack of 

a normal distribution assumption, makes the method applicable to a wide range of datasets. 

Consequently, SRCBECM yields reliable results, particularly in scenarios involving heterogeneous and 

complex datasets. Furthermore, by considering both similarities and differences among criteria, 

SRCBECM provides decision-makers with more balanced and accurate weights. This contributes to 

more accurate outcomes in decision-making processes and makes the method applicable across various 

sectors, including financial decisions, project management, resource allocation, product design, project 

selection, environmental impact assessment, and sustainable project selection. In practice, the method 

aids in making more meaningful and consistent decisions, especially in cases involving complex 

inter-criteria relationships, particularly in big data analysis. It can be particularly beneficial in 

decision-making processes such as corporate strategy formulation, investment evaluations, and public 

policy development. Moreover, SRCBECM can simplify complex decision-making processes for 

individuals or organizations. For instance, when making a multi-criteria investment decision, the 

method's criterion weighting approach helps achieve clearer and more reliable results. In daily life, 

SRCBECM enables individuals or organizations working with data to conduct more sound and 

comprehensive analyses. This facilitates more effective decision-making in workplace performance 

evaluations, risk analyses, and multi-criteria choices encountered in everyday life. Thanks to its flexible 

structure that can adapt to different data types and criterion structures, SRCBECM can be applied to 

various decision-making mechanisms in daily life. This flexibility makes the method more practical 

and user-friendly. 

2.5. Data set and analysis of the study 

The research dataset consists of the criteria from the Freedom in the world (FIW) by Freedom House 

for the year 2022, focusing on 19 countries within the G20 group. The reason for selecting this dataset is 

to evaluate the discriminatory effectiveness of the model criteria proposed among countries, 

considering the significant variations in values within this specific dataset. To enhance clarity in the 

research, Table 4 provides explanations for the abbreviations associated with this dataset. 
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Table 4. Data Set 

FIW Criteria Criteria Abbreviations 

Electoral Process FIW1 

Political Pluralism and Participation FIW2 

Functioning of Government FIW3 

Freedom of Expression and Belief FIW4 

Associational and Organizational Rights FIW5 

Rule of Law FIW6 

Personal Autonomy and Individual Rights FIW7 

 

3. Results (The case study) 

3.1. Computational analyses 

In the research, the first step of the SRCBECM method involves creating the decision matrix using 

Equation 4. In the second step of the method, since all criteria are benefit-oriented, the decision matrix 

values were normalized using Equation 5. In this regard, the decision matrix and the normalized 

decision matrix values are presented in Table 5. 

Table 5. Decision and normalized matrix 

Decision Matrix 

Country FIW1 FIW2 FIW3 FIW4 FIW5 FIW6 FIW7 

Argentina 11 16 8 15 11 10 14 

Australia 12 15 11 15 12 15 15 

Brazil 10 13 7 13 9 8 12 

Canada 12 16 12 15 12 15 16 

China 0 0 1 1 2 2 6 

France 12 15 11 14 10 13 14 

Germany 12 15 12 14 12 14 15 

India 12 12 9 9 7 8 9 

Indonesia 11 13 6 9 6 5 8 

Italy 12 14 10 15 12 13 14 

Japan 12 16 12 15 12 15 14 

Mexico 9 13 5 12 7 5 9 

Saudi Arabia 11 13 9 14 11 12 13 

Russia 0 3 2 2 2 2 5 

South Africa 12 13 8 15 12 9 10 

South Korea 11 13 9 14 11 12 13 

Turkey 5 8 3 5 3 3 5 

United Kingdom 12 16 11 14 12 13 15 

United States 10 14 9 14 11 11 14 

Min. 0 0 1 1 2 2 5 

Max. 12 16 12 15 12 15 16 

Normalized Decision Matrix 

Country FIW1 FIW2 FIW3 FIW4 FIW5 FIW6 FIW7 

Argentina 0,917 1,000 0,636 1,000 0,900 0,615 0,818 

Australia 1,000 0,938 0,909 1,000 1,000 1,000 0,909 

Brazil 0,833 0,813 0,545 0,857 0,700 0,462 0,636 

Canada 1,000 1,000 1,000 1,000 1,000 1,000 1,000 

China 0,000 0,000 0,000 0,000 0,000 0,000 0,091 

France 1,000 0,938 0,909 0,929 0,800 0,846 0,818 

Germany 1,000 0,938 1,000 0,929 1,000 0,923 0,909 

India 1,000 0,750 0,727 0,571 0,500 0,462 0,364 

Indonesia 0,917 0,813 0,455 0,571 0,400 0,231 0,273 

Italy 1,000 0,875 0,818 1,000 1,000 0,846 0,818 
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Japan 1,000 1,000 1,000 1,000 1,000 1,000 0,818 

Mexico 0,750 0,813 0,364 0,786 0,500 0,231 0,364 

Saudi Arabia 0,917 0,813 0,727 0,929 0,900 0,769 0,727 

Russia 0,000 0,188 0,091 0,071 0,000 0,000 0,000 

South Africa 1,000 0,813 0,636 1,000 1,000 0,538 0,455 

South Korea 0,917 0,813 0,727 0,929 0,900 0,769 0,727 

Turkey 0,417 0,500 0,182 0,286 0,100 0,077 0,000 

United Kingdom 1,000 1,000 0,909 0,929 1,000 0,846 0,909 

United States 0,833 0,875 0,727 0,929 0,900 0,692 0,818 

Mean 0,816 0,783 0,651 0,774 0,716 0,595 0,603 

Mean of Mean 0,705 

 

In the third step of the SRCBECM method, Equation 12 was used to determine the values of 𝑉𝑗 for the 

criteria, Equation 13 for 𝑉𝑉, Equation 14 for 𝑀𝐷𝑉𝑗, and Equation 15 for 𝑀𝑆𝑉𝑗. For illustrative purposes, 

the values of 𝑉𝑗, 𝑉𝑉, 𝑀𝐷𝑉𝑗, and 𝑀𝑆𝑉𝑗 for FIW1 relative to the mean values are calculated below, and 

the 𝑀𝐷𝑉𝑗 and 𝑀𝑆𝑉𝑗 values for the other criteria are presented in Table 6. 

Case 1: Calculation of the mean value for each normalized criterion (𝑉𝐹𝐼𝑊1) 

𝑉𝐹𝐼𝑊1 =
0,917+1+0,8833+1+0+1+1+1+0,917+1+1+0,750+0,917+0+1+0,917+0,417+1+0,833

19
= 0,816  

Case 2: Calculation of the mean value of the normalized criteria relative to the overall mean value (𝑉𝑉)  

𝑉𝑉 =
0,816 + 0,783 + 0,651 + 0,774 + 0,716 + 0,595 + 0,603

7
= 0,705 

Case 3: Measure the deviation value of each criterion from the mean value (𝑀𝐷𝑉𝐹𝐼𝑊1) 

For each criterion, the divergence value: 
𝑀𝐷𝑉𝐹𝐼𝑊1 = |0,816 − 0,705| = 0,111 
Case 4: Measure the inverse of the deviation value of each criterion from the mean value (𝑀𝑆𝑉𝐹𝐼𝑊1) 

For each criterion, the similarity value 

𝑀𝑆𝑉𝐹𝐼𝑊1 =
1

0,111
= 9,026 

Table 6. Separation (Deviation (𝑀𝐷𝑉𝑗)) and Similarity (𝑀𝑆𝑉𝑗) Values of Criteria 

Criteria FIW1 FIW2 FIW3 FIW4 FIW5 FIW6 FIW7 

𝑀𝐷𝑉𝑗 0,111 0,078 0,054 0,069 0,011 0,110 0,102 

𝑀𝑆𝑉𝑗 9,026 12,838 18,422 14,402 92,683 9,103 9,792 

 

In the fourth step of the method, the 𝑟ℎ𝑜  correlation coefficients between the criteria are first 

calculated using Equations 1, 2, and 3, and the correlation matrix is created. The calculated 𝑟ℎ𝑜 

correlation values between the criteria are shown in Table 7. 

Table 7. 𝑟ℎ𝑜 correlation matrix 

Criteria FIW1 FIW2 FIW3 FIW4 FIW5 FIW6 FIW7 

FIW1 1,000 0,952 0,883 0,912 0,872 0,801 0,780 

FIW2 0,952 1,000 -0,227 -0,244 -0,235 -0,183 -0,137 

FIW3 0,883 -0,227 1,000 -0,389 -0,421 -0,388 -0,337 

FIW4 0,912 -0,244 -0,389 1,000 -0,306 -0,215 -0,199 

FIW5 0,872 -0,235 -0,421 -0,306 1,000 -0,296 -0,279 

FIW6 0,801 -0,183 -0,388 -0,215 -0,296 1,000 -0,360 

FIW7 0,780 -0,137 -0,337 -0,199 -0,279 -0,360 1,000 

Mean 0,886 0,132 0,017 0,080 0,048 0,051 0,067 

 

In the fifth step of the method, the separation (𝐶𝐷𝑉𝑗) values according to 𝑟ℎ𝑜 correlation analysis 

were calculated using Equation 16, and the similarity (𝐶𝑆𝑉𝑗) values were calculated using Equation 17 

for the criteria. The corresponding (𝐶𝐷𝑉𝑗)  and (𝐶𝑆𝑉𝑗)  values are presented in Table 8. 
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Table 8. The separation (𝐶𝐷𝑉𝑗) and similarity (𝐶𝑆𝑉𝑗) values of the criteria based on the 𝑟ℎ𝑜  

(𝑪𝑫𝑽𝒋) FIW1 FIW2 FIW3 FIW4 FIW5 FIW6 FIW7 

FIW1 0,000 0,048 0,117 0,088 0,128 0,199 0,220 

FIW2 0,048 0,000 1,227 1,244 1,235 1,183 1,137 

FIW3 0,117 1,227 0,000 1,389 1,421 1,388 1,337 

FIW4 0,088 1,244 1,389 0,000 1,306 1,215 1,199 

FIW5 0,128 1,235 1,421 1,306 0,000 1,296 1,279 

FIW6 0,199 1,183 1,388 1,215 1,296 0,000 1,360 

FIW7 0,220 1,137 1,337 1,199 1,279 1,360 0,000 

Sum (𝑪𝑫𝑽𝒋) 0,800 6,075 6,878 6,441 6,665 6,641 6,533 

(𝑪𝑺𝑽𝒋) FIW1 FIW2 FIW3 FIW4 FIW5 FIW6 FIW7 

FIW1 2,000 1,952 1,883 1,912 1,872 1,801 1,780 

FIW2 1,952 2,000 0,773 0,756 0,765 0,817 0,863 

FIW3 1,883 0,773 2,000 0,611 0,579 0,612 0,663 

FIW4 1,912 0,756 0,611 2,000 0,694 0,785 0,801 

FIW5 1,872 0,765 0,579 0,694 2,000 0,704 0,721 

FIW6 1,801 0,817 0,612 0,785 0,704 2,000 0,640 

FIW7 1,780 0,863 0,663 0,801 0,721 0,640 2,000 

Sum (𝑪𝑺𝑽𝒋) 13,200 7,925 7,122 7,559 7,335 7,359 7,467 

 

For illustrative purposes, the discrimination 𝐶𝐷𝑉𝑗  and similarity 𝐶𝑆𝑉𝑗  values for FIW1 were 

calculated based on the 𝑟ℎ𝑜 correlation values. The calculated values for 𝐶𝐷𝑉𝑗 and 𝐶𝑆𝑉𝑗 for FIW1, as 

well as the corresponding situations for other criteria based on 𝑟ℎ𝑜 correlation coefficient values, are 

presented in Table 8. 

Case 1: Divergence of criteria according to 𝑟ℎ𝑜 correlation analysis (𝐶𝐷𝑉𝐹𝐼𝑊1)  
𝐶𝐷𝑉𝐹𝐼𝑊1 = 0 + 0,048 + 0,117 + 0,088 + 0,128 + 0,199 + 0,220 = 0,800 
Case 2: Identification of the inverse of the divergence value according to 𝑟ℎ𝑜 correlation analysis 

(similarity) (𝐶𝑆𝑉𝐹𝐼𝑊1) 
𝐶𝑆𝑉𝐹𝐼𝑊1 = 2 + 1,952 + 1,883 + 1,912 + 1,872 + 1,801 + 1,780 = 13,200 
In the 6th step of the method, the separation values (𝑆𝐸𝑗) and similarity values 𝑆𝐼𝑗  for the criteria 

are calculated using Equations 17 and 18, respectively. The calculated values for 𝑆𝐸𝑗  and 𝑆𝐼𝑗 are 

presented in Table 9. 

Table 9. The separation (𝑆𝐸𝑗)  and similarity (𝑆𝐼𝑗) values of the criteria 

Criteria FIW1 FIW2 FIW3 FIW4 FIW5 FIW6 FIW7 Sum 

(𝑀𝐷𝑉𝑗 . 𝐶𝐷𝑉𝑗) 0,089 0,055 0,031 0,038 0,005 0,073 0,070 0,361 

(𝑆𝐸𝑗) 0,246 0,153 0,086 0,106 0,015 0,202 0,194   

Criteria FIW1 FIW2 FIW3 FIW4 FIW5 FIW6 FIW7 Sum 

(𝑀𝑆𝑉𝑗 . 𝐶𝑆𝑉𝑗) 34,121 48,601 70,032 54,808 352,760 34,189 37,014 631,525 

(𝑆𝐼𝑗) 0,054 0,077 0,111 0,087 0,559 0,054 0,059   

 

As an illustrative example, the discrimination values (𝑆𝐸𝑗) and similarity values (𝑆𝐼𝑗) for FIW1 have 

been calculated below. 

Case 1: Calculation of divergence values for criteria (𝑆𝐸𝐹𝐼𝑊1) 

𝑆𝐸𝐹𝐼𝑊1 =
0,111. 0,800

0,361
= 0,246 

Case 2: Calculation of similarity values for criteria(𝑆𝐼𝐹𝐼𝑊1) 

𝑆𝐼𝐹𝐼𝑉1 =
9,026. 13,200

631,525
= 0,054 

In the final step of the method, the weights of the criteria (𝑤𝐽) are calculated by evaluating the 

discrimination (𝑆𝐸𝑗)  and similarity (𝑆𝐼𝑗) conditions of the criteria with equal importance, as 
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expressed in Equations 19 and 20. The resulting weight values (𝑤𝐽) for the criteria are presented in 

Table 10. 

Table 10. Criteria weights 

Criteria 𝑬𝑾𝑱 w Rank 

FIW1 0,150 0,197 2 

FIW2 0,066 0,087 4 

FIW3 0,071 0,093 3 

FIW4 0,062 0,082 7 

FIW5 0,282 0,372 1 

FIW6 0,063 0,084 6 

FIW7 0,064 0,085 5 

Sum 0,759     

 

Upon examining Table 10, the ranking of criteria weight values is as follows: FIW5, FIW1, FIW3, FIW2, 

FIW7, FIW6, and FIW4. Furthermore, for illustrative purposes, the weight values of the FIW1 criterion 

have been calculated and are presented below. 

Case 1: Taking into account the equal-weight divergence and similarity situations of criteria (𝐸𝑊𝐹𝐼𝑊1) 

𝐸𝑊𝐹𝐼𝑊1 =
0,246 + 0,054

2
= 0,150 

Case 2: Calculation of weight (𝑤𝐹𝐼𝑊1) 

𝑤𝐹𝐼𝑊1 =
0,150

0,759
= 0,197 

3.2. Sensitivity analyses 

In the scope of this investigation, we performed an evaluation of the SRCBECM approach to scrutinize 

its methodological sensitivity. Sensitivity analysis, as applied in the context of MCDM, involves the 

utilization of diverse criteria weighting methods on the same dataset, enabling a comparison of 

resulting values and rankings. To ascertain the method's sensitivity in calculating weight coefficients, it 

is expected that the rankings of criteria weights determined using the chosen method for sensitivity 

analysis will deviate from the weight coefficient rankings obtained through alternative methods [63]. 

 Following this methodology, we employed established objective weighting techniques to compute 

and organize the weighting coefficients linked to the components of the FIW. These techniques, widely 

utilized in scholarly literature, encompass ENTROPY, CRITIC, SD, SVP, MEREC, and LOPCOW. The 

corresponding numerical outcomes are meticulously presented in Table 11. 

Table 11. Findings derived from different methodologies for computing objective weighting coefficients 

Criteria CRITIC Ranking SD Ranking SVP Ranking 

FIW1 0,024 7 0,145 3 0,132 4 

FIW2 0,153 6 0,131 6 0,170 3 

FIW3 0,197 4 0,153 2 0,103 7 

FIW4 0,193 5 0,142 5 0,183 1 

FIW5 0,221 1 0,145 4 0,115 6 

FIW6 0,212 2 0,167 1 0,180 2 

FIW7 0,199 3 0,118 7 0,117 5 

Criteria LOPCOW Ranking MEREC Ranking ENTROPY Ranking 

FIW1 0,156 2 0,110 6 0,157 5 

FIW2 0,167 1 0,126 4 0,131 6 

FIW3 0,140 4 0,097 7 0,178 2 

FIW4 0,151 3 0,121 5 0,167 3 

FIW5 0,135 5 0,175 3 0,159 4 

FIW6 0,123 7 0,177 2 0,209 1 



 

24 

 

FIW7 0,128 6 0,193 1 0,089 7 

 

An analysis of Table 11 indicates notable disparities in the rankings of FIW weight values when 

employing the SRCBECM method compared to rankings obtained through other methods for 

determining FIW criterion weights. This outcome implies that the proposed method exhibits sensitivity 

to the inherent relationships among the criteria.    

3.3. Comparative analyses 

The comparative analysis explores both the congruities and divergences between the proposed method 

and other techniques for calculating objective weight coefficients. The proposed method is expected to 

possess credibility, reliability, and consistency in alignment with other methodologies, while 

concurrently exhibiting a positive and significant correlation with various weight coefficient methods 

[20]. To substantiate this, Figures 1 and 2 provide a visual examination of the weight coefficients 

determined using the weight measurement methods outlined in Table 12. 
 

 
Figure 1. Positions of the ENTROPY, CRITIC, SD, SVP, LOPCOW, and MEREC methods 

 
Figure 2. Positions of the SRCBECM method 
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Figure 3. Positions of the Methods 1 

When Figure 3 is examined, it is determined that the characteristic properties of FIW1 and FIW5 criteria 

are reflected more in the SRCBECM method than in other methods. In particular, these criteria are 

observed to reflect both the separation and similarity of criteria, which constitute the logic of the 

proposed method, simultaneously. This shows that it explains better which criteria are more important 

than other methods. In addition, according to Figure 3, it is determined that the differences between the 

positions of the criterion values of the SRCBECM method are different from other methods. Thus, it is 

evaluated that the SRCBECM method does not have a positive correlation with other methods. 

Although it is stated in the MCDM literature that the high level of positive relationship between any 

objective weighting method and other methods indicates that the credible and reliable level of the 

proposed method is high, it is the desired result that the SRCBECM method has a low positive and 

negative correlation with other methods, since the criterion weighting logic in the method (SRCBECM) 

takes into account both separation and similarity levels (both contrast conditions), unlike other 

methods. Therefore, in this case, the low positive and negative correlation of the SRCBECM method 

with other methods shows that the proposed method is credible and reliable. The 𝑟ℎ𝑜 correlation 

coefficient values between the methods are explained in Table 13, since the data of the methods do not 

show normal distribution. 

Table 13. 𝑟ℎ𝑜 correlation values of the SRCBECM method with other methods 

Criteria CRITIC SD SVP LOPCOW MEREC ENTROPY 

SRCBECM -0,047 0,089 -0,434 -0,071 0,211 0,044 

 

When Table 13 is examined, it is observed that none of the relationships between the SRCBECM 

method and other objective criterion weighting methods are significant. Based on these quantitative 

results, it is concluded that the SRCBECM method is different from other methods because the criterion 

weights are calculated based on both separation and similarity levels (both contrast conditions), and 

accordingly, the proposed method is reliable and credible. 

3.4. Simulation Analyses 

To assess the robustness of the proposed method, a simulation analysis is undertaken, involving 

various scenarios created by assigning different values to decision matrices. As the number of scenarios 

increases, the proposed method is expected to diverge from other methodologies, showcasing its 

stability. In the subsequent step, the average variance of criterion weights determined by the proposed 

method across the scenarios should exceed that of one or more alternative objective weighting methods. 

This signifies the superior discriminative capability of the proposed method in distinguishing between 
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criterion weights. Finally, it validates the consistency of criterion weight variances across methods 

within the scenarios [20]. 

To evaluate the coherence of the SRCBECM method with alternative objective weighting methods, a 

simulation analysis was executed. The simulation involved the generation of 20 distinct scenarios, 

categorized into 2 groups, each characterized by a unique set of decision matrix values. For each 

scenario, correlation coefficients between the SDBHA method and other methodologies were 

computed. The results of the simulation analysis are presented in Tables 14 and 15, and visualized in 

Figures 4 and 5. 

Table 14.  𝑟ℎ𝑜  correlation coefficients of the SDBHA method with other methodologies across the range of 

scenarios-A  (First Category) 

Group Scenarios ENTROPY CRITIC SD SVP LOPCOW MEREC 

First group 

1. Scenario 0,048 -0,065 0,095 -0,450 -0,065 0,250 

2. Scenario 0,043 -0,055 0,100 -0,400 -0,080 0,270 

3. Scenario 0,045 -0,070 0,090 -0,460 -0,075 0,200 

Group Scenarios ENTROPY CRITIC SD SVP LOPCOW MEREC 

Second group 

4. Scenario 0,044 -0,066 0,075 -0,500* -0,065 0,240 

5. Scenario 0,040 -0,060 0,080 -0,480 -0,085 0,190 

6. Scenario 0,042 -0,070 0,065 -0,490 -0,090 0,210 

7. Scenario 0,037 -0,075 0,070 -0,510* -0,080 0,195 

8. Scenario 0,039 -0,065 0,060 -0,520* -0,085 0,200 

9. Scenario 0,033 -0,080 0,070 -0,500* -0,075 0,180 

10. Scenario 0,028 -0,077 0,050 -0,480 -0,090 0,185 

Mean 0,040 -0,068 0,076 - 0,479 -0,079 0,212 
 p*<.05 

 

Figure 4. Positions of the Methods 2-A (First Category) 

Table 15. 𝑟ℎ𝑜 correlation coefficients of the SDBHA method with other methodologies across the range of scenarios-B 

(Second Category) 

Group Scenarios ENTROPY CRITIC SD SVP LOPCOW MEREC 

First group 

1. Scenario 0,055 -0,078 0,122 -0,5 -0,074 0,324 

2. Scenario 0,059 -0,082 0,132 -0,55 -0,098 0,327 

3. Scenario 0,056 -0,08 0,124 -0,495 -0,087 0,312 

Group Scenarios ENTROPY CRITIC SD SVP LOPCOW MEREC 

Second group 4. Scenario 0,058 -0,077 0,114 -0,455 -0,085 0,308 
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5. Scenario 0,055 -0,075 0,109 -0,475 -0,077 0,301 

6. Scenario 0,048 -0,073 0,102 -0,484 -0,089 0,294 

7. Scenario 0,041 -0,067 0,09 -0,501 -0,082 0,299 

8. Scenario 0,033 -0,062 0,07 -0,495 -0,078 0,267 

9. Scenario 0,031 -0,069 0,06 -0,425 -0,071 0,259 

10. Scenario 0,003 -0,066 0,06 -0,412 -0,066 0,239 

Mean 0,0440 -0,0730 0,0983 -0,4792 -0,0807 0,293 

 p*<.05 

 
Figure 5. Positions of the Methods 2-B (Second Category) 

A simultaneous examination of Tables 14 and 15, and Figures 4 and 5 reveals that the 10 scenarios, 

categorized into 2 groups, can be further divided into two subgroups. The initial group comprises the 

first three scenarios, while the subsequent group includes the last seven. When Tables 14 and 15, and 

Figures 4 and 5 are analyzed together, it is evident that the positive correlation values of the SRCBECM 

method with the ENTROPY, SD, and MEREC methods decrease as the number of scenarios increases, 

whereas the correlation values with the CRITIC, SVP, and LOPCOW methods increase negatively. In 

summary, the SRCBECM method exhibits greater divergence from the other methods as the number of 

scenarios grows. Consequently, it can be inferred that the distinctive characteristics of the SRCBECM 

method become more pronounced with an increasing number of scenarios. Additionally, Figures 6 and 

7 illustrate the spatial distribution of the relationships between the SRCBECM method and other 

methodologies within the specified groups across both categories (First Category and Second 

Category). 

 

Figure 6. Depicts the discriminant analysis illustrating the rho correlation between the SRCBECM method and 

alternative methodologies across various scenarios-A (First Category) 
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Figure 7. Depicts the discriminant analysis illustrating the rho correlation between the SRCBECM method and 

alternative methodologies across various scenarios-B (Second Category) 

When Figure 6 and Figıre 7 are examined, in scope of first and second categories it is observed that the 

distribution of the relationships of the SRCBECM method with other objective criterion weighting 

methods in the 7 scenarios in the 2nd group is more dispersed than the distribution of the relationships 

of the SRCBECM method with other objective criterion weighting methods in the 3 scenarios in the 1st 

group. Therefore, it is observed that the 𝑟ℎ𝑜 correlation values of the SRCBECM method with other 

objective criterion weighting methods change as the number of scenarios increases.  

The separation power of any objective criterion weighting method to its own criteria depends on the 

high variance value of the method [20]. Throughout the simulation analysis, variance values for the 

methods were computed across diverse scenarios for two categories, and the corresponding values are 

summarized in Tables 16 and 17. 
Table 16. Variance in method outcomes across different scenarios-A (First category) 

Scenario SRCBECM CRITIC SD SVP LOPCOW MEREC ENTROPY 

1. Sce. 0,0125 0,0052 0,0002 0,0011 0,0003 0,0014 0,0014 

2. Sce. 0,0125 0,0048 0,0001 0,0014 0,0004 0,0019 0,0017 

3. Sce. 0,0138 0,0046 0,0003 0,0013 0,0003 0,0027 0,0013 

4. Sce. 0,0091 0,0025 0,0003 0,0015 0,0006 0,0011 0,0019 

5. Sce. 0,0145 0,0033 0,0003 0,0009 0,0005 0,0018 0,0021 

6. Sce. 0,0084 0,0018 0,0002 0,0015 0,0007 0,0028 0,0015 

7. Sce. 0,0132 0,0032 0,0004 0,0014 0,0004 0,0026 0,0013 

8. Sce. 0,0117 0,0024 0,0005 0,0015 0,0008 0,0029 0,0012 

9. Sce. 0,0113 0,0063 0,0003 0,0013 0,0006 0,0022 0,0012 

10. Sce. 0,0124 0,0070 0,0002 0,0012 0,0003 0,0016 0,0016 

Mean 0,0119 0,0041 0,0003 0,0013 0,0005 0,0021 0,0015 

Table 17. Variance in method outcomes across different scenarios-B (Second category) 

Scenario SRCBECM CRITIC SD SVP LOPCOW MEREC ENTROPY 

1. Sce. 0,0128 0,0058 0,0003 0,0022 0,0007 0,0024 0,0028 

2. Sce. 0,013 0,0051 0,0002 0,0019 0,0006 0,0021 0,0025 

3. Sce. 0,0141 0,0049 0,0004 0,0015 0,0005 0,0039 0,0021 

4. Sce. 0,0101 0,0028 0,0004 0,0012 0,0007 0,0017 0,0021 

5. Sce. 0,0156 0,0036 0,0005 0,001 0,0007 0,0026 0,0023 

6. Sce. 0,0099 0,0021 0,0003 0,0018 0,0009 0,0031 0,0017 

7. Sce. 0,0149 0,0041 0,0004 0,0016 0,0006 0,0032 0,0019 

8. Sce. 0,0131 0,0028 0,0007 0,0017 0,0011 0,0035 0,0016 

9. Sce. 0,0128 0,0071 0,0004 0,0017 0,0009 0,0029 0,0015 
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10. Sce. 0,0131 0,0082 0,0003 0,0014 0,0006 0,0023 0,0018 

Mean 0,01294 0,00465 0,00039 0,0016 0,00073 0,00277 0,00203 

 

Based on the data presented in Tables 16 and 17 for both categories, it is evident that the SRCBECM 

method consistently exhibits higher average variance values across scenarios compared to the other 

methods. Consequently, it can be inferred that the SRCBECM method demonstrates a superior ability 

to discriminate criterion weights, as evidenced by its higher average variance value relative to the other 

methods. 

To meticulously examine the homogeneity of variances within the criterion weights integral to the 

SDBHA method, an ADM (Analysis of Means for Variances, incorporating the Levene modification) 

was meticulously executed across a diverse array of scenarios. This analytical approach proffers a 

cogent visual representation of variance uniformity. The graphical manifestation is composed of three 

cardinal elements: the global average ADM, which serves as the pivotal axis, bordered by the upper 

and lower decision limits (UDL and LDL). In the event that the standard deviation of an individual 

cluster transcends these decision boundaries, it intimates a salient deviation from the global average 

ADM, thereby portending the existence of variance heterogeneity. Antithetically, if the standard 

deviations of all clusters are ensconced within the confines of the LDL and UDL, this buttresses the 

notion of variance homogeneity [20]. A clear visual explanation of the ADM analysis is provided in 

Figures 8 and 9, encompassing both categories (the first category and the second category). 

 

 
Figure 8. ADM visual-A (First Category) 

 
Figure 9. ADM visual-B (Second Category) 
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Observations from Figures 8 and 9 reveal that for both categories (the first category and the second 

category), the ADM values for each scenario fall within a range bounded by the UDL and LDL values. 

This positioning suggests uniformity in the variance of the weights determined for each scenario. This 

finding is corroborated by the Levene Test, with the essential statistics summarized in Tables 18 and 19 

for each category. 

Table 18. Levene test-A (First Category) 

Levene Statistic df1 df2 𝒑 

0,240 2 10 0,130 

p**<.05 

Table 19. Levene test-B (Second Category) 

Levene Statistic df1 df2 𝒑 

0,298 2 10 0,163 

p**<.05 

Statistical evidence from Tables 18 and 19 indicates that the p-values for both categories exceed the 

commonly accepted significance threshold of 0.05. This finding signifies that the variances observed in 

criterion weights across different scenarios exhibit a remarkable degree of homogeneity. In essence, the 

simulation analysis produces results that affirm the inherent robustness and consistent stability of the 

SDBHA method. 

4. Conclusion 

Navigating intricate problems often necessitates a MCDM approach, where different, and often 

conflicting, factors come into play. Weighing these criteria fairly is paramount, as their relative 

importance significantly influences the outcome. Recognizing this, researchers have devised various 

methods for calculating weight coefficients, enriching the MCDM landscape. This study introduces 

Spearman Rank Correlation-based Expanded CRITIC (SRCBECM) technique. 

In the study, the weight coefficients of the FIW criteria were first measured according to the SRCBECM 

method and the criterion weights were ranked as FIW5, FIW1, FIW3, FIW2, FIW7, FIW6, and FIW4. In 

the second stage of the study, the weights of the criteria were also calculated using the CRITIC, 

ENTROPY, SD, SVP, MEREC, and LOPCOW methods as part of the sensitivity analysis and the criteria 

were ranked. According to the findings, the FIW ranking determined within the scope of the 

SRCBECM method was completely different from the FIW criterion rankings within the scope of other 

objective weighting methods. Based on this result, the SRCBECM method was considered to be 

sensitive. 

In the third stage, a comparative analysis was conducted between the results obtained by the 

SRCBECM method and the results within the scope of other objective weighting methods. When the 

findings were examined, it was determined that the characteristics of the criteria identified by the 

SRCBECM method were more pronounced than the other methods. In addition, the 𝑟ℎ𝑜 correlation 

coefficient was calculated between the FIW weights within the scope of the SRCBECM method and the 

FIW weights calculated by other objective criterion weighting methods. According to the findings, no 

significant positive correlations were observed between the FIW weights obtained by the SRCBECM 

method and the FIW weights calculated by other objective weighting methods. Although, in the 

literature, positive and significant relationships with other objective weighting methods are sought for 

the proposed criterion weighting method to be reliable and credible, it is thought that the SRCBECM 

method is reliable and credible in that it considers both separation and similarity conditions, which is 

different from other methods. 

Fourthly, two categories were created with different values assigned to the FIW values of countries, 

providing 10 scenarios (data sets) for each category: 3 scenarios in the first group and 7 in the second 

group. Correlations between the SRCBECM method and other objective criterion weighting methods 

were evaluated based on these scenarios. The findings revealed that as the number of scenarios 

increased, the SRCBECM method diverged from the other methods. Additionally, the average variance 

values of the methods were calculated according to these scenarios. The results indicate that the 

SRCBECM method has a higher separation power than other methods, as its average variance values 
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exceed those of the other methods. Furthermore, the homogeneity test of the SRCBECM method (ADM) 

was applied across the 10 scenarios in both categories. According to the findings, it is concluded that 

the SRCBECM method exhibits homogeneous variances, thus demonstrating robustness and stability. 

The SRCBECM method offers several practical and theoretical benefits based on its unique features. In 

practical terms, its insensitivity to 0 and negative values enhances its reliability in real-world 

applications where such values may arise. This avoids the calculation issues seen in methods like 

ENTROPY or MEREC, resulting in smoother and more reliable computations. Furthermore, the 

method's flexibility in not assuming a normal distribution of data makes it applicable to a wider range 

of datasets, particularly in cases where non-parametric relationships are predominant. This allows for 

better performance across diverse data without the need for complex transformations. Another 

practical advantage is that the SRCBECM method balances the consideration of both divergence and 

similarity among criteria, leading to a more holistic assessment. This results in more accurate and 

meaningful weight assignments in decision-making processes. Additionally, the method emphasizes 

the characteristic differences between criteria, which helps in distinguishing the most important factors 

in complex decision-making environments. 

5.  Discussion 

From a theoretical perspective, the SRCBECM method provides a robust alternative to parametric 

correlation measures by utilizing the rho correlation coefficient. This is especially advantageous when 

the assumption of normal distribution is not met, making the method more adaptable to a variety of 

data types. Its comprehensive approach to weighting logic, which includes both divergence and 

similarity among criteria, makes it more nuanced and reflective of complex relationships between 

variables compared to methods like ENTROPY and CRITIC, which focus solely on divergence. Finally, 

the SRCBECM method's ability to generate more distinctive weights based on the characteristic 

differences between criteria enhances its discriminative power, offering a more precise and granular 

insight into the decision-making process. 

This method is considered an important tool for decision-makers in overcoming various challenges 

encountered in the criterion weighting process. In real-world scenarios, the presence of zero or 

negative values during the evaluation of criteria is a common issue, which can lead to invalid 

calculations in some methods. However, the SRCBECM method is insensitive to zero and negative 

values, helping to overcome such difficulties. Additionally, since this method does not require the 

assumption of a normal distribution, it offers a wide range of applicability across different datasets, 

reducing the complexity of the data. This provides decision-makers with a flexible and reliable solution 

for the various situations they may face. Furthermore, by evaluating both the similarities and 

differences among criteria in a balanced manner, it enables the determination of more accurate and 

meaningful weights. Therefore, the SRCBECM method can contribute to more effective outcomes in 

complex decision-making processes. 

It is considered that the criterion weighting logic of the ENTROPY, SD, SVP, LOPCOW, and MEREC 

methods, which are other objective weighting methods, can be expanded and improved by considering 

the similarity logic of criteria in addition to the opposition logic, as in the DEMATEL method, in future 

research. It is considered that the criterion weighting logic of the ENTROPY, SD, SVP, LOPCOW, and 

MEREC methods, which are other objective weighting methods, can be expanded and improved by 

considering the similarity logic of criteria in addition to the opposition logic, as in the DEMATEL 

method, in future research. 
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