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Abstract 

This study introduces a novel penalized estimation method tailored for function-on-function regression models, combining 
the robustness of the Tau estimator with penalization techniques to enhance resistance to outliers. Function-on-function 
regression is essential for modeling intricate relationships between functional predictors and response variables across 
diverse fields. However, traditional methods often struggle with outliers, leading to biased estimates and diminished 
predictive performance. Our proposed approach addresses this challenge by integrating robust Tau estimation with 
penalization, promoting both robustness and parsimony in parameter estimation. Theoretical foundations of the penalized 
Tau estimator within function-on-function regression are discussed, along with empirical validations through simulation 
studies and an empirical data analysis. By incorporating penalization, our method not only ensures robust estimation of 
regression parameters but also promotes model simplicity, offering enhanced interpretability and generalization capabilities 
in functional data analysis. 
Keywords: Functional data, Penalization, Regression, Tau estimator 
 
Öz 

Bu çalışma, fonksiyon-fonksiyon regresyon modellerine yönelik yeni bir cezalandırılmış tahmin yöntemini tanıtmaktadır ve 
Tau tahmin edicisinin sağlamlığını cezalandırma teknikleriyle birleştirerek aykırı değerlere karşı direnci artırmaktadır. 
Fonksiyon-fonksiyon regresyon, fonksiyonel bağımsız değişkenler ile yanıt değişkenleri arasındaki karmaşık ilişkileri 
modellemek için çeşitli alanlarda gereklidir. Ancak geleneksel yöntemler genellikle aykırı değerlerle başa çıkmakta zorlanır ve 
bu durum yanlı tahminlere ve zayıd tahmin performansına yol açar. Önerilen yaklaşımımız, sağlam Tau tahminini cezalandırma 
ile birleştirerek bu zorluğun üstesinden gelmekte ve parametre tahmininde hem sağlamlığı hem de tutarlılığı sağlamaktadır. 
Fonksiyon-fonksiyon regresyon içinde cezalandırılmış Tau tahmin edicisinin teorik temelleri tartışılmakta, simülasyon 
çalışmaları ve ampirik veri analizleri yoluyla ampirik doğrulamalar sunulmaktadır. Cezalandırmayı dahil ederek, yöntemimiz 
yalnızca regresyon parametrelerinin sağlam tahminini sağlamakla kalmaz, aynı zamanda modelin basitliğini teşvik ederek 
fonksiyonel veri analizinde daha iyi yorumlanabilirlik ve genelleme yetenekleri sunar. 
Anahtar Kelimeler: Fonksiyonel veri, Cezalandırma, Regresyon, Tau tahmincisi 

 

I. INTRODUCTION 
Recent advances in data collection technology have markedly enhanced access to high-dimensional, intricately 

structured datasets, known as functional data. Consequently, there is a growing demand for analytical tools 

designed for functional data analysis. For a comprehensive review of the latest theoretical and practical 

advancements in this field, refer to [1], [2], and [3]. One notable method within this domain is function-on-function 

regression (FoFR), which has gained popularity for examining the relationships between a response and predictors, 

where both the response and predictors are represented as random curves. 

Let (Y,X) denote a pair where Y is the response and X is the predictor. Here, Y and X are pressumed to be 

stochastic processes whose elements belong to the L_2 Hilbert space; specifically, Y∈L_2 (I) and X∈L_2 (S), 

where I and S are bounded and closed intervals on the real line. Consider {Y_i (t),X_i (s);i=1,…n} to be a random 

sample (Y,X), with t∈I and s∈S. The FoFR is then defined as follows: 

𝑌𝑖(𝑡) = 𝛼(𝑡) + ∫ 𝑋𝑖(𝑠)𝛽(𝑠, 𝑡)𝑑𝑠 + 𝜖𝑖(𝑡)
𝑆

−∞
,                                 (1) 

where α(t) is the constant function, β(s,t) is the slope function, and 𝜖𝑖(𝑡) is the functional noise. We pressume that 

this functional noise is independen of the predictor variable.

https://orcid.org/0000-0002-5208-4950
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The main objective in model (1) is to estimate the slope 

function β(s,t). Various methodologies have been 

developed for this purpose, including those by [4], [1], 

[5], [6], [7], and [8]. However, these methods typically 

rely on least squares estimation procedures, which are 

significantly affected by outliers—observations that 

deviate markedly from the bulk of the data. In the 

presence of outliers, least squares type estimators may 

cause biased estimates and unreliable inference. 

To address this issue, several robust estimation 

methods for the slope function in model (1) have been 

proposed. In their work, [9] developed a regression 

model that maintains Fisher consistency and 

incorporates a decomposition method using functional 

principal components for the observed functions. In a 

different study, [10] introduced a method for robustly 

estimating model parameters using functional partial 

least squares, designed to handle outliers effectively. 

However, the efficacy of both approaches hinges on the 

selected basis dimension for the predictor. This choice 

dictates the degree of smoothness in the estimated 

functional parameter. As referenced in [7], this decision 

can lead to significant under-smoothing, particularly 

when the functional parameter inherently possesses a 

smoother nature in contrast to the higher-order 

components obtained from the partial least squares and 

principal component methods. 

 

To achieve robust and smooth estimates for the 

regression coefficient function β(s,t), [11] recently 

proposed a robust penalized M-estimation strategy. 

Their numerical analyses demonstrated that the robust 

penalized M-estimator provides improved parameter 

estimates and model inferences in the presence of 

outliers compared to available methods. Conversely, 

the robust penalized M-estimator presented by [11] 

lacks the integration of both a high breakdown point 

and high efficiency. The breakdown point measures the 

estimator's resistance to the influence of outliers, 

whereas high efficiency refers to the estimator 

maintaining a variance comparable to that of the least 

squares estimator under normal distribution conditions, 

as elaborated by [12].  

 

In this study, we propose a robust penalized tau 

estimator designed to yield a smooth and robust 

estimate for β(s,t), integrating both a high breakdown 

point and high-efficiency characteristics. The method 

represents the slope functions using a tensor product of 

B-spline expansion. In addition, the quadratic penalties 

are applied to the expansion coefficients to ensure 

smooth estimates. The regression functions are 

obtained using the tau estimator from [13], known for 

its high breakdown point and asymptotic efficiency 

under normal conditions. Our approach surpasses 

unpenalized estimators by ensuring a level of 

smoothness that mitigates overfitting. Unlike the M-

estimator described by [11], our method produces 

estimates that maintain both high breakdown point and 

asymptotic efficiency under normality. The optimal 

smoothness degree is governed by the penalization 

term, and the optimum values of the smoothing 

parameters are determined through a grid-search 

approach with the Bayesian Information Criterion 

(BIC).  

 

The rest of this paper is structured as follows. Section 

2 introduces the proposed robust penalized tau 

estimator. In Section 3, the empirical performance of 

the proposed method is evaluated via Monte-Carlo 

experiments. Section 4 presents the results of empirical 

data analysis results. Finally, Section 5 concludes the 

paper.  

 

II. METHODOLOGY 

Let us consider the FoFR model in (1). To derive 

penalized estimates for the model's parameters, 

specifically 𝛼(𝑡) and 𝛽(𝑠, 𝑡), we tackle the following 

minimization problem: 

argmin
𝛽0,𝛽

∑ 𝜌[𝑌𝑖(𝑡) − 𝛼(𝑡) − ∫ 𝑋𝑖(𝑠)𝛽(𝑠, 𝑡)𝑑𝑠𝑆
]𝑛

𝑖=1 +
𝜆1

2
𝐽1(𝛼) +

𝜆2

2
𝐽2(𝛽).                                           (2) 

Here, 𝜌 stands for a loss function, 𝐽1 and 𝐽2 represent 

penalty functions applied to 𝛼 and 𝛽, respectively, and 

𝜆1 and 𝜆2 serve as smoothing parameters regulating the 

degree of shrinkage in 𝛼 and 𝛽, respectively.  

To derive estimates for  𝛼 and 𝛽, we initially adopt the 

basis representation approach for the functional random 

variables, akin to the methodologies outlined in [7], 

[11], and [14]. Initially, we express 𝑌𝑖(𝑡) = 𝑌𝑖(𝑡𝑖𝑗) and 

𝑋𝑖(𝑠) = 𝑋𝑖(𝑠𝑖𝑟), where 𝑗 = 1,… ,𝑀𝑖 and 𝑟 = 1,… , 𝐺𝑖 , 

representing the number of observations on the 

response and predictor, respectively. For the basis 

representation of the functional objects in (2), we 

presume that 𝛽0(𝑡) follows a B-spline basis expansion 

with 𝐾0 basis expansion functions; 𝛼(𝑡) =

∑ 𝛼𝑘𝜙𝑘(𝑡)
𝐾0
𝑘=1 , where 𝜙𝑘(𝑡) (for 𝑘 = 1,… , 𝐾0) denotes 

the B-spline basis expansion function, and 𝛼𝑘  signifies 

the expansion coefficient. Additionally, we posit that 

𝛽(𝑠, 𝑡) adopts a basis expansion representation with the 

truncation constants 𝐾𝑦 and 𝐾𝑥 as follows: 

𝛽(𝑠, 𝑡) = ∑ ∑ 𝑏𝑙𝑝𝜓𝑙(𝑡)𝜗𝑝(𝑠)
𝐾𝑥
𝑝=1

𝐾𝑦
𝑙=1

,                          (3) 

where 𝜓𝑙(𝑡) and 𝜗𝑝(𝑠) denote the expansion functions 

and 𝑏𝑙𝑝 denotes the corresponding expansion 

coefficient. Let Δ𝑟 = 𝑠𝑟+1 − 𝑠𝑟  represent the length of 

r-th interval in 𝑆. Subsequently, the integral component 

in the minimization problem (3) can be approximated 

using numerical integration, which can be expressed as 

follows: 
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∫ 𝑋𝑖(𝑠)𝛽(𝑡, 𝑠)𝑑𝑠 ≈ ∑ Δ𝑟𝛽(𝑡, 𝑠𝑟)𝑋𝑖(𝑠𝑟)
𝐺−1
𝑟=1𝑆

= ∑ Δ𝑟 ∑ ∑ 𝑏𝑙𝑝𝜓𝑙(𝑡)𝜗𝑝(𝑠𝑟)𝑋𝑖(𝑠𝑟)
𝐾𝑥
𝑝=1

𝐾𝑦
𝑙=1

𝐺−1
𝑟=1

= ∑ ∑ 𝑏𝑙𝑝𝜓𝑙(𝑡)𝜗̃𝑝,𝑖
𝐾𝑥
𝑝=1

𝐾𝑦
𝑙=1

,                         (4) 

where 𝜗̃𝑝,𝑖 = ∑ Δ𝑟
𝐺−1
𝑟=1 𝜗𝑝(𝑠𝑟)𝑋𝑖(𝑠𝑟). Replacing the 

basis expansion approximation in (1) gives: 

 

𝑌𝑖(𝑡) =  ∑ 𝛼𝑘𝜙𝑘(𝑡) + ∑ ∑ 𝑏𝑙𝑝𝜓𝑙(𝑡)𝜗̃𝑝,𝑖
𝐾𝑥
𝑝=1

𝐾𝑦
𝑙=1

𝐾0
𝑘=1 .                (5) 

 

For the penalty functionals , 𝐽1(𝛼) and 𝐽2(𝛽), we 

employ quadratic penalties based on the second 

derivatives of the basis functions. Let 𝜶 =

[𝛼1, … , 𝛼𝐾0]
𝑇
 represent the vector consisting of 

expansion coefficient for the constant function. Then, 

the penalty functional 𝐽1(𝛼) is approximated as 𝐽1(𝛼) =

∫[𝛼(2)(𝑡)]
2
𝑑𝑡 = 𝜶𝑻𝑷𝜶𝜶𝐼

, where 𝛼(2)(𝑡) denotes the 

second derivative of 𝛼(𝑡), and 𝑷𝜶 denotes penalty 

matrice with dimension 𝐾0 × 𝐾0 with entries 

∫ 𝜙𝑘
(2)(𝑡)𝜙𝑙

(2)(𝑡)𝑑𝑡
𝐼

. Let 𝒃 = (𝑏𝑙𝑝)𝑙𝑝 denote the 𝐾𝑦 ×

𝐾𝑥 dimensional basis expansion coefficients. Then, the 

penalty functional 𝐽2(𝛽) is approximated as follows: 

 

𝐽2(𝛽) = ∫ ∫ [
𝜕2

𝜕𝑡2
𝛽(𝑡, 𝑠)]

2

𝑑𝑠 𝑑𝑡 + ∫ ∫ [
𝜕2

𝜕𝑠2
𝛽(𝑡, 𝑠)]

2

𝑑𝑠 𝑑𝑡 =
𝑆𝐼𝑆𝐼

𝒃𝑇(𝝑⊗𝑷𝑦 +𝑷𝑥⊗𝝍)𝒃,                           (6) 

 

where 𝝍 = ∫ 𝝍(𝒕)𝝍(𝒕)𝑇𝑑𝑡
𝑰

 with 𝝍(𝒕) =

[𝝍𝟏(𝒕), … ,𝝍𝑲𝒚]
𝑇

, 𝝑 = ∫ 𝝑(𝒔)𝝑(𝒔)𝑇
𝑺

𝑑𝑠 with 𝝑(𝒔) =

[𝝑𝟏(𝒔), … , 𝝑𝐾𝑥(𝒔)]
𝑇
. Here, 𝑷𝑦 and 𝑷𝑥 are the matrices 

of penalty terms whose elements are computed from the 

derivatives of the expansion coefficients.  

 

Subsequently, leveraging the approximate penalty 

functionals and the expansion representation of the 

functionals, we can rewrite the minimization problem 

in (2) as follows: 

 

argmin
𝜶,𝑏

∑ ∑ 𝜌 [𝑌𝑖(𝑡𝑗) − 𝜙
𝑇(𝑡𝑗)𝜶 − (𝝑̃𝑖

𝑇⊗𝝍𝑇(𝑡𝑗))𝒃] +
𝑀
𝑗=1

𝑛
𝑖=1

𝜆1

2
𝐽𝟏(𝛼) +

𝜆2

2
𝐽2(𝛽).                           (7) 

 

To obtain robust estimates for 𝜶 and 𝒃, we consider the 

𝜏-estimator proposed by [13]. Let 𝜽 = [𝜶𝑇 , 𝒃𝑇]𝑇 , 𝚷 =

[𝚷𝟏, … , 𝚷𝒏]
𝑇 with 𝚷𝒊 = [𝝓𝑻(𝑡)𝝑̃𝑖

𝑇⊗𝝍𝑻(𝑡)]
𝑇
, and 

𝑷(𝜆1, 𝜆2) is a block diagonal matrix whose elements 

are 𝜆1𝑷𝛼  and 𝜆2(𝝑⊗ 𝑷𝑦 + 𝑷𝑥𝝍). Subsequently, we 

consider the following optimization problem in a 

matrix form: 

 

𝑎𝑟𝑔min
𝜽
∑ 𝜌[𝑌𝑖(𝑡) − 𝚷𝑖𝜽] + 𝑷(𝜆1, 𝜆2)𝜽
𝑛
𝑖=1                          (8) 

 

The 𝜏-estimator for 𝜽 is defined as follows: 

 

𝜽̂ = argmin
𝜽

𝜏(𝜽),                          (9) 

 

where the 𝜏-scale estimator 𝜏(𝜽) is given by 

 

𝜏2(𝜽) = 𝑠2(𝜽)
1

𝑛 𝑢2
∑ 𝜌2 [

𝑌𝑖(𝑡)−𝜽
𝑇𝚷𝑖

𝑠(𝜽)
]𝑛

𝑖=1 ,                    (10) 

 

with 𝑠(𝜽) is an M-estimator that solves 

1

𝑛
∑ 𝜌1 [

𝑌𝑖(𝑡)−𝜽
𝑇𝚷i

𝑠(𝜽)
] = 𝑢1

𝑛
𝑖=1 . Here, the loss functions 𝜌1 

and 𝜌2 are symmetric, continuously differentiable, and 

bounded functions. The parameters 𝑢1 and 𝑢2, 

conversely, act as tuning parameters utilized to achieve 

consistency under normally distributed error terms. The 

selection of loss functions 𝜌1 and 𝜌2 holds significant 

practical and theoretical relevance. In this 

investigation, we adopt the optimal loss function 

proposed by [15]: 

 

𝜌(𝑣) =

{
  
 

  
 1.38(

𝑣

𝑐
)
2

, |
𝑣

𝑐
| ≤

2

3

0.55 − 2.69 (
𝑣

𝑐
)
2

+ 10.76(
𝑣

𝑐
)
4

−

11.66(
𝑣

𝑐
)
6

+ 4.04 (
𝑣

𝑐
)
8 ,

2

3
< |

𝑣

𝑐
| ≤ 1

1, |
𝑣

𝑐
| > 1

      (11) 

 

Following the recommendation of [15], we opt for 𝑐1 =

1.214 and 𝑏1 = 0.5 for 𝜌1 and 𝑐2 = 3.270 and 𝑏2 =

0.128 for 𝜌2. With these parameter selections, the 𝜏-

estimator achieves a 50% breakdown and 95% 

efficiency under normally distributed error terms, as 

demonstrated by [15]. 

 

The 𝜏-estimator  𝜽̂ is computed via an iterative 

algorithm. We employ a random resampling-based fast 

estimation algorithm for this purpose. Initially, random 

subsamples are drawn from the entire dataset. For each 

subsample, the iteratively reweighted least squares 

algorithm is iterated multiple times to obtain potential 

estimates. This process continues until convergence, 

and the final estimator is selected from the potential 

estimates, providing the minimum scale estimate. 

Let  𝜽̂ = [𝜶̂, 𝒃̂]
𝑇
 represent the 𝜏-estimate of 𝜽. 

Subsequently, the robust estimates of the intercept 

function and bivariate coefficient function are obtained 

as follows: 

 

𝛼̂(𝑡) = 𝝓̂𝑇(𝑡)̂ 𝜶̂,               𝛽̂(𝑡, 𝑠) = [𝝑𝑇(𝑠)⊗𝝍𝑇(𝑡)] 𝒃̂.        (12) 

 

III. MONTE CARLO SIMULATIONS 
 We implement a series of simulations to assess the 

estimation and predictive performance of the proposed 

method, referred to as "tau." This method's empirical 

performance is benchmarked against functional 

principal component regression (fpcr), functional 

partial least squares regression (fpls), and the penalized 

function-on-function linear regression model 

introduced by [7] (pffr). For the simulations, we adopt 

the data generation process outlined in [11].  
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In the data generation process, the predictor is created 

at fifty equally-spaced grid points within the unit 

interval. Similarly, the elements of response variable 

are simulated at sixty equally distance points within the 

same interval. The generation of the functional 

predictor follows: 

 

𝑋𝑖(𝑠) = ∑
1

𝑟2
{𝜁𝑖1,𝑟  √2 sin(𝑟 𝜋𝑠)𝜁𝑖2,𝑟√2cos(𝑟 𝜋𝑠)}

50
𝑟=1 , 

 

where 𝜁𝑖1,𝑟 and 𝜁𝑖2,𝑟 i.i.d. random variables from the 

normal distribution with zero mean and unit variance. 

Following this, the functional response is generated 

using the specified methodology: 

 

𝑌𝑖(𝑡) = 𝛼(𝑡) + ∫ 𝑋𝑖(𝑠)𝛽(𝑠, 𝑡)𝑑𝑠 + 𝜖𝑖(𝑡)
1

0
 , 

 

where 𝛼(𝑡) = 2 exp(−(𝑡 − 1)2), 𝛽(𝑠, 𝑡) =
4 cos(2 𝜋𝑡) sin(𝜋𝑠), and 𝜖𝑖 is the random noise where 

each 𝜖𝑖(𝑡𝑗) ∼ 𝑁(0,0.01)
2. Replacing 5% and 10% of 

the data points with outliers, we utilize  𝛼∗(𝑡) =
4 exp(−(𝑡)2), 𝛽∗(𝑠, 𝑡) = 6 sin(4 𝜋𝑡) sin(2𝜋𝑠) to 

generate atypical observations. Figure 1 presents a 

visual depiction of the generated data alongside the 

parameter functions utilized in the process.  

 

 
Figure 1. The graphical display showcases the 

response (left-top panel), predictor (right-top panel), 

constant function (left-bottom panel), and slope 

function (right-bottom panel). 

 

In the experiments, a training sample of fixed size 

𝑛𝑡𝑟𝑎𝑖𝑛 = 250 is generated. Based on the training 

sample, we build the models and compute the root 

relative integrated squared percentage estimation errors 

(RISPEE) for the constant and slope functions for 

assessing the estimation performance of the methods: 

 

𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛼̂) = 100 × √
||𝛼̂(𝑡) − 𝛼(𝑡)||

2

2

||𝛼(𝑡)||
2

2 ,

𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛽̂) = 100 × √
||𝛽̂(𝑠, 𝑡) − 𝛽(𝑠, 𝑡)||

2

2

||𝛽(𝑠, 𝑡)||
2

2 ,

 

 

where || ⋅ ||2 denotes the 𝐿2 norm. It's essential to 

mention that the methods fpcr and fpls presume that the 

response and predictor variables are centered, so that 

they have mean-zero. That is, 𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛼̂) is 

computed only for pffr and tau methods. To assess the 

predictive performance of the methods, a test sample of 

size 𝑛𝑡𝑒𝑠𝑡 = 100 is generated. The models fitted using 

the training sets are then applied to the test samples, and 

we compute the root mean squared percentage error 

(RMSPE) as follows: 

 

𝑅𝑀𝑆𝑃𝐸 = 100 ×√
||𝑌̂(𝑡) − 𝑌(𝑡)||

2

2

||𝑌(𝑡)||
2

2  

 

In the simulations, 100 Monte Carlo replications are 

conducted. For constructing the models using pffr, fpcr, 

fpls, and the proposed tau method, a fixed 15 basis 

expansion functions are employed. 

 

The computed mean 𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛼̂), 𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛽̂), and 

𝑅𝑀𝑆𝑃𝐸, along with their standard errors, are presented 

in Table 1. When no outliers are present in the data, the 

proposed tau estimator demonstrates superior 

parameter estimation for the intercept function and 

achieves better prediction accuracy, as indicated by 

lower RMSPE values, compared to all other methods. 

This improvement may be due to the random data 

generation process, where a 0% contamination level 

might still produce small-magnitude outliers. The 

proposed method effectively mitigates the impact of 

these outliers, yielding enhanced results, whereas other 

non-robust methods are influenced by these outliers, 

resulting in biased outcomes. However, in this scenario, 

the tau method performs worst for 𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛽̂), with 

fpcr and fpls showing the best results. When outliers are 

introduced into the data, regardless of the 

contamination level, the proposed tau method 

consistently outperforms all competitors across all 

performance metrics. The non-robust methods exhibit 

significantly poorer estimation and predictive 

performance in the presence of outliers compared to 

their results with 0% contamination. In contrast, the 

proposed method effectively down-weights the 

influence of outliers, maintaining performance 

comparable to that achieved with no contamination. 
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Table 1. The mean 𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛼̂), 𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛽̂), and 

𝑅𝑀𝑆𝑃𝐸 , along with their standard errors (given in 

brackets), are computed over 100 Monte Carlo 

replications. 
% Metric pffr fpcr fpls tau 

 

0 

𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛼̂) 0.0958 

(0.0940) 

- - 0.0253 

(0.0052) 

𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛽̂) 2.3722 

(0.0073) 

1.7457 

(0.6129) 

0.8209 

(0.1517) 

3.5597 

(1.0817) 

𝑅𝑀𝑆𝑃𝐸 0.7463 

(0.0279) 

3.9089 

(2.5550) 

3.9166 

(2.5646) 

0.0729 

(0.0035) 

 

5 

𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛼̂) 6.8535 

(1.1207) 

- - 0.0347 

(0.0053) 

𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛽̂) 32.5246 

(13.7395) 

8.6258 

(6.4341) 

9.6036 

(7.334) 

4.1152 

(1.4877) 

𝑅𝑀𝑆𝑃𝐸 7.4112 

(1.0931) 

7.9222 

(1.5537) 

8.1117 

(1.6796) 

0.0850 

(0.0059) 

 

10 

𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛼̂) 12.3480 

(0.6299) 

- - 0.0403 

(0.0089) 

𝑅𝑅𝐼𝑆𝑃𝐸𝐸(𝛽̂) 32.6744 

(11.6223) 

15.9920 

(6.7921) 

12.3848 

(2.1659) 

6.0510 

(2.7341) 

𝑅𝑀𝑆𝑃𝐸 12.2392 

(0.8134) 

12.4304 

(1.0484) 

12.2301 

(1.0691) 

0.0991 

(0.0058) 

 

Moreover, we compare the performance of the 

proposed method with existing non-robust methods, 

namely, pffr, fpcr, and fpls, in terms of their computing 

times. A single Monte Carlo simulation is performed 

with a sample size of 250, and the elapsed computing 

time for all the methods is recorded. The computations 

are executed on a desktop PC with an Intel® Core™ i5-

9500 CPU at 3.00 GHz and 8 GB RAM. The computing 

times (in seconds) are recorded as 6.83, 0.25, 0.95, and 

72.63 for pffr, fpcr, fpls, and the proposed tau method, 

respectively. From the results, it is evident that the 

classical non-robust methods require considerably less 

computing time than the proposed method. This result 

is due to the proposed method utilizing an iterative 

approach for estimating both model parameters and 

smoothing parameters (grid-search algorithm). 

 

IV. EMPIRICAL DATA ANALYSIS 
We employ the Oman weather dataset from the 

National Center for Statistics & Information 

(https://data.gov.om). This dataset comprises monthly 

maximum humidity (in percentage) and evaporation (in 

millimeters) measurements from 49 weather stations 

across Oman, spanning from January 2018 to 

December 2018. Each observation is treated as a 

function of the months, resulting in a total of n = 49 

functional observations {𝑌(𝑡), 𝑋(𝑠): 1 ≤ 𝑡, 𝑠 ≤ 24}. 
Figure 2 presents the graphical display of the functional 

observations. 

 

 

 

 

 

 
Figure 2. Graphical display of the maximum humidity 

(left panel) and evaporation (right panel) variables fort 

he Oman weather data. 

 

To assess the predictive performance of the methods, 

we repeat the following procedure 100 times: 1) 

Randomly split the dataset into training and test 

samples, with sizes 33 and 16, respectively. 2) 

Construct a model using the training sample curves, 

employing 8 basis functions determined by the 

generalized cross-validation procedure. 3) Use this 

model to predict 13 curves in the test sample. 4) 

Calculate the RMSPE for each replication to compare 

the predictive accuracy of the methods. 

 

Figure 2 reveals that the Oman weather data contains 

clear atypical observations in the response (humidity). 

Hence, it's expected that the proposed robust method 

would deliver superior prediction results compared to 

its non-robust counterparts, namely pffr, fpcr, and fpls. 

The mean RMSPE values computed from the methods 

and their standard errors given inbrackets are as 

follows: 5.9523 (0.9518) for pffr, 5.8333 (0.9255) for 

fpcr, 5.2234 (0.8309) for fpls, and 3.1239 (0.4478) for 

the proposed tau method. These findings suggest that 

our method achieves improved predictive performance, 

as indicated by lower RMSPE values compared with its 

competitors. 

 

V. CONCLUSION 
The FoFR model has emerged as a pivotal tool for 

investigating the functional relationship between a 

functional response and a set of functional predictor 

variables. Numerous methods have been put forth to 

accurately estimate the parameters of this model. 

However, many of these methods suffer from a lack of 

robustness and can be substantially influenced by the 

existence of outliers. Consequently, traditional 

approaches may produce biased estimates for the 

regression parameters, leading to subpar predictive 

performance. 
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This study introduces a novel penalized robust 

estimation method, named "tau," tailored to acquire 

outlier-resistant estimates for the slope function of the 

FoFR model. The proposed method employs B-spline 

expansion to project functional object into a finite-

dimensional space and the penalty functionals obtained 

from their second derivatives are applied to the 

expansion coefficients to control the smoothness of the 

estimates. To assess the estimation and predictive 

performance, a series of Monte Carlo experiments and 

empirical data analyses are conducted, comparing the 

results favorably with existing methods. The findings 

indicate that the proposed method yields comparable 

estimation and predictive performance to existing non-

robust methods in outlier-free data scenarios. However, 

notably, our method demonstrates improved estimation 

and predictive accuracy when data are contaminated by 

outliers, surpassing the performance of existing 

methods in such scenarios. 

 

The estimation approach proposed in this study can be 

extended in several research directions. For example, 

the current functional regression model includes only 

one functional predictor. The proposed method can be 

easily extended to models that include multiple 

functional predictors. Additionally, the considered 

model includes only a functional predictor. However, 

fields such as health and medicine often require both 

functional and scalar predictors. Therefore, the 

proposed method can be extended to robustly estimate 

model parameters when both functional and scalar 

predictors are included. Moreover, our Monte Carlo 

experiments indicate that the proposed method requires 

significantly more computing time than existing 

methods. To address this, several algorithms, such as 

parallel computing, can be applied to reduce the 

computational burden of the proposed method. 
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