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ABSTRACT

In this work, we introduce HD- split Euler-Rodrigues equations. First, we include the basic
concepts of dual numbers, dual vectors, HD- numbers, HD- vectors and HD- split vectors, which
form the basis of the study. Then we obtain HD- split Euler-Rodrigues relations for HD- unit
spacelike axes and HD- unit timelike axes. Thanks to these relations, we obtain HD- split rotation
matrices and we examine the relationships with the E.Study transformation defined for HD- split
vectors. We also reconstruct Euler’s fixed point theorem with HD- split rotation matrices. Finally,
we provide extensive and interesting examples that support the theory.
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1. Introduction

The dual numbers were introduced by Clifford in 1873 [3]. After Clifford’s discovery, Study and Kotelnikov
used dual vectors to express the lines in kinematics and rigid body motions [21, 14]. Then, the E.Study
transform was defined using dual split vectors in Lorentzian-3 space [13, 22]. Dual numbers and their
applications have a wide place in the literature. Examples such as dual matrices, dual Fibonacci numbers,
dual space curves, and automatic differentiation can be given.
HD- numbers were defined by Fike as an extension of dual numbers [9]. Fike and Alonso used the HD-
numbers in the first and second derivative calculations due to the reduction of the calculation time and errors
[10]. The expression of a HD- number in terms of two dual numbers was perfoermed by Cohen and Shoham
[4]. In this way, physical applications of HD- numbers, such as HD- velocity, HD- momentum and HD- inertia
operators, were defined and rigid body movements were examined [5]. Cohen and Shoham interpreted the
HD- vectors in the sense of Study and Kotelnikov.
In [1], HD- split vectors are defined with the help of HD- numbers. The E. Study transformation for HD- split
vectors was examined by expressing the Lorentzian unit HD- sphere and the hyperbolic unit HD- sphere.
Corresponding spacelike or timelike lines in the 3-dimensional Minkowski space were examined. In addition,
some structures in kinematics are given by introducing HD- quaternions and HD- split quaternions in three-
dimensional Euclidean and Minkowski spaces, respectively [2, 6].
The geometry of rigid body dynamics has led scientists to study Lie algebras and Lie groups. Fixed point
theories are studied in many sub-branches of mathematics. Geometrically, Euler realized that any displacement
of a rigid body by a point on the rigid body will remain constant in a three-dimensional space [8, 19]. Therefore,
Euler’s theorem shows the existence of the axis of rotation. The Euler-Rodrigues formula expresses the matrix
representation of a rotation with the angle of rotation and the axis of rotation [7, 16, 18]. The dual Euler-
Rodrigues formulas are given using the dual axis and the dual angle in [12], and HD- Euler Rodrigues formulas
are given using HD- axis and HD- angle in [20].
In this study, we introduce HD- split Euler-Rodrigues equations by using HD- split matrices. Then we obtain
HD- split Euler-Rodrigues relations for HD- unit spacelike axes and HD- unit timelike axes. Thanks to
these relations, we obtain HD- split rotation matrices, and we examine the relationships with the E.Study
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transformation defined for HD- split vectors. We also reconstruct Euler’s fixed-point theorem with HD- split
rotation matrices. Finally, we provide extensive and interesting examples that support the theory.
The table below shows the symbols that will be used throughout the article.

List of symbols List of symbols
x0, x1 Real scalars ξ Dual unit
x0,x1 Real vectors θ Dual angle
X Dual number X∗ HD- number
X Dual split vector D∗ The set of all HD- numbers
D The set of all dual numbers X

∗
HD- split vector

D3 Dual space D∗3 HD- space
D3

1 Dual Lorentzian space D∗
1
3 HD- Lorentzian space

S2
1 Lorentzian unit sphere S∗

1
2 Lorentzian unit HD- sphere

H2
0 Hyperbolic unit sphere H∗

0
2 Hyperbolic unit HD- sphere

S
2

1 Lorentzian unit dual sphere θ∗ HD- angle
H

2

0 Hyperbolic unit dual sphere

2. Basic concepts

The Lorentz-Minkowski space is the metric space R3
1 = (R3, ⟨, ⟩L) where the metric ⟨, ⟩L is

⟨, ⟩L = −dx2
1 + dx2

2 + dx2
3

which is called the Lorentzian metric. A non-zero vector ρ ∈ R3
1 is to be spacelike, timelike, lightlike if

⟨ρ, ρ⟩L > 0, ⟨ρ, ρ⟩L < 0 or ⟨ρ, ρ⟩L = 0 respectively. The norm of the vector ρ ∈ R3
1 is denoted by ∥ρ∥L =

√
|⟨ρ, ρ⟩L|.

The vector product ρ ∧L ϱ of ρ ∈ R3
1 and ϱ ∈ R3

1 is given by

ρ ∧L ϱ =

∣∣∣∣∣∣
−e1 e2 e3
ρ1 ρ2 ρ3
ϱ1 ϱ2 ϱ3

∣∣∣∣∣∣
where {e1, e2, e3} is the canonical basis of R3

1. On the other hand, Lorentzian and hyperbolic unit spheres are
defined by,

S2
1 = {ρ ∈ R3

1| ⟨ρ, ρ⟩L = 1},
H2

0 = {ρ ∈ R3
1| ⟨ρ, ρ⟩L = −1}.

respectively [15].
The set of all dual numbers is

D = {X = x0 + ξx1 : x0, x1 ∈ R, ξ2 = 0, ξ ̸= 0}. (2.1)

The sum and product of two dual numbers are defined as follows, respectively:

X + Y = (x0 + y0) + ξ(x1 + y1),

XY = x0y0 + ξ(x0y1 + y0x1).

The set

D3 = {X = x0 + ξx1 : x0,x1 ∈ R3}. (2.2)

is a module on dual numbers, and each element of D3 is called a dual vector.
The set

D3
1 = {X = x0 + ξx1 : x0,x1 ∈ R3

1} (2.3)

is the dual Lorentzian space, and each element of D3
1 is called a dual split vector. If x0 is spacelike, timelike

or lightlike, a dual split vector X = x0 + ξx1 ∈ D3
1 is called as spacelike, timelike or lightlike, respectively.
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Let X = x0 + ξx1 and Y = y0 + ξy1 be dual split vectors. The Lorentzian scalar product, Lorentzian vector
product, norm and modulus of dual split vectors are defined by

⟨X,Y ⟩L = ⟨x0,y0⟩L + ξ(⟨x0,y1⟩L + ⟨y0,x1⟩L) ∈ D,
X ∧L Y = x0 ∧L y0 + ξ(x0 ∧L y1 + y0 ∧L x1) ∈ D3

1,

NX = ⟨X,X⟩L = ⟨x0,x0⟩L + 2ξ⟨x0,x1⟩L,

∥X∥L = ∥x0∥L + ξ
⟨x0,x1⟩L
∥x0∥L

, (∥x0∥L ̸= 0),

respectively. If ⟨X,X⟩L = ±1 (⟨x0,x0⟩L ± 1 and ⟨x0,x1⟩L = 0), then X is called a unit dual split vector.
Moreover, Lorentzian unit dual sphere and hyperbolic unit dual sphere are defined by

S
2

1 = {X = x0 + ξx1 ∈ D3
1| ⟨X,X⟩L = 1},

H
2

0 = {X = x0 + ξx1 ∈ D3
1| ⟨X,X⟩L = −1},

respectively [3, 21, 14, 13, 22].

Theorem 2.1 (E. Study Mapping for Dual Split Vectors). Each point of the Lorentzian unit dual sphere S
2

1 corresponds
to a directed spacelike line and each point of the hyperbolic unit dual sphere H

2

0 corresponds to a directed timelike line
[21].

Definition 2.1. a.) The Lorentzian scalar product of unit dual spacelike vectors X and Y is defined by

⟨X,Y ⟩L = cos θ0 − ξθ1 sin θ0 = cos θ

where θ = θ0 + ξθ1 ∈ D. The dual number θ = θ0 + ξθ1 ∈ D is called the dual angle.
b.) The Lorentzian scalar product of unit dual timelike vectors X and Y is defined by

⟨X,Y ⟩L = − cosh θ0 − ξθ1 sinh θ0 = − cosh θ

where θ = θ0 + ξθ1 ∈ D. The dual number θ = θ0 + ξθ1 ∈ D is called the dual hyperbolic angle [13, 22].

2.1. HD-split vectors

Before defining HD- split vectors in this section, let’s give HD- numbers, HD- vectors and examine their
algebraic properties:
The set of all HD- numbers is defined by

D∗ = {X∗ = x0 + ξ1x1 + ξ2x2 + ξ1ξ2x3 : x0, x1, x2, x3 ∈ R}

where ξ21 = ξ22 = (ξ1ξ2)
2 = 0 and ξ1 ̸= ξ2, ξ1 ̸= 0, ξ2 ̸= 0, ξ1ξ2 = ξ2ξ1 ̸= 0.

A HD- number X∗ = x0 + ξ1x1 + ξ2x2 + ξ1ξ2x3 can be constructed with two dual numbers as follows [4, 5]:

X∗ = x0 + ξ1x1 + ξ2x2 + ξ1ξ2x3,

= (x0 + ξ1x1) + ξ2(x2 + ξ1x3),

= (x0 + ξx1) + ε∗(x2 + ξx3),

= X0 + ε∗X1.

The sum and product of two HD- dual numbers X∗ = X0 + ε∗X1 and Y ∗ = Y0 + ε∗Y1 are defined as follows,
respectively:

X∗ + Y ∗ = (X0 + Y0) + ε∗(X1 + Y1),

X∗Y ∗ = X0Y0 + ε∗(X0Y1 + Y0X1).

The set of all HD- vectors is defined by

D∗3 = {X∗
= X0 + ε∗X1 : X0, X1 ∈ D3}. (2.4)
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and each element of D∗3 is called a HD- vector.
The set

D∗
1
3 = {X∗

= X0 + ε∗X1 : X0, X1 ∈ D1
3}. (2.5)

is the HD- Lorentzian space, and each element of D∗
1
3 is called a HD- split vector. If X0 is spacelike, timelike or

lightlike, a HD- split vector X
∗
= X0 + ε∗X1 ∈ D∗

1
3 is called as spacelike, timelike or lightlike, respectively. Let

X
∗
= X0 + ε∗X1 and X

∗
= Y 0 + ε∗Y 1 are HD- split vectors. The Lorentzian scalar product, Lorentzian vector

product, norm and modulus of HD- split vectors are defined by

⟨X∗
, Y

∗⟩L = ⟨X0, Y 0⟩L + ξ(⟨X0, Y 1⟩L + ⟨Y 0, X1⟩L) ∈ D∗,

X
∗ ∧L Y

∗
= X0 ∧L Y 0 + ξ(X0 ∧L Y 1 + Y 0 ∧L X1) ∈ D∗

1
3

NX
∗ = ⟨X∗

, X
∗⟩L = ⟨X0, X0⟩L + 2ε∗⟨X0, X1⟩L,

∥X∗∥L = ∥X0∥L + ε∗
⟨X0, X1⟩L
∥X0∥L

, (∥X0∥L ̸= 0),

respectively. If ⟨X∗
, X

∗⟩L = ±1 (⟨X0, X0⟩L ± 1 and ⟨X0, X1⟩L = 0), then X
∗

is called a unit HD- split vector.
Moreover, Lorentzian unit HD- sphere and hyperbolic unit HD- sphere are defined by

S∗
1
2 = {X∗

= X0 + ε∗X1 ∈ D∗
1
3| ⟨X∗

, X
∗⟩L = 1},

H∗
0
2 = {X∗

= X0 + ε∗X1 ∈ D∗
1
3| ⟨X∗

, X
∗⟩L = −1},

respectively [1].

Theorem 2.2 (E. Study Mapping for HD- Split Vectors). Each point of the Lorentzian unit HD- sphere S∗
1
2

corresponds to a directed dual spacelike line and each point of the hyperbolic unit HD- sphere H∗
0
2 corresponds to a

directed dual timelike line [1].

Theorem 2.3.
1.) Let X

∗
= X0 + ε∗X1 be a HD- split vector with X0, X1 ∈ S1

2
. There exists a one to one correspondence between the

points of S∗
1
2 and any two intersecting perpendicular directed spacelike lines in R3

1.

2.) Let X
∗
= X0 + ε∗X1 be a HD- split vector with X0 ∈ S

2

1, X1 ∈ H
2

0. There exists a one-to-one correspondence between
the points of S∗

1
2 and any two intersecting perpendicular directed lines in R3

1 such that one of these lines (corresponding
to the unit dual spacelike vector X0) is spacelike and the other line (corresponding to the unit dual timelike vector X1) is
timelike.

3.) Let X
∗
= X0 + ε∗X1 be a HD- split vector with X0 ∈ H0

2
, X1 ∈ S1

2
. There exists a one-to-one correspondence

between the points of H∗
0
2 and any two intersecting perpendicular directed lines in R3

1 such that one of these lines
(corresponding to unit dual timelike vector X0) is timelike and the other line (corresponding to unit dual spacelike vector
X1) is spacelike [1].

Definition 2.2. a.) The Lorentzian scalar product of unit HD- spacelike vectors X
∗

and Y
∗

is defined by

⟨X∗
, Y

∗⟩L = cos θ0 + ε∗θ1 sin θ0 = cos θ∗

where θ∗ = θ0 + ε∗θ1 ∈ D∗. The HD- number θ∗ = θ0 + ε∗θ1 ∈ D∗ is called HD- angle.
b.) The Lorentzian scalar product of unit HD- timelike vectors X

∗
and Y

∗
is defined by

⟨X∗
, Y

∗⟩L = − cosh θ0 − ε∗θ0 sinh θ0 = − cosh θ∗

where θ∗ = θ0 + ε∗θ1 ∈ D∗. The HD- number θ∗ = θ0 + ε∗θ1 ∈ D∗ is called HD- hyperbolic angle [1].

3. HD-Split Euler-Rodrigues equations

The basic concepts in this section are based on studies [17] and [11]. Let us examine HD- semi-orthogonal
matrices using the structure of Minkowski space to give the Euler-Rodrigues equations for HD- split vectors.
Let

O∗
1(3) = {Y

∗ ∈ D∗
3
3| (Y

∗
)T εY

∗
ε = Y

∗
ε(Y

∗
)T ε = I3}

127 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


On HD-Split Euler-Rodrigues Equations

be the set of all HD- semi-orthogonal matrices where

ε =

 −1 0 0
0 1 0
0 0 1


Here Y

∗
is a HD- matrix represented by Y

∗
=

[
Y

∗
ij

]
: Y

∗
ij = Y ij + ε∗Zij ∈ D∗ where Y , Z are dual matrices. If

the HD- semi-orthogonal matrix Y
∗

satisfies the condition detY
∗
= 1, it forms a Lorentzian Lie group structure

and is denoted by SO∗
1(3). From the structure of Lorentzian Lie algebra, HD- semi-skew symmetric matrices

are explained by

so∗1(3) = {Z∗ ∈ D∗
3
3| (Z∗)T = −εZ∗ε}.

An isomorphism between so∗1(3) and the set of HD- split vectors can be given as follows:

g : so∗1(3)→ D∗
1
3,

S∗ =

 0 s∗z −s∗y
s∗z 0 −s∗x
−s∗y s∗x 0

→ g(S∗) = S∗ = (s∗x, s
∗
y, s

∗
z) (3.1)

Using the Lorentzian vector product of HD- split vectors, S∗Y
∗
= S∗ ⊗L Y

∗
can be written. Now let us define

R∗, which we will call HD- split rotation, for the angles and axes defined for HD- split vectors. Let us examine
the cases where the rotation axis is a HD- spacelike unit axis and a HD- timelike unit axis:

1. If S∗ is a HD- spacelike unit axis and θ∗ is a HD- hyperbolic angle, we get

R∗ = I3 + sinh θ∗S∗ + (−1 + cosh θ∗)S∗2 (3.2)

where S∗ is a semi-skew symmetric matrix of the axis S∗ = (s∗x, s
∗
y, s

∗
z). Then, we have

R∗ =

 1 + (−1 + cosh θ∗)(s∗y
2 + s∗z

2) (1− cosh θ∗)s∗xs
∗
y + sinh θ∗s∗z (1− cosh θ∗)s∗xs

∗
z − sinh θ∗s∗y

(−1 + cosh θ∗)s∗xs
∗
y + sinh θ∗s∗z 1 + (−1 + cosh θ∗)(−s∗x

2 + s∗z
2) (1− cosh θ∗)s∗ys

∗
z − sinh θ∗s∗x

(−1 + cosh θ∗)s∗xs
∗
z − sinh θ∗s∗y (1− cosh θ∗)s∗ys

∗
z + sinh θ∗s∗x 1 + (−1 + cosh θ∗)(−s∗x

2 + s∗y
2)


2. If S∗ is a HD- timelike unit axis and θ∗ is a HD- angle, we get

R∗ = I3 + sin θ∗S∗ + (1− cos θ∗)S∗2 (3.3)

where S∗ is a semi-skew symmetric matrix of the axis S∗ = (s∗x, s
∗
y, s

∗
z). Then, we have

R∗ =

 1 + (1− cos θ∗)(s∗y
2 + s∗z

2) (−1 + cos θ∗)s∗xs
∗
y + sin θ∗s∗z (−1 + cos θ∗)s∗xs

∗
z − sin θ∗s∗y

(1− cos θ∗)s∗xs
∗
y + sin θ∗s∗z 1 + (1− cos θ∗)(−s∗x

2 + s∗z
2) (−1 + cos θ∗)s∗ys

∗
z − sin θ∗s∗x

(1− cos θ∗)s∗xs
∗
z − sin θ∗s∗y (−1 + cos θ∗)s∗ys

∗
z + sin θ∗s∗x 1 + (1− cos θ∗)(−s∗x

2 + s∗y
2)


Theorem 3.1. Let the HD- hyperbolic angle and the HD- spacelike vector be θ∗ = θ0 + ε∗θ1 ∈ D∗ and S∗ = S0 + ε∗S1 ∈
S∗
1
2, respectively. Then, a HD- split rotation with a HD- spacelike unit axis is expressed by

R∗ = C+ ε∗D

Here, the dual part of R∗ determines a rotation along with the dual spacelike axis S0 and the dual hyperbolic angle θ0.
The hyper part of R∗ is determined as D = PC for a dual semi-skew-symmetric matrix P.

Proof. We can write g(S∗) = S∗ with the isomorphism g. Then, we have g(S0) = S0, g(S1) = S1, and S∗ =
S0 + ε∗S1. If equations S∗ and cosh θ∗ = cosh θ0 + ε∗θ1 sinh θ0 are written in the HD- spacelike unit axis rotation
matrix, R∗ is written as C+ ε∗D as the sum of two dual matrices. From equation R∗ε(R∗)T ε = I3, we get

CεC
T
ε+ ε∗

(
CεD

T
ε+DεC

T
ε
)
= I3 (3.4)
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where

ε =

 −1 0 0
0 1 0
0 0 1

 .

From equation (3.4), we can write

CεC
T
ε = I3 and CεD

T
ε+DεC

T
ε = 0. (3.5)

Therefore, C is a dual semi-orthogonal matrix. Since S0 is a unit dual spacelike vector, by using equation (3.2),
we get

C = I3 + sinh θ0S0 + (−1 + cosh θ0)S0
2 (3.6)

It is clear that C determines a dual split rotation with dual spacelike axis S0 and dual hyperbolic angle θ0. On
the other hand, let us assume that Dε(C)T ε = P. From equation (3.5), we get (P)T = −εPε.

Theorem 3.2. Let the HD- angle and the HD- timelike vector be θ∗ = θ0 + ε∗θ1 ∈ D∗ and S∗ = S0 + ε∗S1 ∈ H∗
0
2,

respectively. Then, a HD- split rotation with a HD- timelike unit axis is expressed by

R∗ = E+ ε∗F

Here, the dual part of R∗ determines a rotation along with the dual timelike axis S0 and the dual angle θ0. The hyper part
of R∗ is determined as F = PE for a dual semi-skew-symmetric matrix P.

Proof. The proof can be done in a similar way to the proof of theorem 3.1.

It should be known that R∗ inherits the property that R∗(X
∗
) = Y

∗
where X

∗
and Y

∗
are any two HD- split

vectors in D∗
1
3 such that ⟨X∗

, X
∗⟩L = ⟨Y ∗

, Y
∗⟩L > 0 or ⟨X∗

, X
∗⟩L = ⟨Y ∗

, Y
∗⟩L < 0. Consequently, we can give

the following.

Proposition 3.1. The following expressions are given from the E. Study mapping for unit HD- split vectors:

1. If X
∗

is a HD- unit spacelike vector, then the HD- split rotation R∗(X
∗
) = Y

∗
expresses the transforming of the

corresponding dual spacelike line of X
∗

to the corresponding dual spacelike line of Y
∗
.

2. If X
∗

is a HD- unit timelike vector, then the HD- split rotation R∗(X
∗
) = Y

∗
expresses the transformation of the

corresponding dual time-like line of X
∗

to the corresponding dual timelike line of Y
∗
.

Proof. 1. From Theorem 2.2, if X
∗

is a HD- unit spacelike vector, then corresponds to a directed dual
spacelike line. Then R∗(X

∗
) = Y

∗
is a dual spacelike line with the condition ⟨X∗

, X
∗⟩L = ⟨Y ∗

, Y
∗⟩L = 1.

2. From Theorem 2.2, if X
∗

is a HD- unit timelike vector, then corresponds to a directed dual timelike line.
Then R∗(X

∗
) = Y

∗
is a dual timelike line with the condition ⟨X∗

, X
∗⟩L = ⟨Y ∗

, Y
∗⟩L = −1.

Suppose that X
∗
= X0 + ε∗X1 and Y

∗
= Y 0 + ε∗Y 1 are HD- unit spacelike (timelike) vectors satisfying

R∗(X
∗
) = Y

∗
with the HD- split rotation R∗ along the HD- angle (HD- hyperbolic angle) θ∗ = θ0 + ε∗θ1 and

the HD- timelike unit axis (HD- spacelike unit axis) S∗ = (s∗x, s
∗
y, s

∗
z). If LX

∗ and LY
∗ are the corresponding

dual spacelike (timelike) lines to X
∗

and Y
∗

respectively in D3
1 , then we obtain that θ0 is the dual angle

(dual hyperbolic angle) between the dual spacelike (timelike) vectors X0 and Y 0 and θ1 is the closest distance
between LX

∗ and LY
∗ .

Therefore, we can give the following theorems for both cases:

Theorem 3.3. The HD- split rotation R∗ generated by the HD- angle θ∗ = θ0 + ε∗θ1 and the HD- timelike unit
axis S∗ is determined by a screw motion which is the combination of a dual rotation by dual angle θ0 about LS∗ and a
translation by θ1 along LS∗ that LS∗ is the dual timelike line of the HD- timelike unit axis of R∗ in D3

1 .

Theorem 3.4. The HD- split rotation R∗ generated by the HD- hyperbolic angle θ∗ = θ0 + ε∗θ1 and the HD-
spacelike unit axis S∗ is determined by a screw motion which is the combination of a dual rotation by dual hyperbolic
angle θ0 about LS∗ and a translation by θ1 along LS∗ that LS∗ is the dual spacelike line of the HD- spacelike unit
axis of R∗ in D3

1 .
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On the other hand, let us assume that X
∗
= X0 + ε∗X1 is a unit HD- spacelike vector. If ⟨X1, X1⟩L = −1, there

exists a one to one correspondence between the points X
∗
= X0 + ε∗X1 and any two intersecting perpendicular

directed lines in R3
1 such that one of these lines (corresponding to unit dual spacelike vector X0) is spacelike and

the other line (corresponding to unit dual timelike vector X1) is timelike [1]. If ⟨X1, X1⟩L = 1, there exists a one
to one correspondence between the points X

∗
= X0 + ε∗X1 and any two intersecting perpendicular directed

spacelike lines in R3
1 [1]. Assume that X

∗
= X0 + ε∗X1 is a unit HD- timelike vector. Then, there exists a one

to one correspondence between the points X
∗
= X0 + ε∗X1 and any two intersecting perpendicular directed

lines in R3
1 such that one of these lines (corresponding to unit dual timelike vector X0) is timelike and the other

line (corresponding to unit dual spacelike vector X1) is spacelike [1].

Theorem 3.5. For HD- split rotation R∗, one of the following conditions applies:

1. The HD- split rotation R∗ converts any two intersecting perpendicular directed spacelike lines to two intersecting
perpendicular directed spacelike lines in R3

1.
2. The HD- split rotation R∗ converts any two intersecting perpendicular directed spacelike line and timelike line to

two intersecting perpendicular directed spacelike and timelike line in R3
1, respectively.

Example 3.1. Let X
∗
= (ξ + ε∗, 1 + ξε∗,−ξ + ξε∗) and Y

∗
= (−ξ − ε∗, ξ + ξε∗, 1 + ξε) be HD- split vectors. Since

⟨X∗
, X

∗⟩L = 1 and ⟨Y ∗
, Y

∗⟩L = 1, X
∗

and Y
∗

are HD- spacelike vectors. Then, we get

S∗ = X
∗ ⊗L Y

∗

= (−1− 2ξε∗,−ξ + ξε∗ − ε∗, ξ + ξε∗ + ε∗) (3.7)

where S0 = (−1,−ξ, ξ) and S1 = (−2ξ, ξ − 1, ξ + 1). Since ⟨S∗, S∗⟩L = −1, S∗ is a HD- timelike vector. By using
(3.1), its corresponding semi-skew symmetric matris is explained

S∗ =

 0 ξ + ξε∗ + ε∗ ξ − ξε∗ + ε∗

ξ + ξε∗ + ε∗ 0 1 + 2ξε∗

ξ − ξε∗ + ε∗ −1− 2ξε 0


Therefore, we have

(S∗)2 =

 4ξε∗ −ξ + ξε∗ − ε∗ ξ + ξε∗ + ε∗

ξ − ξε∗ + ε∗ −1− 2ξε∗ 2ξε∗

−ξ − ξε∗ − ε∗ 2ξε −1− 2ξε∗


Since X

∗
and Y

∗
are HD- spacelike vectors, by using of HD- angle θ∗ = θ0 + ε∗θ1, we get

cos θ∗ = 4ξε∗, sin θ∗ = 1.

By according to HD- split Euler-Rodrigues equations for timelike axis, we have

R∗ = I3 + S∗ + (1− 4ξε∗)S∗2

R∗ =

 1 + 4ξε∗ 2ξε∗ 2ξ + 2ε∗

2ξ + 2ε∗ 2ξε∗ 1 + 4ξε∗

−2ξε∗ −1 2ξε∗

 .

Therefore, we get

E =

 1 0 2ξ
2ξ 0 1
0 −1 0

 and F =

 4ξ 2ξ 2
2 2ξ 4ξ
−2ξ 0 2ξ


where R∗ = E+ ε∗F. It is clear that R∗(S∗) = S∗, E(S0) = S0 and the dual rotation angle of E is θ0 = π

2 . On the
other hand, F = PE is expressed by the dual semi-skew symmetric matrix

P =

 0 2 −2ξ
2 0 −2ξ
−2ξ 2ξ 0


We can write

dergipark.org.tr/en/pub/iejg 130

https://dergipark.org.tr/en/pub/iejg
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i. X0 = (ξ, 1,−ξ) and X1 = (1, ξ, ξ) for X
∗
= X0 + ε∗X1,

ii. Y 0 = (−ξ, ξ, 1) and Y 1 = (−1, ξ, ξ) for Y
∗
= Y 0 + ε∗Y 1,

iii. S0 = (−1,−ξ, ξ) and S1 = (−2ξ, ξ − 1, ξ + 1) for S∗ = S0 + ε∗S1

and we have

⟨X0, X0⟩L = 1, ⟨Y 0, Y 0⟩L = 1, ⟨S0, S0⟩L = −1

Therefore, X0 and Y 0 are unit dual spacelike vectors and S0 is unit dual timelike vector. On the other hand,
⟨X0, X1⟩L = 0, ⟨Y 0, Y 1⟩L = 0 and ⟨S0, S1⟩L = 0, we get X

∗ ∈ S∗
1
2, Y

∗ ∈ S∗
1
2 and S∗ ∈ H∗

0
2. Each point of the

Lorentz unit HD- sphere corresponds to a directed spacelike line, and each point of the hyperbolic unit HD-
sphere corresponds to a directional timelike line. We can express lines as follows:

X
∗ ←→ LX

∗ = (−ξ,−ξ,−1) + tx(ξ, 1,−ξ)
Y

∗ ←→ LY
∗ = (ξ,−1, ξ) + ty(−ξ, ξ, 1)

S∗ ←→ LS∗ = (0, ξ + 1,−ξ + 1) + ts(−1,−ξ, ξ)

where tx, ty, tz ∈ D. Geometrically, it rotates the direction lines R∗, the dual spacelike line LX
∗ and dual

spacelike line LY
∗ along the dual timelike line LS∗ at an angle θ0 =

π

2
and applies a translation θ1 = 4ξ.

Since X1 ∈ H∗
0
2, X

∗ ∈ S∗
1
2, Y 1 ∈ H∗

0
2 and Y

∗ ∈ S∗
1
2, the points of X

∗
and Y

∗
correspond exactly to any two

intersecting perpendicular lines. In R3
1, one of these lines is spacelike and the other is timelike.

X
∗ ←→

{
dX0

= (1, 0,−1) + λ0(0, 1, 0)

dX1
= (0,−1, 1) + λ1(1, 0, 0)

Y
∗ ←→

{
dY 0

= (1,−1, 0) + µ0(0, 0, 1)

dY 1
= (0, 1,−1) + µ1(−1, 0, 0)

Example 3.2. Let X
∗
= (1, ε∗, ξε∗) and Y

∗
= (
√
2 + ε∗, 1 +

√
2ε∗, ξε∗) be HD- split vectors. Since ⟨X∗

, X
∗⟩L = −1

and ⟨Y ∗
, Y

∗⟩L = −1, X
∗

and Y
∗

are HD- timelike vectors. Therefore, we have

S∗ = X
∗ ⊗L Y

∗

= (ξε∗,
√
2ξε∗ − ξε∗, 1) (3.8)

where S0 = (0, 0, 1) and S1 = (ξ,
√
2ξ − ξ, 0). Since ⟨S∗, S∗⟩L = 1, S∗ is a HD- spacelike vector. By using (3.1), its

corresponding semi-skew symmetric matris is explained

S∗ =

 0 1 −
√
2ξε∗ + ξε∗

1 0 −ξε∗
−
√
2ξε∗ + ξε∗ ξε∗ 0


Then, we get

(S∗)2 =

 1 0 −ξε∗
0 1 −

√
2ξε∗ + ξε∗

ξε∗ −
√
2ξε∗ + ξε∗ 0


Since X

∗
and Y

∗
are HD- timelike vectors, by using of HD- hyperbolic angle θ∗ = θ0 + ε∗θ1, we get

cosh θ∗ =
√
2, sinh θ∗ = 1.

From HD- split Euler-Rodrigues equations for spacelike axis, we have

R∗ = I3 + S∗ + (−1 +
√
2)S∗2

R∗ =

 √2 1 (2− 2
√
2)ξε∗

1
√
2 (2

√
2− 4)ξε∗

0 (2
√
2− 2)ξε∗ 1

 .
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Then, we get

C =

 √2 1 0

1
√
2 0

0 0 1

 and D =

 0 0 (2− 2
√
2)ξ

0 0 (2
√
2− 4)ξ

0 (2
√
2− 2)ξ 0


where R∗ = C+ ε∗D. Then we have R∗(S∗) = S∗, C(S0) = S0 and the dual rotation angle of C is θ0 =
arccosh (

√
2). Then, D = PC is expressed by the dual semi-skew symmetric matrix

P =

 0 0 (2− 2
√
2)ξ

0 0 (2
√
2− 4)ξ

(2− 2
√
2)ξ (4− 2

√
2)ξ 0


We can write

i. X0 = (1, 0, 0) and X1 = (0, 1, ξ) for X
∗
= X0 + ε∗X1,

ii. Y 0 = (
√
2, 1, 0) and Y 1 = (1,

√
2, ξ) for Y

∗
= Y 0 + ε∗Y 1,

iii. S0 = (0, 0, 1) and S1 = (ξ, (
√
2− 1)ξ, 0) for S∗ = S0 + ε∗S1

and we get

⟨X0, X0⟩L = −1, ⟨Y 0, Y 0⟩L = −1, ⟨S0, S0⟩L = 1

Therefore, X0 and Y 0 are unit dual timelike vectors and S0 is unit dual spacelike vector. Since ⟨X0, X1⟩L = 0,
⟨Y 0, Y 1⟩L = 0 and ⟨S0, S1⟩L = 0, we get X

∗ ∈ H∗
0
2, Y

∗ ∈ H∗
0
2 and S∗ ∈ S∗

1
2. Each point of the Lorentz unit HD-

sphere corresponds to a directed spacelike line, and each point of the hyperbolic unit HD- sphere corresponds
to a directional timelike line. We can express lines as follows:

X
∗ ←→ LX

∗ = (0,−ξ, 1) + tx(1, 0, 0)

Y
∗ ←→ LY

∗ = (−ξ,−
√
2ξ, 1) + ty(

√
2, 1, 0)

S∗ ←→ LS∗ = ((
√
2− 1)ξ, ξ, 0) + ts(0, 0, 1)

where tx, ty, tz ∈ D. Geometrically, it rotates the direction lines R∗, the dual timelike line LX
∗ and dual timelike

line LY
∗ along the dual spacelike line LS∗ at an angle θ0 = arccosh (

√
2) and applies a translation θ1 = 0.

Since X1 ∈ S∗
1
2, X

∗ ∈ H∗
0
2, Y 1 ∈ S∗

1
2 and Y

∗ ∈ H∗
0
2, the points of X

∗
and Y

∗
correspond exactly to any two

intersecting perpendicular lines. In R3
1, one of these lines is timelike and the other is spacelike.

X
∗ ←→

{
dX0

= (0, 0, 0) + λ0(1, 0, 0)

dX1
= (−1, 0, 0) + λ1(0, 1, 0)

Y
∗ ←→

{
dY 0

= (0, 0, 0) + µ0(
√
2, 1, 0)

dY 1
= (−

√
2,−1, 0) + µ1(1,

√
2, 0)

4. Construction of the HD-split Euler’s Theorem

In this section, the fixed point theorem given by Euler will be constructed using the HD- split rotation matrix
and will be called HD- split Euler’s theorem.

Theorem 4.1. Let R∗ ∈ SO∗
1(3) be a HD- split rotation matrix. Then, there exists a non-zero HD- split vector S∗ ∈ D∗

1
3

where R∗S∗ = S∗.

Proof. Let R∗ be the HD- split rotation matrix where (R∗)T εR∗ε = R∗ε(R∗)T ε = I3, det(R
∗) = 1. R∗ can be

written by the sum of a semi-symmetric matrix and a semi-skew symmetric matrix as follows:

R∗ =
R∗ + ε(R∗)T ε

2
+

R∗ − ε(R∗)T ε

2
. (4.1)
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Let the semi-skew symmetric part of R∗ be S∗, then we can write

R∗S∗ε(R∗)T ε = S∗ (4.2)

By using equation (3.1), there exists a corresponding HD- split vector S∗ ∈ D∗
1
3 where g(S∗) = S∗. Therefore,

we get S∗ = g−1
S∗ and g−1

S∗ (β∗) = S∗ ⊗L β∗ for HD- split vector β∗. Then we get

R∗(S∗ ⊗L β∗) = R∗S∗ ⊗L R∗β∗. (4.3)

From the equation (4.3) it is clear that

R∗g−1
S∗ = g−1

R∗S∗R
∗ (4.4)

If we apply ε(R∗)T ε to both sides of the equation (4.4), then we have

R∗g−1
S∗ ε(R

∗)T ε = g−1
R∗S∗ .

Therefore, we have

g−1
R∗S∗ = S∗

and

R∗S∗ = g(S∗) = S∗.

Corollary 4.1. If R∗ is semi-symmetric (i.e (R∗)T = εR∗ε), then S∗ = 0 and (R∗)2 = I3. It is clear that R∗(I3 +R∗) =
I3 +R∗. Consequently, each column of I3 +R∗ remains constant and those that are non-zero become constant vectors.

Example 4.1. Let the HD- split matrix R∗ be as follows:

R∗ =

 1 + 4ξε∗ 2ξε∗ 2ξ + 2ε∗

2ξ + 2ε∗ 2ξε∗ 1 + 4ξε∗

−2ξε∗ −1 2ξε∗

 ∈ SO∗
1(3). (4.5)

From the equation S∗ =
R∗ − ε(R∗)T ε

2
, the semi-skew symmetric part of R∗ is found as follows:

S∗ =

 0 ξ + ξε∗ + ε∗ ξ − ξε∗ + ε∗

ξ + ξε∗ + ε∗ 0 1 + 2ξε∗

ξ − ξε∗ + ε∗ −1− 2ξε 0

 .

The vector corresponding to S∗ is

S∗ = (−1− 2ξε∗,−ξ + ξε∗ − ε∗, ξ + ξε∗ + ε∗). (4.6)

It can be seen from the equations (4.5) and (4.6) that R∗S∗ = S∗.
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[12] Kahveci, D., Gök, İ., Yaylı, Y.: Some variations of dual Euler–Rodrigues formula with an application to point–line geometry. J. Math. Anal. Appl.

459(2), 1029-1039 (2018).
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