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Research Article 

Abstract − When a natural scene is photographed using imaging sensors commonly used today, part 

of the image is obtained sharply while the other part is obtained blurry. This problem is called limited 

depth of field. This problem can be solved by fusing the sharper parts of multi-focus images of the 

same scene. These methods are called multi-focus image fusion methods. This study proposes a 

block-based multi-focus image fusion method using the Energy Valley Optimization Algorithm 

(EVOA), which has been introduced in recent years. In the proposed method, the source images are 

first divided into uniform blocks, and then the sharper blocks are determined using the criterion 

function. By fusing these blocks, a fused image is obtained. EVOA is used to optimize the block size. 

The function that maximizes the quality of the fused image is used as the fitness function of the 

EVOA. The proposed method has been applied to commonly used image sets. The obtained 

experimental results are compared with the well-known Genetic Algorithm (GA), Differential 

Evolution Algorithm (DE), and Artificial Bee Colony Optimization Algorithm (ABC). The 

experimental results show that EVOA can compete with the other block-based multi-focus image 

fusion algorithms. 

Keywords − Multi-focus image fusion, energy valley optimizer, block-based image fusion, comparison of meta-heuristic algorithms 

1. Introduction 

Image fusion methods have recently become more useful in human perception and computer vision 

applications. Image fusion can obtain a single image containing more information from multiple images of the 

same scene. These images of the same scene can be obtained from a single sensor whose perceptual parameters 

can be changed or from different sensors. The first method is called single-sensor image fusion, while the other 

is called multi-sensor image fusion. The fused images are used more efficiently in many fields, from health to 

military fields [1-3]. 

Imaging sensors commonly used today cannot display the entire natural scene. Sensors focus on an object in 

the natural scene and photograph the focused area. The area outside the focus area is displayed as blurry. Due 

to these limitations of the sensors, some of the obtained images are clear, while the other parts are blurred. 

This problem can be solved by combining clear parts of multi-focus images of the same scene. These methods 

are called multi-focus image fusion (MFIF). MFIF methods can be examined in four groups: transformation 

domain, spatial domain, deep learning, and hybrid-based methods [4]. 

In transformation-based methods, the source images are first transferred to the transformation space using a 

transformation algorithm. Then, by applying the fusion rule, the source images are combined in the 
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transformation space. Then, the fused image is obtained by applying the inverse transformation process. 

Transform-based multi-focus image fusion methods have been presented using many transformation 

algorithms such as discrete wavelet transform [5], Laplacian transform [6], Curvelet transform [7], Contourlet 

transform [8], and Shearlet transform [9]. In these methods, artificial images may appear in the fused image 

because any possible error in the transformation space will be reflected in the entire image. In addition, 

transformation and reverse transformation processes take a long time. These problems are seen as 

disadvantages of transformation-based methods. 

Another method for MFIF is spatial-based methods. These methods can be examined in two parts: pixel and 

region based. Pixel-based methods aim to transfer sharp pixels in the source images to the fused image [10]. 

The sharpness function used in this method for selecting sharp pixels is important. The sharpening criterion 

function directly affects the method's performance [11]. This method provides more effective results than the 

transformation-based method because the sharp pixels in the source images are directly transferred to the fused 

image. However, since this method only deals with the pixel's attribute and not the neighboring pixel values 

around it, undesirable situations may arise in the fused image. In addition, this method will take a longer 

calculation time since all pixel values will be processed separately [12]. 

Due to the above-mentioned disadvantage of the pixel-based method, region-based MFIF methods have been 

proposed. The basic idea of these methods is to move sharper pixel groups to the fused image by taking 

advantage of the sharpness information of both a pixel and the relevant pixel and neighboring pixels. Region-

based methods have less computational cost, and the obtained results are more satisfactory because they also 

consider neighboring pixel values. The first block-based multi-focal image fusion method is proposed by Li et 

al. [13]. The proposed method first divides the source images into identical blocks. Then, the sharper blocks 

are identified using the spatial frequency criterion function and moved into the merged image. Another method 

that is based on combining the focus maps obtained by block-based focus measures and employing a multi-

matting model with weight maps is proposed by Chen et al. [14]. Based on the optimal placing of the blocks 

multi-focal method is proposed by Toprak and Aslantaş [15]. Using a differential evolution algorithm based 

on point distribution functions of source images multi-focus image fusion method is presented by Aslantaş and 

Toprak [16]. Using a genetic algorithm, multi-focus image fusion is presented by Kong et al. [17]. Aslantas 

and Kurban suggest a multi-focus method based on optimizing block size using a differential evolution 

algorithm [1]. 

Despite numerous studies on multi-focus image fusion in the literature, there remains a critical need for 

enhancing the quality of fused images obtained. Particularly noteworthy is the recent utilization of artificial 

intelligence techniques that have effectively solved various non-linear problems [18, 19]. Therefore, evaluating 

current problems with recently proposed artificial intelligence techniques is crucial. This article proposes a 

method using Energy Valley Optimization Algorithm (EVOA) for block-based multi-focus image fusion. 

EVOA is used to optimize the block size of the source images. For the fitness function of EVOA, the function 

that maximizes the variance value of the fused image is used. The method is applied to commonly used test 

data sets. The objective and subjective evaluation results show that EVOA provides satisfactory results for 

multi-focal image fusion. EVOA has demonstrated that it can compete with commonly used meta-heuristic 

algorithms such as Genetic Algorithm (GA), Evolution Algorithm (DE), and Artificial Bee Colony 

Optimization Algorithm (ABC). The contribution of the study is as follows: 

i. In this study, EVOA is used for multi-focus image fusion for the first time, 

ii. The proposed method is applied to commonly used datasets, 

iii. The obtained fused images are evaluated with quality metrics to obtain numerical results, 

iv. Numerical results are compared with a well-known meta-heuristic optimization algorithm: GA, DE, and 

ABC. 
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In the remaining part of our study, the proposed method and quality metrics are mentioned in the second part, 

the Energy Valley Optimization Algorithm. In the third section, the results of the conducted experiments are 

given. Finally, the results and discussion section are provided. 

2. Block-based Multi-focus Image Fusion Using Energy Valley Optimization Algorithm 

2.1. Energy Valley Optimization Algorithm 

EVOA is a meta-heuristic optimization algorithm proposed by Azizi et al. [18] in 2023. EVOA aims to solve 

optimization problems inspired by advanced physics principles. In this context, meta-heuristic algorithms 

belong to the class of physics-based meta-heuristic optimization algorithms. EVOA mimics the degradation 

process caused by different particles in nature. In EVOA, each particle with varying levels of stability 

represents a possible solution. The algorithm first starts with the creation of the initial population. The initial 

population is created using (2.1). 

𝑥𝑖
𝑗

= 𝑥𝑖,𝑚𝑖𝑛
𝑗

+ 𝑟𝑎𝑛𝑑 ∙ (𝑥𝑖,𝑚𝑎𝑥
𝑗

− 𝑥𝑖,𝑚𝑖𝑛
𝑗

),    𝑖 ∈ {1,2,3, ⋯ , 𝑛} and 𝑗 ∈ {1,2,3, ⋯ , 𝑑} (2.1) 

Here, n refers to the number of pieces in the solution space, and d refers to the problem size.  𝑥𝑖,𝑚𝑖𝑛
𝑗

 and 𝑥𝑖,𝑚𝑎𝑥
𝑗

 

represent the lower and upper bounds of the problem, respectively. The second step calculates the neutron 

enrichment level using (2.2). 

𝐸𝐵 =
∑ 𝑁𝐸𝐿𝑖

𝑛
𝑖=1

𝑛
,    𝑖 ∈ {1,2,3, ⋯ , 𝑛} (2.2) 

Here, 𝑁𝐸𝐿𝑖 i-th represents the neutron enrichment level of the particle, and EB refers to the enrichment limit 

of the particles. The stability levels of the particles are calculated using (2.3). 

𝑆𝐿𝑖 =
𝑁𝐸𝐿𝑖 − 𝐵𝑆

𝑊𝑆 − 𝐵𝑆
,    𝑖 ∈ {1,2,3, ⋯ , 𝑛} (2.3) 

Here, 𝑆𝐿𝑖 i-th. BS and WS represent the stability level of the particle, and BS and WS represent the best and 

worst particle stability levels, respectively. In EVOA, a new particle is generated using (2.4). 

𝑥𝑖
𝑁𝑒𝑤1 = 𝑥𝑖 (𝑥𝐵𝑆(𝑥𝑖

𝑗
)) ,    𝑖 ∈ {1,2,3, ⋯ , 𝑛} and 𝑗 = 𝐴𝑙𝑝ℎ𝑎 𝐼𝑛𝑑𝑒𝑥 𝐼𝐼 (2.4) 

Here, 𝑥𝑖
𝑁𝑒𝑤1 represents the newly produced particle, 𝑥𝑖 represents the position of the current particle and 𝑥𝐵𝑆 

represents the best particle in the solution space. Particles in the universe interact with each other by emitting 

rays. Accordingly, the second new individual is created using (2.5) based on neighbor interaction. 

𝑥𝑖
𝑁𝑒𝑤2 = 𝑥𝑖 (𝑥𝑁𝐺(𝑥𝑖

𝑗
)) ,    𝑖 ∈ {1,2,3, ⋯ , 𝑛} and 𝑗 = 𝐺𝑎𝑚𝑚𝑎 𝐼𝑛𝑑𝑒𝑥 𝐼𝐼 (2.5) 

Here, 𝑥𝑖
𝑁𝑒𝑤2 represents the newly produced particle and 𝑥𝑁𝐺 represents the neighboring particles that emit 

photons. If the stability level of a particle is lower than the stability limit, its degradation is considered to have 

occurred. Thus, the stability level of these particles is updated to the particle with the best stability level and 

to the center of the particles using (2.6). 
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𝑥𝑖
𝑁𝑒𝑤1 = 𝑥𝑖 +

(𝑟1𝑥𝐵𝑆 − 𝑟2
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
)

𝑆𝐿𝑖
,    𝑖 ∈ {1,2,3, ⋯ , 𝑛} 

(2.6) 

Here, 𝑟1, 𝑟2 ∈ [0,1] and 𝑆𝐿𝑖 represents the stability level of the particle in the i-th iteration. To increase the 

exploration and exploitation speed of the algorithm, a location update is performed using (2.7). 

𝑥𝑖
𝑁𝑒𝑤2 = 𝑥𝑖 + (𝑟3 ∙ 𝑥𝐵𝑆 − 𝑟4 ∙ 𝑥𝑁𝐺),    𝑖 ∈ {1,2,3, ⋯ , 𝑛} (2.7) 

Here, 𝑟3, 𝑟4 ∈ [0,1] and 𝑥𝑁𝐺denote the stability level of the neighboring particle. If the stability level of a 

particle is less than the neutron enrichment limit, the position update is performed randomly using (2.8). 

𝑥𝑖
𝑁𝑒𝑤 = 𝑥𝑖 + 𝑟,    𝑖 ∈ {1,2,3, ⋯ , 𝑛} (2.8) 

Here, 𝑟 ∈ [0,1], 𝑥𝑖 denotes the current position and 𝑥𝑖
𝑁𝑒𝑤 denotes the new position. Position updates of the 

particles are made throughout the algorithm's main loop. Thus, it is aimed to reach the best solution. The basic 

steps of EVOA are shown in Figure 1. 

2.2. Block-based Multi-focus Image Fusion Using Energy Valley Optimization 

Algorithm 

In block-based MFIF methods, the source images are first divided into 𝑚 × 𝑛-sized blocks. Then, using the 

sharpness criterion function, sharper blocks are detected and moved to the fused image to obtain the fused 

image. Since each image will have its attributes, a block method with a fixed 𝑚 × 𝑛 size will not give good 

results for every image. Thus, the 𝑚 × 𝑛 block size must be determined by researchers for each image. The 

determined block size will directly affect the performance of the method. Optimization algorithms can be used 

effectively to compute the optimal block size. The flow chart of the optimized block-based method is shown 

in Figure 2 [4]. 

As shown in Figure 2, the source images are first divided into 𝑚 × 𝑛 -sized blocks. The optimization algorithm 

starts the cycle with random 𝑚 × 𝑛 block size generation. During each cycle, blocks with 𝑚 × 𝑛 block size 

are compared using the sharpness criterion function. Blocks with greater sharpness criterion function are 

transferred to the fused image. This study uses the spatial frequency (SF) [19] criterion function as the 

sharpness criterion function. SF is a criterion function that measures overall activity in the image by 

highlighting differences between neighboring pixels. The sharpness value of each block is calculated using 

(2.9)-(2.11). 

𝑆𝐹 = √𝑅2 + 𝐶2 (2.9) 

𝑅 = √
1

𝑚𝑥𝑛
∑ ∑[𝑓(𝑖, 𝑗) − 𝑓(𝑖 − 1, 𝑗)]

2

𝑗𝑖

 (2.10) 

𝐶 = √
1

𝑚𝑥𝑛
∑ ∑[𝑓(𝑖, 𝑗) − 𝑓(𝑖, 𝑗 − 1)]

2

𝑗𝑖

 (2.11) 
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Figure 1. EVOA flowchart 

 

 

Figure 2. Multi-focus image fusion flowchart by optimization algorithm 
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Blocks with higher SF values are moved to the fused image. F represents the fused image, and Cr represents 

the criterion function. Sharper blocks are selected using (2.12) and moved to the fused image. 

𝐹𝑖 = {
𝐴𝑖, 𝐶𝑟𝑖

𝐴 ≥ 𝐶𝑟𝑖
𝐵

𝐵𝑖, otherwise
 (2.12) 

Then, the fused image is obtained. The quality of the fused image is evaluated using the variance (QMVar) [22] 

quality metric. The QMVar value of the fused image is calculated using (2.13), where μ is the average value of 

the F and 𝑚 × 𝑛 is the size of the F. 

QM𝑉𝑎𝑟(𝐹) =  
1

𝑚 × 𝑛
∑(𝐹(𝑖, 𝑗) − 𝜇)2

(𝑖,𝑗)

 (2.13) 

The function that maximizes the variance value of the fused image is used as the fitness function of the 

optimization algorithm. In this study, EVOA, proposed in recent years, is used as the optimization algorithm. 

2.3. Compared Optimization Algorithms 

Information about the metaheuristic optimization algorithms that are GA, DE, and ABC is provided in this 

section. These well-known, widely used, and meta-heuristic optimization algorithms give good results in 

optimization problems. GA belongs to the evolutionary, DE numerical, and ABC belongs to the intelligent 

swarm metaheuristic class of optimization algorithms. Thus, EVOA is compared with algorithms 

representative of many classes of metaheuristic optimization algorithms. 

2.3.1. Genetic Algorithm (GA) 

GA [23] is a population-based optimization algorithm developed by Holland and colleagues in 1975, widely 

used for solving multidimensional and non-linear problems, and known for delivering effective results. GA 

solves optimization problems by employing genetic operators such as selection, crossover, and mutation. The 

selection genetic operator ensures the survival of individuals with high solution quality during the algorithm's 

iterations while gradually eliminating individuals with low solution quality. The crossover genetic operator 

aims to produce higher-quality individuals by combining pairs of randomly selected individuals from the 

solution pool. The mutation genetic operator seeks to generate new individuals from randomly selected ones 

in the solution pool to create individuals with potentially better solution quality. 

2.3.2. Differential Evolution Algorithm (DE) 

DE [24] is a stochastic, population-based metaheuristic algorithm introduced by Storn and Price, known for 

being fast and stable and delivering effective results in optimizing multidimensional and non-linear problems, 

especially in numerical optimization. Since DE is a stochastic evolution algorithm, it generates the initial 

population randomly. DE employs a unique mutation method that creates a new individual by adding the 

weighted difference of two randomly selected individuals from the solution pool, determined by a parameter 

F specified by the researcher, to the value of a third individual. 

2.3.3. Artificial Bee Colony Optimization Algorithm (ABC) 

ABC algorithm [25], developed by Karaboga and Basturk, is a recent optimization algorithm based on swarm 

intelligence that models the intelligent foraging behavior of honeybees for numerical optimization problems. 

The ABC algorithm mathematically models the aforementioned intelligent behaviors of honeybee colonies in 

nature, yielding effective results in solving numerical optimization problems. In the ABC algorithm, food 

source regions represent potential solution values for the problem to be solved. Once scout bees detect food 
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sources, employed bees are sent to these sources. Employed bees evaluate the quality of the food sources they 

work on and the neighboring sources, gravitating towards the source with better solution quality. When an 

employed bee with a current solution and new location information returns to the hive, it communicates this 

information to the onlooker bees through a dance. When the food quantity is depleted, reaching the threshold 

specified by the limit parameter of the ABC algorithm, the employed bee becomes a scout bee and continues 

searching again. 

2.4. Quality Metrics 

In image fusion, quality metrics play a crucial role in evaluating the effectiveness of the fusion process, which 

aims to integrate information from multiple images into a single fused image with improved visual quality and 

information content. These metrics provide quantitative measures to assess various aspects such as spatial 

resolution, spectral fidelity, contrast, and overall perceptual quality of the fused image. However, a single 

quality metric that considers all images' quality has not yet been developed. Therefore, it is necessary to 

evaluate the quality of an image using multiple quality metrics. This section includes a variety of quality 

metrics for the objective assessment of fused images. These metrics have been selected from commonly used 

quality metrics in image fusion. Variance (QMVar) and Spatial Frequency (QMSF) are mentioned in (2.13) and 

(2.9)-(2.11), respectively. 

2.4.1. Entropy (QME) 

Entropy [26] is a quality metric that measures the content information of a fused image. As the entropy value 

increases, the quality of the fused image increases. Entropy is calculated using (2.14). 

QM𝐸(𝐹) =  − ∑ ℎ𝑓(𝑖)log2ℎ𝑓(𝑖)

𝐿

𝑖=0

 (2.14) 

Here, L is the number of gray tones, ℎ𝑓 is the normalized histogram of the fused image. 

2.4.2. Standard Deviation (QMSD) 

Standard deviation [27] is a quality metric measuring the fused image's contrast. As the QMSD value increases, 

the quality of the fused image increases. QMSD is calculated using (2.15). 

QM𝑆𝐷(𝐹) =  √∑(𝑖 − 𝑖)̅2log2ℎ𝑓(𝑖)

𝐿

𝑖=0

 (2.15) 

Here, L is the number of gray tones, ℎ𝑓 is the normalized histogram of the fused image. 

2.4.3. Edge Based Quality Metric (QMABF) 

QMABF [28] is a quality metric that calculates the quality of the image by using edge information. QMABF is 

computed using (2.16). 

QM𝐴𝐵𝐹(𝐹) =  
∑ ∑ 𝑄𝐴𝐹(𝑛, 𝑚)𝑤 𝐴(𝑛, 𝑚) + 𝑄𝐵𝐹(𝑛, 𝑚)𝑤𝐵(𝑛, 𝑚)𝑀

𝑚=1
𝑁
𝑛=1

∑ ∑ (𝑤𝐴(𝑛, 𝑚) + 𝑤𝐵(𝑛, 𝑚))𝑀
𝑚=1

𝑁
𝑛=1

 (2.16) 

Here, 𝑄𝐴/𝐵𝐹 denotes weighted by 𝑤 𝐴/𝐵(𝑛, 𝑚). 
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2.4.4. Chen-Blum Metric (QMCB) 

QMCB [29] is a quality metric that calculates the quality of the image using a saliency map. As the QMCB value 

increases, the quality of the image increases. QMCB is calculated using (2.17). 

QM𝐶𝐵(𝐹) = 𝑆𝑚𝐴(𝑥, 𝑦)𝑄𝐴𝐹(𝑥, 𝑦) + 𝑆𝑚𝐵(𝑥, 𝑦)𝑄𝐵𝐹(𝑥, 𝑦) (2.17) 

Here, 𝑆𝑚𝐴(𝑥, 𝑦) denotes a global quality map. 

2.4.5. Mutual Information (QMMI) 

QMMI [30] is a quality metric measuring the similarity information between the fused and the source images. 

QMMI is calculated using (2.18). 

QM𝑀𝐼(𝐹) = ∑ ∑ ℎ𝑠𝑓(𝑖, 𝑗)log2

ℎ𝑠𝑓(𝑖, 𝑗)

ℎ𝑠(𝑖, 𝑗)ℎ𝑓(𝑖, 𝑗)

𝐿

𝑗=1

𝐿

𝑖=1

 (2.18) 

Here, ℎ𝑠 and ℎ𝑓 denotes the normalized histogram of the source and fused image, respectively. L represents 

the number of gray tones. 

2.4.6. Sum of the Correlations of Differences (QMSCD) 

QMSCD [31] is a quality metric that determines the quality of the image according to the correlation coefficient 

between the fused image and the different images. SCD is calculated using (2.19). 

QM𝑆𝐶𝐷(𝐹) = 𝑐(𝐷𝐴, 𝐹) + 𝑐(𝐷𝐵, 𝐹) (2.19) 

Here, c denotes the correlation coefficient, 𝐷𝐴/𝐹 denote the different images. 

3. Experimental Results 

This study proposes a method based on block size optimization for multi-focus image fusion using EVOA. 

Several experiments are conducted to test the performance of the method. The experiments use a laptop with 

Windows 7 operating system, 8 GB RAM, Intel Core 2.3 features and MATLAB r2019a. Experiments are 

carried out on the 512x512 color Lytro dataset. EVOA has been run independently thirty times. Max, mean, 

and standard deviation values of experiments are obtained. Numerical results are obtained using the eight 

quality functions used for image quality evaluation in the literature. Figure 3 shows test images taken from the 

Lytro [10] dataset where the experiments are carried out. To ensure fairness, common parameter values for 

optimization algorithms, namely a population size of 10 and a maximum iteration count of 100, have been 

selected. These values were chosen based on insights from the literature and preliminary experiments 

conducted. 

The parameter values used for GA, DE, and ABC are those commonly used in the literature and generally 

observed to yield good results. For GA, the selection strategy is roulette wheel selection, with single-point 

crossover and a crossover rate of 0.8. The mutation strategy is a uniform mutation with a mutation rate of 0.2. 

A crossover rate of 0.6 and an F value of 0.9 were chosen for DE. The number of onlooker bees equals the 

population size for ABC, and the L parameter value is set to 100. EVOA does not have its unique control 

parameter. 

In Tables 1-4, the obtained numerical results in the experiments carried out using optimization algorithms are 

given comparatively. Max, mean, and standard deviation quality metric values are obtained for each 
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optimization algorithm. QMVar, QME, QMSF, QMSD, QMABF, QMCB, QMMI, and QMSCD in each column, 

respectively, is given. 

Table 1 shows the numerical results of the experiments conducted for the 1st image. When Table 1 is examined, 

it is seen that GA and EVOA achieve the best value in a single quality metric for the 1st image. It can be said 

that while DE gives the best results in four quality metrics, ABC provides the best in three. As a result, it can 

be said that ABC achieved the best result for the first image, followed by DE. 

 

Figure 3. Experimental data sets 

 

Table 1. Experimental results for Image 1 
 QMVar QME QMSF QMSD QMABF QMCB QMMI QMSCD 

GA 

Max 3818,6295 7,5106 7,0564 61,7950 0,7994 0,8627 0,8564 0,6483 

Mean 3813,7821 7,4613 7,0072 61,2006 0,7951 0,8582 0,8524 0,6436 

SD 3,1457 0,0333 0,0337 0,2853 0,0033 0,0036 0,0032 0,0030 

DE 

Max 3824,0571 7,5098 7,0659 61,8389 0,8013 0,8635 0,8561 0,6554 

Mean 3819,3852 7,4654 7,0214 61,3595 0,7964 0,8582 0,8528 0,6504 

SD 3,2401 0,0307 0,0311 0,3212 0,0032 0,0034 0,0025 0,0033 

ABC 

Max 3816,5063 7,5120 7,0891 61,7778 0,8009 0,8638 0,8559 0,6479 

Mean 3811,4401 7,4583 7,0402 61,2467 0,7960 0,8591 0,8512 0,6422 

SD 2,9729 0,0328 0,0296 0,2614 0,0031 0,0033 0,0032 0,0030 

EVOA 

Max 3818,1955 7,5118 7,0670 61,7915 0,8002 0,8615 0,8559 0,6511 

Mean 3812,9763 7,4711 7,0199 61,3342 0,7951 0,8571 0,8516 0,6467 

SD 3,1362 0,0285 0,0307 0,3113 0,0034 0,0032 0,0033 0,0029 

Boldfaced values indicate the "best" performances. 

Table 2 shows the numerical results of the experiments conducted for the second image. When Table 2 is 

examined, ABC gives the best result in seven quality metrics for the 2nd image. Other algorithms provide the 

best results in one quality metric. Thus, it can be said that ABC has a superior performance compared to others 

for this image. 
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Table 2. Experimental results for Image 2 
 QMVar QME QMSF QMSD QMABF QMCB QMMI QMSCD 

GA 

Max 4955,6490 7,5740 5,1673 70,3963 0,7957 0,8539 0,8926 0,4765 

Mean 4950,7864 7,5258 5,1178 69,9621 0,7907 0,8491 0,8882 0,4718 

SD 3,1543 0,0352 0,0271 0,2744 0,0031 0,0032 0,0035 0,0036 

DE 

Max 4959,8559 7,5755 5,1695 70,4262 0,7964 0,8530 0,8925 0,4809 

Mean 4953,8459 7,5329 5,1117 69,9503 0,7924 0,8486 0,8871 0,4756 

SD 2,7059 0,0289 0,0295 0,3262 0,0036 0,0034 0,0033 0,0033 

ABC 

Max 4965,5762 7,5753 5,1939 70,4668 0,8010 0,8541 0,8925 0,4816 

Mean 4961,1913 7,5382 5,1572 70,0680 0,7967 0,8494 0,8882 0,4771 

SD 2,7592 0,0224 0,0320 0,2814 0,0027 0,0032 0,0033 0,0034 

EVOA 

Max 4959,8559 7,5755 5,1695 70,4262 0,7964 0,8530 0,8925 0,4809 

Mean 4954,3476 7,5203 5,1260 69,9727 0,7917 0,8482 0,8880 0,4752 

SD 3,0449 0,0337 0,0318 0,2889 0,0036 0,0029 0,0037 0,0036 

Boldfaced values indicate the "best" performances. 

Table 3 shows the numerical results of the experiments conducted for the 3rd image. When Table 3 is 

examined, DE achieves the best result in six quality metrics for the 3rd image. Then, ABC achieves the best 

result in two quality metrics, while EVOA achieves the best result in a single quality metric. Thus, it can be 

said that DE performs superiorly to the others in this image. Also, it can be said that EVOA can also compete 

with ABC. 

Table 4 shows the numerical results of the experiments conducted for the 4th image. When Table 4 is 

examined, GA produces the best results for the four-quality metrics for the 4th image. It produces the best 

results in two quality metrics, DE and EVOA. ABC, on the other hand, produces the best result for a quality 

metric. It can be said that GA performs better than the others for this image. Also, it can be said that DE and 

EVOA perform equally well. 

Table 3. Experimental results for Image 3 
 QMVar QME QMSF QMSD QMABF QMCB QMMI QMSCD 

    GA     

Max 4796,5094 7,7837 2,3946 69,2568 0,6968 0,7704 0,9297 0,1626 

Mean 4791,8393 7,7421 2,3402 68,9532 0,6921 0,7660 0,9242 0,1573 

SD 2,9967 0,0315 0,0304 0,2574 0,0031 0,0031 0,0028 0,0035 

    DE     

Max 4847,6539 7,7788 2,4482 69,6251 0,7112 0,7790 0,9297 0,2141 

Mean 4842,7669 7,7243 2,4051 69,0841 0,7069 0,7737 0,9251 0,2096 

SD 3,4452 0,0271 0,0297 0,2590 0,0036 0,0033 0,0033 0,0033 

    ABC     

Max 4822,3318 7,7839 2,4096 69,4430 0,6993 0,7746 0,9296 0,1868 

Mean 4818,0853 7,7436 2,3638 68,9429 0,6944 0,7690 0,9244 0,1814 

SD 2,5065 0,0271 0,0326 0,3278 0,0028 0,0031 0,0033 0,0034 

    EVOA     

Max 4831,1246 7,7812 2,4191 69,5062 0,7069 0,7742 0,9300 0,1945 

Mean 4825,9793 7,7312 2,3778 69,0992 0,7013 0,7696 0,9250 0,1900 

SD 3,2322 0,0279 0,0296 0,2586 0,0034 0,0031 0,0036 0,0035 

Boldfaced values indicate the "best" performances. 
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Table 4. Experimental results for Image 4 
 QMVar QME QMSF QMSD QMABF QMCB QMMI QMSCD 

    GA     

Max 3895,2398 7,6520 4,3443 62,4118 0,7365 0,7876 0,8946 0,3913 

Mean 3891,2508 7,6083 4,3000 61,8875 0,7314 0,7834 0,8906 0,3865 

SD 3,4083 0,0309 0,0280 0,3245 0,0036 0,0031 0,0032 0,0035 

    DE     

Max 3894,1864 7,6525 4,3472 62,4034 0,7364 0,7874 0,8946 0,3923 

Mean 3888,9185 7,5978 4,3040 61,8967 0,7315 0,7826 0,8898 0,3870 

SD 3,2738 0,0300 0,0327 0,2882 0,0037 0,0032 0,0033 0,0030 

    ABC     

Max 3893,0045 7,6524 4,3484 62,3939 0,7354 0,7874 0,8949 0,3903 

Mean 3888,0230 7,5997 4,3049 61,9339 0,7297 0,7826 0,8898 0,3861 

SD 3,1932 0,0298 0,0328 0,3137 0,0034 0,0035 0,0027 0,0030 

    EVOA     

Max 3890,6701 7,6522 4,3539 62,3752 0,7365 0,7873 0,8949 0,3892 

Mean 3885,7726 7,6043 4,2940 61,8454 0,7317 0,7823 0,8897 0,3847 

SD 3,1889 0,0319 0,0320 0,3215 0,0033 0,0033 0,0029 0,0034 

Boldfaced values indicate the "best" performances. 

When Table 1-4 is generally examined, it can be said that the optimization algorithms compared based on 

quality metrics give similar results. It can be said that DE and ABC produce the best results regarding more 

quality metrics. Thus, it can be said that DE and ABC give similar results, and GA and EVOA give similar 

results. 

Figure 4-7 shows the fused images obtained within the scope of the experiments carried out for the images and 

the zoom images of these images. The first row for each image shows the fused images obtained with GA, DE, 

ABC, and EVOA, respectively. In the second line, the zoom of the fused images is respectively demonstrated, 

to make a subjective evaluation. 

Figure 4 shows the fused images obtained for image 1. As shown in Figure 4, when the zoomed images are 

examined carefully, it is seen that ABC and EVOA give similar and better results than the other algorithms. 

When DE and GA are compared, it can be said that DE gives better results. In the numerical results in Table 

1, DE and ABC gave better results than the others. Thus, it can be said that only numerical evaluation is 

insufficient and may give meaningless results in some cases. 

 

Figure 4. The obtained fused image for image 1 
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Figure 5. The obtained fused image for image 2 

Figure 5 shows the fused images obtained for image 2. When Figure 5 is examined, it is seen that all 

optimization algorithms give similar results. In the numerical data of Table 2, the ABC algorithm achieves the 

best result based on seven quality metrics. However, there is no significant difference between the algorithms 

in subjective evaluation. 

 

Figure 6. The obtained fused image for image 3 

Figure 6 shows the fused images obtained for image 3. When Figure 6 is examined, it is obvious that the 

method's performance decreases and makes incorrect fusing in photographs containing non-linear objects. The 

main disadvantage of block-based multi-focus image fusion methods is seen in Figure 6. As seen in Figure 6, 

DE gives better results than the others. Then, while ABC and EVOA obtain similar results, it is seen that GA 

performs the worst fusing process. When evaluated together with the numerical results obtained in Table 3 for 

this image, it is seen that a result equivalent to the subjective evaluation is reached. 
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Figure 7. The obtained fused image for image 4 

Figure 7 shows the fused images obtained for image 4. When Figure 7 is examined, although the image has 

non-linear objects, the optimization algorithms obtained well-fused images close to each other. When Figure 

4-7 is generally reviewed, it is seen that the algorithms give similar results and can compete with each other. 

4. Conclusion 

This work proposes using the recently proposed energy valley optimization algorithm (EVOA) for multi-focus 

image fusion. Multi-focus image fusion is the method of obtaining a clear image on all sides by combining 

multi-focus images of the same scene. These fused images are widely used in many fields, from the military 

to the medical field. EVOA is a new meta-heuristic optimization algorithm presented by Azizi et al. in 2023. 

EVOA is used to calculate optimal block sizes. The method is applied to commonly used image sets. Despite 

the development of numerous quality assessment metrics in the literature, evaluating fused images remains 

challenging. While one quality metric may yield favorable results for an image, another metric may produce 

less favorable outcomes for the same image. Thus, relying on a single quality metric may be insufficient for 

objective assessment. 

Consequently, multiple quality metrics are employed for objective evaluation. In addition to objective 

assessment, conducting subjective evaluations is also crucial. Both objective and subjective evaluations are 

made to evaluate the quality of the resulting fused images. When the results are compared with the well-known 

GA, DE and ABC, it was seen that EVOA showed a performance close to the others. 

In this study, EVOA is used to optimize the block size. By changing the parameter values of EVOA, 

experiments can be conducted, and the results compared. Experiments can be run using different current meta-

heuristic optimization algorithms, and the results can be compared. Optimized block-based image fusion is 

used in this study. Other optimization algorithms can be used for region-based multi-focus image fusion 

methods and the performance of these algorithms can be evaluated. 
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