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Abstract
This article analyzes the qualitative behavior of a predator-prey system where the predator receives
extra food and the prey engages in anti-predator behavior to defend itself against attacks by the
predator. The positivity and the boundedness of solutions to the system have been examined. The
biologically well-posed equilibrium points of the proposed system are derived, and an analysis of
their local stability is conducted. In specific situations, it is observed that the solutions of the proposed
system are significantly dependent on the initial values. The emergence of several bifurcations in the
system, including the saddle-node, Bogdanov-Takens, and Hopf-Andronov, is also shown. Through
numerical simulation, the rise of a homoclinic loop is shown. The analytic results are verified by
numerical simulations and phase portrait sketches.
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1 Introduction

The fragile equilibrium of life on Earth relies on ecological systems, the complex webs of inter-
actions between species and their surroundings. These networks extend from local to global
levels, including everything from small ecosystems such as oceans, forests, and wetlands to the
entire biosphere. Preserving biodiversity, managing natural resources, and reducing the effects of
environmental changes all require an understanding of the dynamics of ecological systems. The
dynamics between predators and their prey are one of the fundamental ecological phenomena
that have a significant impact on biodiversity. The strong intuition to be alive in predators and
prey has led to the development of remarkable strategies in these species. For example, predator
species do not rely on a single prey species but rather on a varied range of prey species [1], while
prey species exhibit anti-predator behavior [2]. In this article, the impacts of these strategies on a
predator-prey system are analyzed.
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Researchers are aware that predators exhibit a behavioral adaptation whereby they shift their
feeding preferences to alternate food sources in response to decreasing densities of their preferred
prey [3]. To develop a comprehensive predator-prey model for such species, it is essential to take
into account the inclusion of alternative prey species. The inclusion of supplementary food in
a predator-prey system may have a substantial impact on the ecological dynamics and overall
stability of ecosystems. For instance, the presence of scavenging possibilities or the introduction
of non-native prey species can perturb the ecological balance of the whole system [4]. Moreover,
the introduction of this surplus food may have a cascading effect on the ecosystem, impacting
not just the populations of prey species and competitors but also those at higher trophic levels
[5]. Hence, it is essential to comprehend the ramifications of additional food within predator-prey
systems to manage ecosystems and advance conservation initiatives effectively.
The empirical study indicates that the provision of supplementary food to predators does not
always result in an increase in predation on target species. Sometimes, it may lead to a reduction
in the population density of prey species [3]. This phenomenon is often referred to as “apparent
competition” [6]. In addition, the predator population may have short-term advantages via an
additional food supply. For instance, using supplementary resources may lead to overexploitation,
increasing the likelihood of population collapses or fluctuations [7]. This discrepancy between the-
ory and observations prompted a thorough mathematical investigation of predator-prey systems
that include provisions to supply additional food.
Srinivasu et al. [8] developed a predation model including two species to examine the effects of
supplementary food provided to the predator species. The researchers noted that manipulating
additional food, in terms of quality and quantity, can manage and constrain prey numbers and
restrict and eradicate predator populations. The aforementioned theoretical results are consistent
with the facts documented in a recent literature review [9] that examines the impact of artificial
food sprays on conservation biological control. Prasad et al. [10] created and analyzed an
additional food-provided predator-prey system with a Beddington-DeAngelis functional response
(a way to incorporate mutual interference between predators). They observed the possibility
of the coexistence of predator species with a low density of prey species. This phenomenon
contrasts with classical predator-prey models, where the coexistence of predators and prey at low
population densities is not attainable. The ramifications of providing alternative food sources to
predators in a predator-prey paradigm with harvesting have been studied by Sahoo and Poria
[11]. Chakraborty and Das [12] conducted an analysis of the variability of a predator-prey system.
They specifically investigated the impact of constant prey refuge and alternative food provided to
the predator. The global dynamics of a predator-prey system have been investigated by Sen et al.
[13], where the predator is subjected to alternative food as well as harvesting at a constant rate.
This work offers valuable methodologies for examining the controllability of systems, which have
significant relevance in real-world applications. Shome [14] examined the effects of additional
food in a predator-prey model incorporating intraspecific competition among prey species and
the theta-logistic prey growth rate. They found that when alternative food sources are limited
and intraspecific competition is intense, prey species experience extinction. Consequently, the
predator species also face extinction, resulting in the collapse of the whole system. In continuation,
they observed that the potential occurrence of this collapse may be averted with the provision of
a sufficient amount of alternate sustenance to predatory organisms. This finding suggests that
including alternative food sources significantly affects regulating the dynamics of the proposed
system. Ghosh et al. [15] studied the dynamics of a predator-prey system with prey refuge
and additional food for the predator. Singh et al. [16] performed a qualitative inquiry into a
predator-prey model, whereby it was assumed that a continual extra food supply is provided to
the predator species and the growth of the predator is regulated by the Allee effect.
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Several researchers have recently explored the influence of additional food delivered to predators
in predator-prey systems that incorporate various real-life phenomena. For instance, Das et
al. [17] used a predator-prey model with prey refuge; Thirthar et al. [18] used a predator-prey
model with fear effects, prey refuge, and harvesting; Debnath et al. [19] used a predator-prey
system with fear effects and anti-predator behavior; Ananth et al. [20] used a predator-prey
model involving Holling-type I I I functional response; Das et al. [21] used a predator-prey model
with fear effects; and Umaroh and Savitri [22] used a predator-prey model with Holling-type I I I
functional response and anti-predator behavior.
Prey species have evolved a variety of strategies to avoid their natural predators. When preys are
threatened, they sometimes display a peculiar defensive behavior in which they sacrifice specific
body parts. Lizards, for instance, can release their tails to protect themselves from predators. Adult
prey kill juvenile predators to reduce the pressure of future predation and increase population
density [23–27]. These kinds of prey behaviors are known as anti-predator behaviors. Zanette et
al. [28] performed experiments to demonstrate anti-predator behavior’s impact on song sparrows’
reproductive rates. The results indicated that implementing such efforts led to a significant
reduction of 40% in the song sparrow’s reproductive output whenever direct predation was
effectively mitigated. As a result, the presence of anti-predator behavior among prey species plays
a crucial role in maintaining the intricate equilibrium of predator-prey ecosystems.
Several researchers have examined anti-predator behavior in the context of analyzing nonlinear
ecological systems [29–31]. Samanta et al. [31] conducted an analysis of a modified Leslie-Gower
model using a Beddington-DeAngelis functional response in order to categorize an anti-predator
behavior. Tang and Xiao [32] modified a predator-prey system equipped with a non-monotonic
functional response by utilizing anti-predator behavior. The saddle-node, the homoclinic, the
Hopf bifurcation, and the Bogdanov-Takens bifurcation of co-dimension two were the bifurcations
the authors examined as possible system outcomes. Mortoja et al. [33] presented a stage-structure
predator-prey model including anti-predator behavior and group defense. The researchers in-
vestigated the system’s stability and examined the occurrence of the Hopf bifurcation in the
suggested system. A dynamical study is carried out by Savitri [2] on a predator-prey model that is
endowed with ratio-dependent functional responses and anti-predator behavior. Recently, Prasad
et al. [34] explored the influence of anti-predator behavior on predator-prey dynamics where
additional food is provided to predators. They observed that several kinds of bifurcations occur,
such as saddle-node bifurcation, Hopf bifurcation, homoclinic bifurcation, and a Bogdanov-Takens
bifurcation of co-dimension 2. They concluded that successful implementation of biological
control might be achieved by taking the anti-predator behavior as a control parameter. This
article employed the Holling type IV functional response (Monod-Haldane), often used in models
with predator interference, where high prey density leads to reduced predation rates owing to
defensive behaviors shown by prey species. The Holling type II functional response, which is
more commonly used, is more suitable for modeling predator-prey interactions where there is a
limitation on predator efficiency due to handling time and prey saturation. This research examines
the effects of supplementary food in the predator-prey system, including Holling type II functional
response and anti-predator behavior. It is observed that the anti-predator behavior enhances the
dynamical complexities and can be used as a controlling parameter.

2 The basic mathematical model

Srinivasu et al. [8] proposed a bi-dimensional system of equations to represent a predator-prey
dynamic, whereby the predator species are provided with a constant supply of supplementary
food distributed equally across the environment. If we assume that the prey species exhibits
anti-predator behavior, the model takes the following form:
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{
du
dt = r u(1 − u

K )−
e1uv

1+e1h1u+e2h2 A ,
dv
dt = n1e1uv+n2e2 Av

1+e1h1u+e2h2 A − mv − nuv,
(1)

where u = u(t) and v = v(t) represent the prey and predator populations at time t, respectively.
To provide an ecologically appropriate interpretation of the proposed model, it is necessary to
assume that u(0) ≥ 0 and v(0) ≥ 0. The positive parameters A, r, K, m, h1(h2), n1(n2) and
e1(e2) are the amount of additional food, the intrinsic growth rate of prey, the carrying capacity
of the environment, the predator’s mortality rate, the handling time of the predator per unit
quantity of prey (additional food), the nutritional value of the prey (additional food), and the
ability of the predator to detect the prey (additional food), respectively. The term nuv represents
anti-predator behavior, and the parameter n is the rate of anti-predator behavior of prey for the
predator population. Ecologically, it can be interpreted that this form of anti-predator behavior
does not directly benefit the prey population but reduces the growth of the predator population,
and in this way, it helps the prey population.
Defining c = 1

h1
, b = n1c, a = 1

e1h1
, η = n2e2

n1e1
, α = n1h2

n2h1
, the system (1) can be expressed as

{ du
dt = r u(1 − u

K )−
c uv

a+αηA+u ,
dv
dt = b(u+ηA)v

a+αηA+u − mv − nuv.
(2)

The ecological interpretation of the parameters a, b, and c in the above model aligns with the
conventional predator-prey model. The parameter α is inversely proportional to the additional
food quality, and ηA refers to the amount of additional food perceptible to the predator relative to
the prey.
Employing the transformations u = ax, v = ary

c , t = t̂
r and dropping the hat, system (2) becomes{ dx

dt = x(1 − x
γ )−

xy
1+αξ+x ,

dy
dt = β(x+ξ)y

1+αξ+x − δy − θxy,
(3)

where γ = K
a , β = b

r , ξ = ηA
a , δ = m

r and θ = na
r . From an ecological perspective, our focus is only

on the dynamics of system (3) inside the first quadrant R+
0 × R+

0 = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}.

Lemma 1 (i) All solutions of the system (3) initiating in the interior of the positive quadrant of the state
space are positive for all t ≥ 0.

(ii) All solutions of the system (3) initiating in the interior of the positive quadrant of the state space are
bounded for all t ≥ 0.

Proof

(i) The two Eqs. of the system (3) yield

x(t) = x(0) exp
[∫ t

0

(
1 −

x(τ)
γ

−
v(τ)

1 + αξ + u(τ)

)
dτ

]
,

and

y(t) = y(0) exp
[∫ t

0

(
β(x(τ) + ξ)

1 + αξ + x(τ)
− δ − θx(τ)

)
dτ

]
,
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respectively. The conditions x(0) ≥ 0 and y(0) ≥ 0 imply x(t) ≥ 0 and y(t) ≥ 0, respectively.
Therefore, it can be deduced that a solution originating in the positive quadrant of the xy-plane
stays positive throughout.

(ii) The first Eq. of the system (3) yields the following result:

dx
dt

< x
(

1 −
x
γ

)
.

It can be inferred that every solution of the system (3) satisfies x(t) ≤ γ for all t > 0.
Define Φ(t) = x(t) + y(t)

β . Then

dΦ
dt

= x
(

1 −
x
γ

)
+

ξy
1 + αξ + x

−
(δ + θx)y

β
.

For λ > 0, we have

dΦ
dt

+ λΦ(t) = x
(

1 −
x
γ
+ λ

)
−

(
δ − λ

β
−

ξ

1 + αξ

)
y,

dΦ
dt

+ λΦ(t) ≤ γ(1 + λ)2

4
−

(
δ − λ

β
−

ξ

1 + αξ

)
y.

By selecting a suitably small (λ < δ), above inequality can be written as

dΦ
dt

+ λΦ(t) <
γ(1 + λ)2

4
+

ξy
1 + αξ

.

Thus,

dΦ
dt

+ λΦ(t) < µ,

where µ = γ(1+λ)2

4 + ξy
1+αξ .

Employing Gronwall’s inequality, we get

0 < Φ(t) ≤ µ

λ

(
1 − e−λt

)
+ Φ(0) e−λt.

The above inequality implies, 0 < Φ(t) ≤ µ
λ , as t → ∞. Thus, every solution of the system (3)

originating in the positive quadrant of the xy-plane is bounded for all future time.

The above lemma ensures that the system (3) is ecologically well-posed.

3 Existence of equilibrium points

The non-negative solutions of the system dx
dt = 0, dy

dt = 0 are the constant solutions of the system
(3) and are called equilibrium points of the system. It is easy to see that the system (3) has a trivial
equilibrium point E0(0, 0), a predator-free equilibrium point Eγ(γ, 0), and interior equilibrium
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points E∗(x∗, y∗). The abscissa x∗ is the root of the quadratic equation

θx2 + (δ + θ(1 + αξ)− β)x + δ(1 + αξ)− βξ = 0. (4)

The roots of Eq. (4) are x∗ = β−(δ+θ(1+αξ))∓
√

(δ+θ(1+αξ)−β)2−4θ(δ(1+αξ)−βξ)
2θ . For the sake of clarity,

consider ∆1 = δ(1 + αξ)− βξ, ∆2 = β − (δ + θ(1 + αξ)), and ∆3 = 4θ∆1.
To find the equilibrium points of the system (3), we consider the following cases:

Case I: ∆1 > 0 and ∆2 > 0.

In this case, if ∆2
2 > ∆3 holds, then the system (3) has two interior equilibrium points E∗

1(x∗1 , y∗1)

and E∗
2(x∗2 , y∗2), where x∗1,2 =

∆2∓
√

∆2
2−∆3

2θ and y∗1,2 = (1 −
x∗1,2
γ )(1 + αξ + x∗1,2), provided γ > x∗1,2;

if ∆2
2 = ∆3 holds, then the system (3) has a unique interior equilibrium point E∗

3(x∗3 , y∗3), where

x∗3 = ∆2
2θ and y∗3 = (1 −

x∗3
γ )(1 + αξ + x∗3), provided γ > x∗3 ; if ∆2

2 < ∆3 holds, then the system (3)
has no interior equilibrium point.

Case II: ∆1 < 0.

In this case, the system (3) has a unique interior equilibrium point E∗
4(x∗4 , y∗4), where x∗4 =

∆2+
√

∆2
2−∆3

2θ and y∗4 = (1 −
x∗4
γ )(1 + αξ + x∗4), provided γ > x∗4 .

Case III: ∆1 = 0.

In this case, if ∆2 > 0 holds, the system (3) has an interior equilibrium point E∗
5(x∗5 , y∗5) and a prey-

free equilibrium point E∗
6(x∗6 , y∗6) = (0, 1 + αξ), where x∗5 = ∆2

θ and y∗5 = (1 −
x∗5
γ )(1 + αξ + x∗5),

provided γ > x∗5 , if ∆2 < 0 holds, the system (3) has no interior equilibrium point, but a unique
prey-free equilibrium point E∗

6(x∗6 , y∗6) = (0, 1 + αξ) occurs.

4 Stability analysis

This section performs an analysis to derive the stability conditions around the equilibrium points
determined in the previous section using the linearization technique.

Theorem 1 (i) The equilibrium point E0 = (0, 0) of system (3) is unstable if βξ
1+αξ > δ and saddle if

βξ
1+αξ < δ.

(ii) The equilibrium point Eγ = (γ, 0) of system (3) is saddle if β(γ+ξ)
1+αξ+γ > (δ + θγ) and asymptotically

stable if β(γ+ξ)
1+αξ+γ < (δ + θγ).

Proof

(i) At E0(0, 0), the Jacobian matrix of the system (3) is

JE0 =

(
1 0
0 βξ

1+αξ − δ

)
.

The eigenvalues of the matrix JE0 are λ1 = 1 > 0 and λ2 = βξ
1+αξ − δ. If βξ

1+αξ > δ (λ2 > 0), the

trivial equilibrium point E0 is unstable. If βξ
1+αξ < δ (λ2 < 0), the trivial equilibrium point E0 is

saddle.
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(ii) At Eγ(γ, 0), the Jacobian matrix of the system (3) is

JEγ =

(
−1 − γ

1+αξ+γ

0 β(γ+ξ)
1+αξ+γ − (δ + θγ)

)
.

The eigenvalues of the above matrix are λ1 = −1 < 0 and λ2 = β(γ+ξ)
1+αξ+γ − (δ + θγ). If β(γ+ξ)

1+αξ+γ >

(δ + θγ) (λ2 > 0), the point Eγ is saddle. If β(γ+ξ)
1+αξ+γ < (δ + θγ) (λ2 < 0), the point Eγ is stable.

Theorem 2 (i) The equilibrium point E∗
1(x∗1 , y∗1) of system (3), if it exists, is stable if γ < 1 + αξ + 2x∗1

and unstable if γ > 1 + αξ + 2x∗1 .
(ii) The equilibrium points E∗

2(x∗2 , y∗2), E∗
4(x∗4 , y∗4) and E∗

5(x∗5 , y∗5) of system (3), if they exist, are always
saddle.

(iii) The equilibrium point E∗
3(x∗3 , y∗3) of system (3), if it exists, is a degenerate singularity.

Proof At E∗
i (x∗i , y∗i ), i = 1, 2, 3, 4, 5, the Jacobian matrix of the system (3) is

JE∗
i
=

 x∗i (−
1
γ + (1 −

x∗i
γ ) 1

1+αξ+x∗i
) −

x∗i
1+αξ+x∗i(

(β − δ)− 2θx∗i − θ(1 + αξ)
)
(1 −

x∗i
γ ) 0

 .

The determinant and trace of the matrix JE∗
i

are detJE∗
i
=

x∗i y∗i
(1+αξ+x∗i )

2

(
∆2 − 2θx∗i

)
and trace JE∗

i
=

x∗i
γ(1+αξ+x∗i )

(
γ − (1 + αξ + 2x∗i )

)
, respectively.

(i) It is easy to show that det JE∗
1
=

x∗1y∗1
(1+αξ+x∗1)

2 (
√
(∆2

2 − ∆3) > 0 and tr JE∗
1
=

x∗1
γ(1+αξ+x∗1)

(
γ −

(1 + αξ + 2x∗1)
)

. The Routh-Hurwitz criteria confirm the result.

(ii) A simple calculation may provide det JE∗
2
= −

x∗2y∗2
(1+αξ+x∗2)

2 (
√
(∆2

2 − ∆3) < 0, det JE∗
4
=

−
x∗4y∗4

(1+αξ+x∗4)
2 (
√
(∆2

2 − ∆3) < 0, and det JE∗
5
= −

x∗5y∗5
√

∆2
(1+αξ+x∗5)

2 < 0. Thus, the result follows.

(iii) It is easy to show that det JE∗
3
= 0. Thus, the equilibrium point E∗

3 is a degenerate singularity.

Theorem 3 The equilibrium point E∗
3 of system (3), if exists, then it is

(i) a stable saddle-node if γ < 1 + αξ + 2x∗3 and an unstable saddle-node if γ > 1 + αξ + 2x∗3 .
(ii) a cusp of codimension 2 if γ = 1 + αξ + 2x∗3 and η1η2 ̸= 0.

Proof

(i) Firstly, we employ the transformations x̌ = x − x∗3 , y̌ = y − y∗3, the equilibrium point E∗
3

shifts to the origin (0, 0). Using Taylor series expansion centered at (0, 0), the system (3) reduces
to {

dx̌
dt = a10 x̌ + a01y̌ + a20 x̌2 + a11 x̌y̌ + o|(x̌, y̌)3|,
dy̌
dt = b10 x̌ + b01y̌ + b20 x̌2 + b11 x̌y̌ + b02y̌2 + o|x̌, y̌)3|,

(5)

where a10 =
x∗3

γ(1+αξ+x∗3)

(
γ− (1+ αξ + 2x∗3)

)
, a01 = −

x∗3
1+αξ+x∗3)

, a20 = − 1
γ +

(1+αξ)y∗3
(1+αξ+x∗3)

3 , a11 =

−
(1+αξ)

(1+αξ+x∗3)
2 , b10 =

(
β(1+αξ−ξ)
(1+αξ+x∗3)

2 − θ
)

y∗3, b01 = 0, b20 = −
β(1+αξ−ξ)y∗3
(1+αξ+x∗3)

3 , b11 = β(1+αξ−ξ)
(1+αξ+x∗3)

2 −

θ, b02 = 0.
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It is simple to check if a10 ̸= 0, i.e., γ ̸= 1+ αξ + 2x∗3 , then the tr(JE∗
3
) ̸= 0 but det(JE∗

3
) = 0. Thus,

the equilibrium point E∗
3 is a saddle node. Furthermore, if γ < 1 + αξ + 2x∗3 , i.e., tr(JE∗

3
) < 0,

the equilibrium point E∗
3 is a stable saddle node. If γ > 1 + αξ + 2x∗3 , i.e., tr(JE∗

3
) > 0, the

equilibrium point E∗
3 is an unstable saddle node.

(ii) If γ = 1 + αξ + 2x∗3 , then tr(JE∗
3
) = 0 and det(JE∗

3
) = 0. By applying the transformation

x̃ = x̌, ỹ = a10 x̌ + a01y̌, the system (5) reduces to{
dx̃
dt = ỹ + a20 x̃2 + a11 x̃ỹ + o|(x̃, ỹ)3|,
dỹ
dt = b20 x̃2 + b11 x̃ỹ + o|(x̃, ỹ)3|,

(6)

where a20 = a20 −
a11a10

a01
, a11 = a11

a01
, b20 = a10a20 + a01b20 − b11a10 −

a11a2
10

a01
, b11 = a11a10

a01
+ b11.

By applying the transformations w1 = x̃ − 1
2 a11 x̃2, w2 = ỹ + a20 x̃2, the system (6) reduces to{

dw1
dt = w2 + o|(w1, w2)

3|,
dw2
dt = η1w2

1 + η2w1w2 + o|(w1, w2)
3|,

(7)

where η1 = b20 and η2 = 2a20 + b11.
Finally, applying the transformations z1 = w1, z2 = w2 + o|(w1, w2)

3|, the system (7) reduces
to {

dz1
dt = z2,

dz2
dt = η1z2

1 + η2z1z2 + o|(z1, z2)
3|.

The non-degeneracy condition η1η2 = b20(2a20 + b11) ̸= 0 for a cusp with co-dimension 2 is
satisfied in the z1z2. Consequently, the point E∗

3 is a cusp of co-dimension 2.

Theorem 4 The equilibrium point E∗
6(u

∗
6, v∗6) of the system (3) is a cusp of co-dimension 2 if γ ̸= 1 + αξ.

Proof At E∗
6(x∗6 , y∗6), the Jacobian matrix of the system (3) is

JE∗
6
=

(
0 0

β(1+αξ−ξ)
1+αξ − θ(1 + αξ) 0

)
.

The determinant and trace of the above matrix are zero. To relocate the equilibrium point E∗
6 to the

origin, we consider transformations X = x − x∗6 , Y = y − y∗6. The Taylor series expansion centered
at (0, 0) reduces the system (3) as follows:{

dX
dt = α20X2 + α11XY + o|(X, Y)3|,
dY
dt = β10X + β20X2 + β11XY + o|(X, Y)3|,

(8)

where α20 =
(
− 1

γ + 1
1+αξ

)
, α11 = − 1

1+αξ , β10 = β(1+αξ−ξ)
1+αξ − θ(1+ αξ), β20 = −

β(1+αξ−ξ)
(1+αξ)2 , β11 =

β(1+αξ−ξ)
(1+αξ)2 − θ. Introduce a new time variable T by T = β10t, the system (8) reduced to

{
dX
dT = ¯α20X2 + ¯α11XY + o|(X, Y)3|,
dY
dT = X + ¯β20X2 + ¯β11XY + o|(X, Y)3|,

(9)
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where ¯α20 = α20
β10

, ¯α11 = α11
β10

, ¯β20 = β20
β10

, ¯β11 = β11
β10

.

By applying the transformations Y1 = Y − 1
2

¯β11Y2, X1 = X + ¯β20X2, system (9) reduces to{
dX1
dT = ϑ1X2

1 + ϑ2X1Y1 + o|(X1, Y1)
3|,

dY1
dT = X1 + o|(X1, Y1)

3|,
(10)

where ϑ1 = ¯α20, ϑ2 = ¯α11.
Finally, applying the transformations Y2 = Y1, X2 = X1 + o|(X2, Y2)

3|, the system (10) reduces to{
dX2
dT = ϑ1X2

2 + ϑ2X2Y2 + o|(X2, Y2)
3|,

dY2
dT = X2.

The non-degeneracy condition ϑ1ϑ2 ̸= 0, i.e., 1
1+αξ

(
− 1

γ + 1
1+αξ

)
̸= 0 for cusp of co-dimension 2

can be satisfied in the X2Y2 plane, if γ ̸= 1 + αξ. As a result, the equilibrium point E∗
6 is a cusp of

co-dimension 2.

5 Bifurcation analysis

In this section of the article, we are interested in a variety of distinct bifurcations that might take
place in the system (3), such as saddle-node, Bogdanov-Takens, and Hopf bifurcations.

Saddle-node bifurcation

In Section 3, the requirements necessary for the existence of two interior equilibrium points
E∗

1(x∗1 , y∗1) and E∗
2(x∗2 , y∗2) have been achieved that were based on many constraints. The dis-

tinguishable features of these equilibrium points persist until ∆1 > 0, ∆2 > 0 and ∆2
2 > ∆3;

afterward, they have a chance of converging to E∗
3(x∗3 , y∗3) if ∆1 > 0, ∆2 > 0 and ∆2

2 = ∆3 and
vanishing if ∆1 > 0, ∆2 > 0 and ∆2

2 < ∆3. This kind of annihilation of equilibrium points may
be due to the saddle-node bifurcation for interior equilibrium points, which transpires when the

bifurcation parameter θ satisfies θ = θ∗ = ((δ+β)(1+αξ)−2βξ)−2
√

∆4
(1+αξ)2 , provided (δ+ β)(1+ αξ) > 2βξ

and δ(1 + αξ) > ξ(δ + β), where ∆4 = (δ(1 + αξ)− ξ(δ + β))β(1 + αξ) + β2ξ2. Here, θ∗ is known
as the saddle-node bifurcation threshold. Sotomayor’s theorem [38] has been applied to ascertain
the occurrence of the bifurcation.

Theorem 5 System (3) exhibits a saddle-node bifurcation at the equilibrium point E∗
3 = (x∗3 , y∗3) with

respect to the parameter θ if θ = θ∗ = ((δ+β)(1+αξ)−2βξ)−2
√

∆4
(1+αξ)2 , provided, (δ + β)(1 + αξ) > 2βξ and

δ(1 + αξ) > ξ(δ + β), where ∆4 = (δ(1 + αξ)− ξ(δ + β))β(1 + αξ) + β2ξ2.

Proof The Jacobian matrix for system (3) at interior equilibrium point E∗
3 is

JE∗
3
=

[
(β−δ−θ(1+αξ))(γθ+δ−β)

γθ(β−δ+θ(1+αξ))
−(β−δ−θ(1+αξ))

β−δ+θ(1+αξ)

0 0

]
.

The eigenvalues of the above matrix are λ1 = (β−δ−θ(1+αξ))(γθ+δ−β)
γθ(β−δ+θ(1+αξ))

̸= 0 and λ2 = 0. Let P and Q

be the eigenvectors corresponding to λ2 = 0 for the matrices JE∗
3

and JT
E∗

3
, respectively.
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A straightforward calculation implies

P =

[
1

γθ+δ−β
γθ

]
, Q =

[
0
1

]
.

Consider

ψ(x, y, θ) =

[
1 − x

γ −
y

1+αξ+x
β(x+ξ)

1+αξ+x − δ − θx

]
.

One can easily find,

ψθ

(
E∗

3 , θ∗
)
=

[
0

−(β−δ−θ(1+αξ))
2θ

]
,

and

D2ψ
(

E∗
3 , θ∗

)
(P, P) =

 −4θ(2θγ−(β−δ−θ(1+αξ)))
γ(β−δ+θ(1+αξ))2 + 8θ(γθ+δ−β)

γ(β−δ+θ(1+αξ))
−16βθ3(1+αξ−ξ)
(β−δ+θ(1+αξ))3

 .

We have

QT.ψθ

(
E∗

3 , θ∗
)
=

−(β − δ − θ(1 + αξ))

2θ
̸= 0,

and

QT.D2ψ
(

E∗
3 , θ∗

)
(P, P) =

−16βθ3(1 + αξ − ξ)

(β − δ + θ(1 + αξ))3 ̸= 0.

Therefore, the transversality conditions necessary for the appearance of the saddle-node bifurcation
are satisfied, thereby confirming the presence of a saddle-node bifurcation.

Hopf bifurcation

Theorem 2 concludes that the equilibrium point E∗
1 = (x∗1 , y∗1) is unstable if 1 + αξ + 2x∗1 < γ and

stable if 1 + αξ + 2x∗1 > γ. It is interesting to investigate the nature of the point E∗
1 whenever

γ − (1 + αξ + 2x∗1) = 0.

Theorem 6 Assume that the equilibrium point E∗
1 = (x∗1 , y∗1) exists. For the parametric condition,

γ − (1 + αξ + 2x∗1) = 0, system (3) undergoes a Hopf bifurcation around the equilibrium point E∗
1 with

respect to the parameter γ.

Proof We have det
(

JE∗
1

)
> 0. The parametric condition γ = γ[h f ] = 1 + αξ + 2x∗1 implies

tr
(

JE∗
1

)
= 0. Further, at γ = γ[h f ] = 1 + αξ + 2x∗1

d
dγ

(
tr
(

JE∗
1

))∣∣∣
γ=γ[h f ]

=
x∗1(1 + ξ + 2x∗1)
γ2(1 + αξ + x∗1)

̸= 0.
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Thus, the transversality requirement necessary for the appearance of the Hopf bifurcation is
satisfied, thereby confirming the presence of a Hopf bifurcation.
The aforementioned theorem is sure enough for the emergence of the limit cycle around the point
E∗

1 . However, it provides no insight into the stability of the limit cycle. In this continuation, we
will proceed with the computation of the first Lyapunov number for the system (3) at the point E∗

1 .
This calculation will enable us to ascertain the stability of the limit cycle.
To relocate the point E∗

1 , to the origin (0, 0), we substitute x = x̄ − x∗1 and y = ȳ − y∗1. The system
(3) reduces to{

dx̄
dt = α10 x̄ + α01ȳ + α20 x̄2 + α11 x̄ȳ + α02ȳ2 + α30 x̄3 + α21 x̄2ȳ + α12 x̄ȳ2 + α03ȳ3 + g1(x̄, ȳ),
dȳ
dt = β10 x̄ + β01ȳ + β20 x̄2 + β11 x̄ȳ + β02ȳ2 + β30 x̄3 + β21 x̄2ȳ + β12 x̄ȳ2 + β03ȳ3 + g2(x̄, ȳ),

(11)

where α10 = x∗1(
−1
γ +

y∗1
(1+αξ+x∗1)

2 ), α01 =
−x∗1

1+αξ+x∗1
, α20 = (−1

γ +
y∗1(1+αξ)

(1+αξ+x∗1)
3 ), α11 = −(1+αξ)

(1+αξ+x∗1)
2 ,

α02 = 0, α30 =
−y∗1(1+αξ)

(1+αξ+x∗1)
4 , α21 = 1+αξ

(1+αξ+x∗1)
3 , α12 = 0, α03 = 0, β10 = y∗1

(
(β(1+αξ−ξ))
(1+αξ+x∗1)

2 −

θ
)

, β01 = 0, β20 =
−y∗1 β(1+αξ−ξ)

1+αξ+x∗1)
3 , β11 = β(1+αξ−ξ)

(1+αξ+x∗1)
2 − θ, β02 = 0, β30 =

y∗1 β(1+αξ−ξ)

(1+αξ+x∗1)
4 , β21 =

−β(1+αξ−ξ)
(1+αξ+x∗1)

3 , β12 = 0, β03 = 0, and g1(x̄, ȳ) =
∑∞

i+j=4 αij x̄ȳ, g2(x̄, ȳ) =
∑∞

i+j=4 βij x̄ȳ.

The first Lyapunov number [38] at the origin is

σ =
−3π

2α01∆3/2 {[α10β10 M1 + α10α01 M2 + β2
10 M3 + 2α10β10(α20α02 − β2

02)

+ 2α10α01(β20β02 − α2
20)− α2

01(β11β20 + 2α20β20) + (2α2
10 − α01β10)(α11α20 − β11β02)]

− (α2
10 + α01β10)M4},

(12)

where, M1 = α02β11 + α11β02 + α2
11, M2 = α11β02 + α20β11 + β2

11, M3 = 2α02β02 + α11α02, M4 =

α12β10 − β21α01 + 2α10(β12 + α21) + 3(β03β10 − α30α01), and ∆ =
x∗1y∗1

(1+αξ+x∗1)
2

√
∆2

2 − ∆3. If σ > 0,

then a subcritical Hopf-bifurcation appears around the point E∗
1 and the limit cycle will be unstable.

If σ < 0, then a supercritical Hopf-bifurcation appears around the point E∗
1 , and the limit cycle

will be stable.

Bogdanove-taken bifurcation

In addition to the codimension one bifurcations that have been studied up to this point, it is also
conceivable for the system (3) to experience a codimension two bifurcation, such as a Bogdanov-
Takens (BT) bifurcation. This bifurcation is expected to take place in the vicinity of the point E∗

3 ,
which is identified as a cusp of co-dimension two under certain parametric constraints.

Theorem 7 Assume that the point E∗
3 exists and that it is a cusp of codimension two. If γ and θ are the

bifurcation parameters, the system (3) experiences the Bogdanov-Takens bifurcation of codimension 2 in the
vicinity of E∗

3 .

Proof Here, our objective is to provide analytical expressions for the saddle-node bifurcation curve,
Hopf bifurcation curve, and homoclinic bifurcation curve in the vicinity of the Bogdanov-Takens
(BT) point. To accomplish our objective, we use the approach defined in the works [36, 37]. Let
γBT and θBT represent the threshold values of the bifurcation parameters γ and θ that satisfy
detJE3 = 0, trJE3 = 0. Consider a perturbation to the parameters γ and θ in the vicinity of BT
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bifurcation values provided by γ = γBT + λ1 and θ = θBT + λ2, respectively, where λ = (λ1, λ2)

is a parameter vector in the vicinity of (0, 0).

When we substitute these perturbations into system (3), we obtain{ dx
dt = x(1 − x

γBT+λ1
)− xy

1+αξ+x = f1(x, y, λ1),
dy
dt = β(x+ξ)y

1+αξ+x − δy − (θBT + λ2)xy = f2(x, y, λ2).
(13)

The transformations U = x − x∗3 , V = y − y∗3 are taken into consideration to relocate the point
E∗

3 to the origin (0, 0). After applying Taylor’s series expansion centered at (0, 0), the system (13)
becomes {

dU
dt = α00 + α10U + α01V + α20U2 + α11UV + P1(U, V),
dV
dt = β00 + β10U + β01V + β20U2 + β11UV + P2(U, V),

(14)

where α00 = f1(U, V, λ1), α10 = 1 −
2x∗3

γBT+λ1
−

(1+αξ)y∗3
(1+αξ+x∗3)

2 , α01 = −
x∗3

1+αξ+x∗3
, α20 = − 1

γBT+λ1
+

(1+αξ)y∗3
(1+αξ+x∗3)

3 , α11 = −
(1+αξ)

(1+αξ+x∗3)
2 , α02 = 0, β00 = −λ2x∗3y∗3, β10 =

β(1+αξ−ξ)y∗3
(1+αξ+x∗3)

2 − (θBT + λ2)y∗3,

β01 = −λ2x∗3 , β11 = β(1+αξ−ξ)
(1+αξ+x∗3)

2 − (θBT + λ2), β02 = 0, and P1, P2 is power series in (U, V) with

powers xiyj satisfying i + j ≥ 3, and the coefficients smoothly depend upon λ1 and λ2.

After using the affine transformation U1 = U, U2 = α10U + α01V, the system (14) simplifies to{
dU1
dt = ξ00 + U2 + ξ20U2

1 + ξ11U1U2 + P̃1(U1, U2),
dU2
dt = µ00 + µ10U1 + µ01U2 + µ20U2

1 + µ11U1U2 + P̃2(U1, U2),
(15)

where ξ00 = α00, ξ20 = α20 − α11α10
α01

, ξ11 = α11
α01

, µ00 = α00α10 + β00α01, µ10 = α10β10 −

β01α10, µ01 = α10 + β01, µ20 = α10α20 + α01β20 − β11α10 −
α11α2

10
α01

, µ11 = β11 +
α10α11

α01
, and P̃1, P̃2

are the power series in (U1, U2) with powers Ui
1, U j

2 satisfying i + j ≥ 3.

Next, under the following C∞ change of coordinates in the close vicinity of (0, 0).

Define V1 = U1, V2 = ξ00 + U2 + ξ20U2
1 + ξ11U1U2, system (15) reduced to{

dV1
dt = V2 + P̌1(V1, V2),

dV2
dt = γ00 + γ10V1 + γ01V2 + γ20V2

1 + γ11V1V2 + γ02V2
2 + P̌2(V1, V2),

(16)

where γ00 = µ00 − µ01ξ00, γ10 = µ10 − µ11ξ00 + ξ11µ00 − µ01ξ00ξ11, γ01 = µ01 − ξ11ξ00, γ20 =

µ20 − µ01ξ20 + ξ11µ10 − µ11ξ00ξ11, γ11 = 2ξ20 + µ11 − µ01ξ11 + ξ11µ01, γ02 = ξ11, and P̌1, P̌2 are
the power series in (V1, V2) with powers Vi

1, V j
2 satisfying i + j ≥ 3.

Let us introduce a new time variable T by dt = (1 − γ02V1)dT. Rewriting T as t, the system (16)
can be rewritten as{

dV1
dt = V2(1 − γ02V1) + P̌1(V1, V2),

dV2
dt = (1 − γ02V1)[γ00 + γ10V1 + γ01V2 + γ20V2

1 + γ11V1V2 + γ02V2
2 + P̌2(V1, V2)],

(17)
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Z1 = V1, Z2 = V2(1 − γ02V1) + P̌1(V1, V2), then system (17) reduced to{
dZ1
dt = Z2,

dZ2
dt = δ00 + δ10Z1 + δ01Z2 + δ20Z2

1 + δ11Z1Z2 + P̄2(Z1, Z2),
(18)

where δ00 = γ00, δ10 = γ10 − 2γ02γ00, δ01 = γ01, δ20 = γ20 + γ00γ2
02 − 2γ02γ10, δ11 = γ11 −

γ02γ01, and P̄2 are the power series in (Z1, Z2) with powers Zi
1, Zj

2 satisfying i + j ≥ 3.

One can not determine the sign of δ20 whenever λ1 → 0 and λ2 → 0. Consequently, it is essential
to consider the following two cases:

Case 1: δ20 > 0, Consider u1 = Z1, u2 = Z2√
δ20

, dτ =
√

δ20dt, then system (18) becomes

{
du1
dτ = u2,
du2
dτ = δ00

δ20
+ δ10

δ20
u1 +

δ01√
δ20

u2 + u2
1 +

δ11√
δ20

u1u2 + P(u1, u2, λ),
(19)

where P(u1, u2, 0) is a power series in (u1, u2) with powers ui
1, uj

2 satisfying i + j ≥ 3.

Using the affine transformation v1 = u1 +
δ10

2δ20
, v2 = u2, then system (19) becomes


dv1
dτ = v2,
dv2
dτ = δ00

δ20
−

δ2
10

4δ2
20
+
(

δ01√
δ20

− δ11δ10
2δ20

√
δ20

)
v2 + v2

1 +
δ11√
δ20

v1v2 + Q(v1, v2, λ),
(20)

where Q(v1, v2, 0) is a power series in (v1, v2) with powers vi
1, vj

2 satisfying i + j ≥ 3.

Consider w1 =
δ2

11
δ20

v1, w2 =
δ3

11
δ20

√
δ20

v2, t =
√

δ20
δ11

τ, then the system (20) becomes

{
dw1
dt = w2,

dw2
dt = υ1(λ1, λ2) + υ2(λ1, λ2)w2 + w2

1 + w1w2 + R(w1, w2, λ),

where υ1(λ1, λ2) =
δ00δ4

11
δ3

20
−

δ2
10δ4

11
4δ4

20
, υ2(λ1, λ2) =

δ01δ11
δ20

−
δ2

11δ10
2δ2

20
, and R(w1, w2, 0) is a power series

in (w1, w2) with powers wi
1, wj

2 satisfying i + j ≥ 3.

Case 2: δ20 < 0, Consider ū1 = z1, ū2 = z2√
−δ20

, dτ =
√
−δ20dt, then system (18) becomes

{
dū1
dτ = ū2,
dū2
dτ = −δ00

δ20
− δ10

δ20
ū1 +

δ01√
−δ20

ū2 − ū1
2 + δ11√

−δ20
ū1ū2 + P̄(ū1, ū2, λ),

(21)

where P̄(ū1, ū2, 0) is a power series in (ū1, ū2) with powers ū1
i, ū2

j satisfying i + j ≥ 3.

Using the affine transformation v̄1 = ū1 +
δ10

2δ20
, v̄2 = ū2, then system (21) becomes


dv̄1
dτ = v̄2,
dv̄2
dτ = − δ00

δ20
+

δ2
10

4δ2
20
+
(

δ01√
−δ20

− δ11δ10
2δ20

√
−δ20

)
v̄2 + v̄1

2 + δ11√
−δ20

v̄1v̄2 + Q̄(v̄1, v̄2, λ),
(22)

where Q(v̄1, v̄2, 0) is a power series in (v̄1, v̄2) with powers v̄1
i, v̄2

j satisfying i + j ≥ 3.
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Consider w̄1 =
δ2

11
δ20

v̄1, w̄2 = −
δ3

11
δ20

√
−δ20

v̄2, t = −
√
−δ20
δ11

τ, then system (22) becomes

{
dw̄1
dt = w̄2,

dw̄2
dt = ῡ1(λ1, λ2) + ῡ2(λ1, λ2)w̄2 + w̄1

2 + w̄1w̄2 + R̄(w̄1, w̄2, λ),
(23)

where ῡ1(λ1, λ2) =
δ00δ4

11
δ3

20
−

δ2
10δ4

11
4δ4

20
, ῡ2(λ1, λ2) =

δ01δ11
δ20

−
δ2

11δ10
2δ2

20
, and R̄(w̄1, w̄2, 0) is a power series

in (w̄1, w̄2) with powers w̄1
i, w̄2

j satisfying i + j ≥ 3.

In order to minimize the number of cases, it is advisable to retain υ1(λ) and υ2(λ) to denote ῡ1(λ),

and ῡ2(λ) in system (23). Moreover, if
∣∣∣ ∂(υ1,υ2)

∂(λ1,λ2)

∣∣∣
λ1=λ2=0

̸= 0, then the parameter transformations

υ1(λ1, λ2) =
δ00δ4

11

δ3
20

−
δ2

10δ4
11

4δ4
20

, υ2(λ1, λ2) =
δ01δ11

δ20
−

δ2
11δ10

2δ2
20

,

and

ῡ1(λ1, λ2) =
δ00δ4

11

δ3
20

−
δ2

10δ4
11

4δ4
20

, ῡ2(λ1, λ2) =
δ01δ11

δ20
−

δ2
11δ10

2δ2
20

,

are topologically equivalent in the vicinity of the origin and υ1, υ2 are independent parameters.
As a result, it can be inferred that the system (13) experiences the Bogdanov-Takens bifurcation
when the values of (λ1, λ2) are within closed proximity to the origin (0, 0), [38]. The following are
the local representations of the bifurcation curves:

1 The Saddle-node bifurcation curve SN = {(υ1, υ2) : υ1 = 0, υ2 ̸= 0}.
2 The Hopf bifurcation curve H = {(υ1, υ2) : υ2 = ±

√
−υ1, υ1 < 0}.

3 The Homoclinic bifurcation curve HL = {(υ1, υ2) : υ2 = ± 5
7
√
−υ1, υ1 < 0}.

6 Numerical simulation

In this section, numerical simulations are provided to validate our analytical findings. We benefited
from MATHEMATICA 10.0 software to draw the phase portrait diagrams for the computations.
We provide a total of six numerical examples, each carefully selected to demonstrate the im-
plications of our analytical results. For these examples, we have chosen specific values for the
ecosystem parameters γ, β, ξ, δ, and θ to ensure that they align with the theoretical findings and
enhance the understanding of the dynamics of the systems.

(1) 
dx
dt = x

(
(1 − x

5 )−
y

1+2.8×0.35+x

)
,

dy
dt = y

(
0.9(x+0.35)

1+2.8×0.35+x − 0.3 − θx
)

.
(24)

System (24) exhibits several equilibrium points depending on parametric conditions. The nature
of these points is explained in Table 1 and is also depicted in Figure 1. A threshold value of the
anti-predator behavior parameter θ = 0.118988 is obtained in Figure 1a and Figure 1b.
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Table 1. Number and nature of equilibrium points (Eps) of the system (24)

Value of θ Conditions Number Existence of Nature of Figure
of Eps Eps Eps

0 < θ < 0.118988 ∆2
2 > ∆3 4 E0 = (0, 0) Saddle 1c

Eγ = (5, 0) Stable
E∗

1 = (1.04319, 2.39244) Unstable
E∗

2 = (2.43136, 2.26624) Saddle
θ = 0.11898 ∆2

2 = ∆3 3 E0 = (0, 0) Saddle 1d
Eγ = (5, 0) Stable

E∗
3 = (1.53127, 2.43593) Unstable saddle-node

θ > 0.11898 ∆2
2 < ∆3 2 E0 = (0, 0) Saddle 1e

Eγ = (5, 0) Globally Stable

Θ = 0.118988
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Figure 1. (a)-(b) Saddle-node bifurcation diagram. (c) θ = 0.11. The equilibrium point E∗
1 is unstable, and E∗

2 is a
saddle. (d) θ = 0.118988. The equilibrium point E∗

3 is an unstable saddle node. (e) θ = 0.12. The predator-free
equilibrium point is globally stable. Ecologically, there is a threshold value of the anti-predator parameter θ

below which species may coexist and above which the predator species go extinct, leading to the collapse of the
system

(2) 
dx
dt = x

(
(1 − x

2 )−
y

1+0.001×0.8+x

)
,

dy
dt = y

(
0.4(x+0.8)

1+0.001×0.8+x − 0.3 − 0.11x
)

.
(25)
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Table 2. Number and nature of equilibrium points (Eqs) of the system (25)

Condition Number of Eqs Existence of Eqs Nature of Eqs Figure
∆1 < 0 3 E0 = (0, 0) Unstable 2

Eγ = (2, 0) Stable
E∗

4 = (0.380454, 1.1185) Saddle

Table 3. Number and nature of equilibrium points (Eqs) of the system (26)

Value of θ Conditions Number of Existence of Nature of Figure
Eqs Eqs Eqs

θ = 0.2 ∆1 = 0, ∆2 > 0, 4 E0 = (0, 0) Unstable 3a
Eγ = (3, 0) Stable

E∗
5 = (1.992, 1.008) Saddle

E∗
6 = (0, 1.02) Unstable saddle node

θ = 0.8 ∆1 = 0, ∆2 < 0, 3 E0 = (0, 0) Unstable 3b
Eγ = (3, 0) Stable

E∗
6 = (0, 1.008) Cusp

System (25) exhibits several equilibrium points depending on the parametric condition. The
nature of these points is explained in Table 2 and is also shown graphically in Figure 2.

E0 EΓ
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

x

y

Figure 2. The equilibrium point E0 is unstable, Eγ is stable, and E∗
4 is saddle. Ecologically, the system will

collapse due to the extinction of either the prey or the predator

(3) 
dx
dt = x

(
(1 − x

3 )−
y

1+0.02381×0.336+x

)
,

dy
dt = y

(
0.9(x+0.336)

1+0.02381×0.336+x − 0.3 − θx
)

.
(26)

System (26) exhibits several equilibrium points depending on certain parametric conditions.
The nature of these points is explained in Table 3 and is also shown graphically in Figure 3.

(4) 
dx
dt = x

(
(1 − x

γ )−
y

1+2.8×0.35+x

)
,

dy
dt = y

(
0.9(x+0.35)

1+2.8×0.35+x − 0.3 − 0.11x
)

,
(27)



54 | Mathematical Modelling and Numerical Simulation with Applications, 2025, Vol. 5, No. 1, 38–64

EΓE0

E5
*E6

*

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

x

y

(a)

E0 EΓ

E6
*

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

x

y

(b)

Figure 3. (a) θ = 0.2. The equilibrium point E0 is unstable, Eγ is globally stable, E∗
5 is a saddle point, and E∗

6 is an
unstable saddle node. (b) θ = 0.8. The equilibrium point E0 is unstable, Eγ is globally stable, and E∗

6 forms a
cusp of co-dimension 2. Ecologically, the system will collapse

Table 4. Number and nature of feasible equilibrium points (Eqs) of the system (27)

Value of γ Existence of Eqs Nature of Eqs Figure
γ = 3.5 E0 = (0, 0) Saddle 4a

Eγ = (3.5, 0) Stable
E∗

1(1.04319, 2.12212) Stable
E∗

2(2.43136, 1.3469) Saddle
γ = 4.06638 E0 = (0, 0) Saddle 4b

Eγ = (4.06638, 0) Stable
E∗

1(1.04319, 2.24762) Stable limit cycle
E∗

2(2.43136, 1.77373) Saddle
γ = 4.61 E0 = (0, 0) Saddle 4c

Eγ = (4.61, 0) Stable
E∗

1(1.04319, 2.33908) Homoclinic loop
E∗

2(2.43136, 2.08477) Saddle
γ = 5 E0 = (0, 0) Saddle 4d

Eγ = (5, 0) Stable
E∗

1(1.04319, 2.39244) Unstable
E∗

2(2.43136, 2.26624) Saddle

The system (27) exhibits several equilibrium points depending on the value of γ. The nature of
these points is explained in Table 4 and is also shown graphically in Figure 4.

(5) 
dx
dt = x

(
(1 − x

γ )−
y

1+2.8×0.35+x

)
,

dy
dt = y

(
0.9(x+0.35)

1+2.8×0.35+x − 0.3 − 0.118988x
)

.
(28)

System (28) exhibits several equilibrium points depending on certain parametric conditions.
The nature of these points is explained in Table 5 and is also shown graphically in Figure 5.
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Figure 4. (a) γ = 3.5. The equilibrium point E∗
1 = (1.04319, 2.12212) is a stable point. (b) γ = γ[h f ] =

4.06638. A stable limit cycle arises around the point E∗
1(1.04319, 2.24762). (c) γ = 4.61. The limit cycle collides

with the saddle point, E∗
2 = (2.43136, 2.08477) and consequently a homoclinic loop arises around the point

E∗
1(1.04319, 2.33908). (d) γ = 5. The equilibrium E∗

1 = (1.04319, 2.39244) is an unstable point. Ecologically, the
system will either stabilise or collapse, contingent upon the parameteric conditions and the initial population of
the species

Table 5. Nature of equilibrium points of the system (28)

Value of γ| Conditions Existence of Nature of Figure

Eqs Eqs
γ = 3 γ < 1 + αξ + 2u∗

1 E0 = (0, 0) Saddle 5a
Eγ = (3, 0) Stable

E∗
3(1.53127, 1.71904) Stable saddle-node

γ = 5.04253 γ = 1 + αξ + 2u∗
1 E0 = (0, 0) Saddle 5b

Eγ = (5.04253, 0) Stable
E∗

3(1.53127, 2.445) Cusp
γ = 5.2 γ > 1 + αξ + 2u∗

1 E0 = (0, 0) Saddle 5c
Eγ = (5.2, 0) Stable

E∗
3 E∗

3(1.53127, 2.47729) Unstable saddle-node

(6) 
dx
dt = x

(
(1 − x

3.2777+λ1
)− y

1+2.5×0.25+x

)
= f1(x, y, λ1),

dy
dt = y

(
0.8(x+0.25)y

1+2.5×0.25+x − 0.2 − (0.183055 + λ2)x
)
= f2(x, v, λ2).

(29)
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Figure 5. (a) γ = 3. The equilibrium point E∗
3(1.53127, 1.71904) is a stable saddle-node. (b) γ = 5.04253.

The equilibrium point E∗
3(1.53127, 2.445) is a cusp of co-dimension 2. (c) γ = 5.2. The equilibrium point

E∗
3(1.53127, 2.47729) is an unstable saddle-node. Ecologically, the system will either stabilise or collapse,

contingent upon the parametric conditions and the initial population of the species

The system (29) has a unique interior equilibrium point E∗
3 = (0.82635, 1.83333). The transfor-

mations U = x − 0.82635, V = y − 1.83333 are used to move the point E∗
3 = (0.82635, 1.83333)

to the origin and next, the affine transformation U1 = U, U2 = α10U + α01V is introduced. The
system (29) shrinks to{

dU1
dt = ξ00 + U2 + ξ20U2

1 + ξ11U1U2 + P̃1(U1, U2),
dU2
dt = µ00 + µ10U1 + µ01U2 + µ20U2

1 + µ11U1U2 + P̃2(U1, U2),
(30)

where ξ00 = 0.82635
(

0.252113− 0.82635
3.2777+λ1

)
, ξ20 = 0.202246− 1

3.2777+λ1
− 0.802203

(
0.504225−

1.6527
3.2777+λ1

)
, ξ11 = 0.802203, µ00 = 0.82635

(
0.504225 − 1.6527

3.2777+λ1

)(
0.252113 − 0.82635

3.2777+λ1

)
+

0.510698λ2, µ10 = 1.833330
(

0.504225− 1.6527
3.2777+λ1

)
λ2 − 0.3371

(
0.335601− 1.83333(0.183055+

λ2)
)

, µ01 = 0.504225 − 1
3.2777+λ1

− 1.83333λ2, µ20 = 0.0461505 − 0.802203
(

0.504225 −

1.6527
3.2777+λ1

)2
+
(

0.504225 − 1.6527
3.2777+λ1

)(
0.202246 − 1

3.2777+λ1

)
−
(

0.504225 − 1.6527
3.2777+λ1

)
(
− 8.32667 × 10−17 − λ2

)
, µ11 = −8.32667 × 10−17 + 0.802203

(
0.504225 − 1.6527

3.2777+λ1

)
− λ2,

and P̃1, P̃2 are the power series in (x1, x2) with powers xi
1, xj

2 satisfying i + j ≥ 3.
Consider the C∞ change of co-ordinates in the close vicinity of (0, 0): V1 = U1, V2 = ξ00 +

U2 + ξ20U2
1 + ξ11U1U2, dt = (1 − γ02V1)dT and Z1 = V1, Z2 = V2(1 − γ02V1) + P̌1(V1, V2)

respectively. The system (30) shrinks to{
dZ1
dt = Z2,

dZ2
dt = δ00 + δ10Z1 + δ01Z2 + δ20Z2

1 + δ11Z1Z2 + P̄2(Z1, Z2),
(31)

where δ00 =
5.48659λ2+4.59973λ1λ2+0.892642λ2

1λ2
(3.2777+λ1)2 ,

δ10 =
6.0311×10−16+3.5065×10−16λ1−0.084269λ2

1+2.23819λ2+4.07424λ1λ2+1.03468λ2
1λ2

(3.2777+λ1)2 ,

δ01 = −4.42835×10−16+0.3371λ1−6.00912λ2−1.83333λ1λ2
3.2777+λ1

,
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Table 6. Nature of equilibrium points

Region Behavior of the region
Region I Number interior points
Region II Two interior points, one is saddle and the other is stable
Region III Two interior points, one is saddle and the other is stable enclosed by a limit cycle
Region IV Two interior points, one is saddle and the other is unstable

δ11 = −0.6742−0.270422λ1+1.54283λ2+0.470705λ1λ2
3.2777+λ1

,

δ20 =
0.49581+0.302535λ1+0.113751λ2

1−10.8827λ2−9.36911λ1λ2−1.84547λ2
1λ2

(3.2777+λ1)2 and P̄2 are the power series

in (z1, z2) with powers zi
1, zj

2 satisfying i + j ≥ 3. Thus δ20 = 0.0461505 > 0. By using the
following three transformations:

(i) u1 = Z1, u2 = Z2√
δ20

, dτ =
√

δ20dt,

(ii) v1 = u1 +
δ10

2δ20
, v2 = u2,

(iii) w1 =
δ2

11
δ20

v1, w2 =
δ3

11
δ20

√
δ20

v2, t =
√

δ20
δ11

τ,

system (31) shrinks to{
dw1
dt = w2,

dw2
dt = υ1(λ1, λ2) + υ2(λ1, λ2)w2 + w2

1 + w1w2 + R(w1, w2, λ),

where υ1(λ1, λ2) =
δ00δ4

11
δ3

20
−

δ2
10δ4

11
4δ4

20
and υ2(λ1, λ2) =

δ01δ11
δ20

−
δ2

11δ10
2δ2

20
. The determinant of the ma-

trix
[

∂(υ1,υ2)
∂(λ1,λ2)

]
= −5.35162 × 10−6 ̸= 0. The rank of matrix

[
∂(υ1,υ2)
∂(λ1,λ2)

]
λ1=λ2=0

is 2 as a result,

υ1(λ1, λ2) =
δ00δ4

11
δ3

20
−

δ2
10δ4

11
4δ4

20
, υ2(λ1, λ2) =

δ01δ11
δ20

−
δ2

11δ10
2δ2

20
are non-singular parameter transforma-

tions. In the λ1λ2 plane, the three bifurcation curves separate the local neighborhood of the
BT-bifurcation point (0, 0) into four distinct regions: Region I, Region I I, Region I I I, and Region
IV, as illustrated in Figure 6a. The saddle-node bifurcation curve is represented in red, the Hopf
bifurcation curve in blue, and the homoclinic bifurcation curve in green. The system (29) has a
unique interior equilibrium point that is a cusp of co-dimension 2 when λ1 = 0 = λ2, as seen in
Figure 6b. When the values of λ1 and λ2 vary and they belong to region I, the predator species
in this region are likely to face extinction due to the absence of an interior equilibrium point,
as seen in Figure 6c. When the values of λ1 and λ2 belong to region I I, there are two interior
equilibrium points. Among these equilibrium points, one exhibits the characteristics of a saddle,
while the other demonstrates stability. Therefore, it can be inferred that the initial population
size will play a crucial role in determining the possibility of the coexistence of the two species
or the ultimate extinction of the predator species, as seen in Figure 6d. When the values of λ1
and λ2 belong to the region I I I, the stable equilibrium point loses its stability, and a stable limit
cycle emerges around this point. Therefore, it can be inferred that the initial population size
will play a crucial role in determining the possibility of oscillation, or the predator species tends
to become extinct as seen in Figure 6e . When the values of λ1 and λ2 belong to the region IV,
the limit cycle will disappear and there will be an unstable focus and saddle point. Therefore, it
can be inferred that the predator species go extinct, as seen in Figure 6f.
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Figure 6. (a) Bifurcation diagram of the model (3). The saddle-node bifurcation curve is shown in red, the Hopf
bifurcation curve in blue, and the homoclinic bifurcation curve in green. (b) The unique interior equilibrium
point E∗

3 , when λ1 = λ2 = 0 is a cusp of co-dimension 2. (c) When (λ1, λ2) = (−0.3, 0.0003) lies in region I, the
system (3) has no interior equilibrium point and the equilibrium point Eγ is globally asymptotically stable. (d)
When (λ1, λ2) = (−0.3,−0.002) lies in the region I I, system (3) has two interior equilibrium points. One is a
saddle, while the other is stable. (e) When (λ1, λ2) = (−0.3,−0.004) lies in the region I I I, a stable limit cycle
enclosing an interior point, and the other interior point is a saddle, system (3) has two interior equilibrium points.
(f) When (λ1, λ2) = (−0.3,−0.0048) lies in the region IV, system (3) has two interior equilibrium points: one is a
saddle, while the other is an unstable one. Ecologically, system (3) is highly sensitive to the parameters θ and γ.
A slight variation in these parameters can lead to significant changes in the system’s dynamics, such as species
coexistence, coexistence through oscillations, or the extinction of the predator species
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7 Impact of Anti-predator behavior

The proposed model (3) without anti-predator behavior has been analyzed by Srinivasu et al.
[8]. The authors observed some interesting results, which are very important from an ecological
point of view. In this section, we aim to discuss how the anti-predator parameter θ affects the
dynamics of the proposed system. In Figure 7a, Figure 7b, Figure 7c and Figure 7d we have
depicted the region of coexistence. In Figure 7a, only parameters θ (anti-predator) and ξ (quantity
of additional food) are allowed to vary. In Figure 7b, only parameters θ (anti-predator) and α

(quality of additional food) are allowed to vary. In Figure 7c, only parameters θ (anti-predator) and
δ (ratio of the predator’s mortality rate and prey growth rate) are allowed to vary. In Figure 7d,
only parameters θ (anti-predator) and parameter β (ratio of nutritional value of prey to the product
of prey’s handling time and prey growth rate) are allowed to vary. These graphs play a vital role
in examining the range of parameter θ as the other parameters vary. In Figure 8, we have plotted
the time series solution graphs where all the parameters of the model are fixed except θ. It can be
observed that as θ increases, the periodicity of solutions decreases, and eventually, the solutions
become non-periodic solutions.
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Figure 7. (a)− (b) In region I, predator extinction will occur, while in region I I prey and predator will coexist.
(c) In region I, either one interior equilibrium point or two axial equilibrium points will exist, while in the region
I I, two interior and two axial equilibrium points will exist. In region I I I, only one axial equilibrium point will
exist. (d) In region I, one interior and two axial equilibrium points will exist. There are two interiors and two
axial equilibrium points on the boundary of regions I and I I. In region I I, there are two interior and two axial
equilibrium points. One interior and two axial equilibrium points will exist on the boundary of I I and I I I regions
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Figure 8. Consider α = 2.8, β = 0.9, γ = 4.06638, δ = 0.3. Time series solution graph fo the system (3) for
different values of rate of anti-predator behavior parameter θ (a) θ = 0.01. (b) θ = 0.05. (c) θ = 0.1. (d) θ = 0.11.
For small values of θ, the solutions are periodic; however, as θ grows, the period of the solutions diminishes,
ultimately leading to the collapse of the periodic solution. Ecologically, both species coexist when θ is small, as θ

increases, the predator species will face extinction

8 Conclusion

A qualitative study that considers all factors reveals the model’s intriguing, complicated, and
diverse dynamics. This manuscript has studied the qualitative analysis of an additional food-
provided predator-prey system in the presence of an anti-predator behavior. After developing
the model equations and establishing the positivity and boundedness of its solution, we have
discussed both theoretically and numerically the local stability of the system around various
equilibrium points. It is observed that the system (3) with an anti-predator behavior has at most
four equilibrium points, consisting of trivial, predator-free, and interior equilibrium points. It is
observed that the trivial equilibrium point will never be stable. Ecologically, it can be stated that
the two species cannot go extinct together. Depending on parametric restrictions, the predator-free
equilibrium point can be asymptotically stable, or it shows a saddle point. Ecologically, it can
be stated that prey species will never go extinct, regardless of the initial population density, but
predator species can go extinct under some restrictions. If there are two interior equilibrium points,
one will be a saddle point, and the other will be asymptotically stable, unstable, or a stable limit
cycle will appear around it, depending on some restrictions. Ecologically, it can be stated that
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there is the possibility of coexistence of the species, prey extinction, or oscillation. The system
depicts a threatening behavior, bistability, under certain parametric conditions, which indicates
the system’s sensitivity to initial populations. From an ecological perspective, it may be argued
that the long-term survival of a species is contingent upon the size of its original population.
The model displays numerous types of bifurcations, such as saddle-node, Hopf, and BT bifurca-
tions. These bifurcations are an essential part of qualitative analysis and have several ecological
consequences. It is observed that the parameters representing the rate of anti-predator behavior
of adult prey to predators and the quality and quantity of supplementary food significantly
impact the emergence of these bifurcations. If the parameter θ surpasses a specific critical value,
model (3) experiences a saddle-node bifurcation, leading to the possibility of zero, one, or two
positive interior equilibrium points. As a result, a critical threshold value of θ emerges, below
which the coexistence of both populations is possible and beyond which the predator species
becomes extinct. Moreover, the manifestation of a limit cycle through Hopf bifurcation has been
shown, and the first Lyapunov number can establish the stability of this limit cycle. We have
used numerical simulation to indicate that the convergence of a saddle point and a limit cycle
might potentially lead to the emergence of homoclinic loops. The system (3) is shown to undergo
Bogdanov-Takens bifurcation by selecting the parameters that represent the carrying capacity
and the adult prey’s anti-predator behavior. Ecologically, it can be stated that certain regions
will emerge that exhibit unique qualitative behavior, such as the coexistence of predators and
prey in a positive equilibrium state, their coexistence by oscillations, or the eventual extinction
of predator species. This study posits that the presence of anti-predator behavior plays a pivotal
role in influencing the interactions within a predator-prey system with access to additional food
supplies.
This study examined the effects of anti-predator behavior within a two-species predator-prey
model. Future research could explore the implications of anti-predator behaviour in ecological
systems comprising three or more species, where investigations may assess how anti-predator
strategies affect the stability and dynamics of multi-species ecosystems, potentially leading to
more complex interactions and behaviours.
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