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Abstract: Achillea sintenisii Hub-Mor is an endemic species in Türkiye, 

characterized by 1–10 capitula and ray flowers, and it thrives on calcareous rocks 

or gypsum-rich soils. This study aimed to determine the chemical composition and 

assess the antibacterial and antibiofilm activity of the essential oil of A. sintenisii 

(AS-EO). The essential oil compounds of the flowering aerial part of A. sintenisii 

were extracted using both hydrodistillation and solid-phase microextraction 

(SPME) techniques and identified by gas chromatography-mass spectrometry (GC-

MS). Two different adsorbents were employed in the SPME approach. The yield 

of the essential oil of flowering aerial parts of A. sintenisii was 0,.4% h/h. A total 

of 74, 112, and 78 compounds were identified from the samples obtained by 

hydrodistillation (S1) and SPME extraction using the CAR-PDMS (S2) and 

PDMS-DVB (S3) adsorbents, respectively. The AS-EO exhibited the highest 

antibacterial activity against Staphylococcus aureus ATCC 25923 and S. aureus 

ATCC 43300 (MRSA), with a minimum inhibitory concentration (MIC) of <1/512 

for each bacterium. This strong antibacterial effect may be attributed to the high 

content of 1,8-cineole and l-borneol. However, AS-EO did not exhibit any 

antibiofilm activity. These findings suggest that the essential oil of A. sintenisii has 

potential as a natural antibacterial agent, warranting further research to uncover its 

full potential. 

1. INTRODUCTION 

Belonging to the Asteraceae family, the genus Achillea comprises 50 species and 15 subspecies 

in Türkiye, widely recognized for their significant health benefits in traditional medicine, 

particularly for the respiratory and digestive systems (Güner et al., 2012; Tuzlacı, 2016). The 

primary habitats of this genus span various regions including Iran, Türkiye, Serbia, and Eastern 

Europe (Başer, 2016; Mohammadhosseini et al., 2017). Achillea species have traditionally been 
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used to treat various diseases related to the digestive, genital, and urinary systems. Additionally, 

they have been reported to be effective in alleviating headaches, migraines, colds, bronchitis, 

and wounds. The herba of A. millefolium, the most well-known species of the Achillea genus, 

is documented in EMA monographs as a remedy for loss of appetite, skin disorders, and minor 

injuries, minor spasms associated with menstrual periods, and gastrointestinal issues (EMA, 

2020). The most commonly identified secondary metabolites in Achillea species include 

flavonoids, phenolic acids, terpenes, phytosterols, organic acids, fatty acids, and alcohols 

(Bader et al., 2022; Becker et al., 2016; Conforti et al., 2005; Maggi et al., 2009; Strzępek-

Gomółka et al., 2021; Tuzlacı, 2016; Yeşilada, 2023). 

The chemical diversity of the essential oils from the genus Achillea is remarkable. The plant 

part used and the extraction technique significantly influence the chemical composition of the 

essential oil, along with other factors like geographic location and seasonal variations (Bader 

et al., 2022; Mazandarani et al., 2013; Mohammadhosseini et al., 2017; Raut & Karuppayil, 

2014). Achillea sintenisii Hub-Mor is an endemic species within this genus characterized by 1-

10 capitula and ray flowers, and it thrives on calcareous rocks or gypsum-rich soils (Aytaç et 

al., 2016). As previously mentioned, many Achillea species have a long history of use in 

traditional medicine; however, no records exist regarding the medicinal use of A. sintenisii in 

Anatolian medicine.  

Antibiotic resistance poses a significant threat to public health, creating substantial challenges 

in the prevention and treatment of infectious diseases (WHO, 2015). Various studies have been 

conducted to identify novel therapeutic agents and approaches to address this issue. The 

difficulty of discovering new antibiotics and the increasing resistance to existing ones have 

prompted researchers to explore alternative therapeutic strategies. Biofilm formation is one of 

the key mechanisms contributing to antibiotic resistance, as bacteria within biofilms exhibit 

high resistance to antibiotics and disinfectants, making them particularly difficult to eradicate. 

Biofilm formation plays a crucial role for pathogenicity, protecting antimicrobial agents, the 

immune system, and environmental variations, such as humidity, temperature, and exposure to 

harmful substances like antibiotics and disinfectants (Asfour, 2018; Karaca et al., 2020; Tunca-

Pınarlı et al., 2023). Since biofilm production results from interactions between bacterial and 

material surfaces, influenced by the surrounding environmental conditions, appropriate 

strategies must be developed to effectively control biofilm formation. Specifically, the impact 

of various conditions on biofilm formation should be examined for each microorganism to 

determine targeted and efficient control measures. 

The antibacterial properties of essential oils have been widely recognized and studied for a 

considerable time; however, their efficacy against biofilms remains incompletely understood. 

Nevertheless, there has been a growing interest in exploring the effectiveness and mechanisms 

of action of essential oils, particularly against antibiotic-resistant pathogens. While headspace 

solid-phase microextraction (HS-SPME) is a rapid and efficient method for extracting volatile 

components, the Clevenger apparatus, a well-established technique for obtaining essential oils, 

is time-consuming. Therefore, this study aims to analyze, for the first time, the essential oil of 

A. sintenisii for its potential antibacterial and antibiofilm activities. Additionally, it seeks to 

compare the chemical composition of the essential oil extracted from the flowering aerial parts 

of A. sintenisii using solid-phase microextraction and hydrodistillation. 

2. METHOD 

2.1. Plant Material 

The flowering aerial parts of A. sintenisii were collected from Sivas in June 2021. The voucher 

specimen was registered at the Herbarium of Ankara University Faculty of Pharmacy under the 

accession number AEF30920. 
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2.2. Extraction of Essential Oil 

2.2.1. Hydrodistillation 

The air-dried plant material was comminuted immediately before hydrodistillation using a 

Clevenger apparatus. The essential oil (S1) was obtained with a 0.4% (v/v) yield, dried using 

anhydrous sodium sulphate, and stored in air-tight, amber-colored glass vials at 4 °C until 

further analysis. 

2.2.2. Headspace-solid phase microextraction 

A total of 205.6 mg and 211.5 mg of samples were used for volatile extraction using two 

different phases: (i) S2 was extracted with a StableFlexTM SPME fiber coated with 75 μm 

carboxen/polydimethylsiloxane (CAR/PDMS) and (ii) S3 was extracted using SPME fibers of 

StableFlexTM coated with 65 μm polydimethylsiloxane/divinylbenzene (PDMS-DVB), 

respectively. All samples were placed in a glass-sealed 20 mL vial and secured with a crimper. 

Each sample was subjected to the headspace extraction for 40 minutes at a constant temperature 

of 80°C. Subsequently, the SPME fiber was directly introduced into the injection port of GC-

MS where it was held for three minutes to facilitate the release of the analytes.  

Finally, the fiber was baked out for 10 minutes in a GC-MS injector after each extraction and 

desorption cycle to minimize contamination.   

2.3. GC/MS Analysis 

The analysis of volatile compounds was performed using the Shimadzu GC/MS Ultra QP2010 

system, was equipped with a mass selective detector (MSD) and a gas chromatography-flame 

ionization detector (GC-FID). A Teknokroma TRB-5MS capillary column (30m× 0.25 mm i.d., 

0.25 film thickness) was used, with helium as the gas carrier at a flow rate of 1.72 mL/min. The 

oven temperature program began with an initial hold at 40°C for two-minutes, followed by a 

gradual increase of 3°C/minute until reaching 200°C, where it was held for 10 minutes. 

Subsequently, the temperature was raised at a 5°C/min ramp to 250°C and maintained for 5 

minutes, resulting in a total analysis time of 70 minutes. The injector temperature was 

maintained at 250°C, and a split injection mode with a 1:100 ratio was employed. 

GC-MS analyses were performed using electron impact ionization (EI) and a quadrupole mass 

selective detector. The temperature program was identical to that of GC-FID, except for the 

detector settings. The MS conditions were as follows: EI ion source temperature of 200°C with 

an ionization energy of 70 eV, quadrupole detector temperature of 150°C, scan rate of 3.2 scans 

per second at m/z scan range (50–650), and MS transfer line temperature of 240°C. Volatile 

compounds were identified by comparing their spectra and retention times with reference 

standards. Component detection was based on a comparison of relative retention times to a C8–

C26 n-alkanes mixture, as well as mass spectra from NIST27, NIST147, WILEY7, WILEY 

W9N11 library data of the GC-MS system, literature data, and standards of the main 

components. 

2.4. Antibacterial Activity Test 

The minimum inhibitory concentration (MIC) values of AS-EO were determined using the 

broth microdilution method (CLSI, 2009; Akkaoui et al., 2020). The following bacterial strains 

were used as test organisms: Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 

27853, Klebsiella pneumoniae ATCC 13883, Staphylococcus aureus ATCC 25923, 

methicillin-resistant S. aureus ATCC 43300 (MRSA), and Enterococcus faecalis ATCC 29212.  

Serial two-fold dilutions of the AS-EO were prepared in Mueller Hinton Broth (Difco, Difco 

Laboratories, Detroit, MI, USA) supplemented with Tween 80 (Merck, Germany) (final 

concentration of 0.5%, v/v). The inoculum concentration was adjusted to 5×105 CFU/mL, 

prepared from a 24-hour bacterial culture. Microplates were then incubated at 35 °C for 18-24 

hours. The MIC value (v/v) was determined as the lowest concentration that completely 
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inhibited visible microbial growth. A set of wells containing only inoculated broth 

supplemented with Tween 80 served as the negative control. 

2.5. Antibiofilm Activity Test 

The antibiofilm activity was assessed using an in-vitro microplate-based biofilm model against 

Pseudomonas aeruginosa PAO1 employing the crystal violet assay. Prior to conducting the 

antibiofilm activity test, the MIC value of the AS-EO against P. aeruginosa PAO1 was 

determined (Eryılmaz et al., 2019; Bali et al., 2019; Jardak et al., 2021). 

2.5.1. Biofilm formation 

P. aeruginosa PAO1 was incubated for 24 hours at 37 ºC in Brain Heart Infusion (BHI) Broth. 

Following incubation, final inoculum suspensions containing ~106 CFU/mL of P. aeruginosa 

were prepared in BHI enriched with 2% sucrose. For each test condition, 100 μL of the 

inoculum suspension were added to the wells of 96-well microtiter plates. The plates were then 

incubated at 37°C for 72 hours to allow the formation of mature biofilms. 

2.5.2. Treating of the biofilm cells with the AS-EO 

After biofilm formation, the medium was aspirated, and non-adhered cells were removed by 

washing the wells with sterile phosphate-buffered saline (PBS, pH 7.2). The essential oil was 

then added to the wells containing mature P. aeruginosa biofilms. The plates were incubated at 

37°C for 24 hours. Following incubation, the well content was aspirated, and the wells were 

washed with PBS. The plates were then dried at room temperature for one hour. To stain biofilm 

cells, 100 µL of 0.5% crystal violet solution was added to each well. After 30 min, the wells 

were washed three times with PBS. Subsequently, an acetone-alcohol (30:70 v/v) solution was 

added to dissolve the bound dye within the biofilm matrix. BHI Broth enriched with 2% sucrose 

was used as a control. The optical density of the dissolved crystal violet dye was measured by 

a microplate reader (Thermo Scientific Multiskan GO Microplate Spectrophotometer, Vantaa, 

Finland) at 620 nm (OD620nm). The percentage of biofilm inhibition values was calculated 

using the following formula: 

Biofilm inhibition% = [(OD (growth control) – OD (sample))/OD (growth control)] x 100 

3. RESULTS  

3.1. Chemical Profile of Essential Oil 

The essential oil compounds from the flowering aerial part of A. sintenisii were extracted using 

both distillation and SPME techniques and subsequently identified by GC/MS.  The yield of 

the essential oil extracted from the flowering aerial parts of A. sintenisii was 0.4% h/h. A total 

of 74, 112, and 78 compounds were identified from the samples obtained by hydrodistillation 

(S1), SPME extraction using CAR-PDMS absorbent (S2) and SPME extraction using PDMS-

DVB adsorbent (S3), respectively. The chemical structures of these compounds were 

determined based on MS and retention index data. Table 1 presents the volatile compounds 

detected in A. sintenisii. 

We observed that all three samples contained significant amount of monoterpenes. 

Furthermore, it was noted that the samples (S2 and S3) obtained using SPME extraction had a 

higher monoterpene content than S1 which was obtained through hydrodistillation. The main 

monoterpenes and major components of the essential oil were identified as 1,8-cineole (11.05–

15.11%), and camphane (10.43-11.94%). A notably high concentration of piperitone (24.29%) 

was detected in S2, whereas lower concentrations were observed in S1 and S3. Conversely, 

borneol was found at 2.65% in S2, while it was present in significantly higher amounts in S1 

(8.28%) and S3 (11.57%). Caryophyllene oxide, a sesquiterpene, was found to at notably high 

concentrations in all three samples in amounts of 4.60% in S1, 4.44% in S2, and 4.50% in S3. 

Additionally, a 4.12% quantity of sesquisabinane hydrate was detected only in the essential oil 

obtained by hydrodistillation. β-eudosmol was identified in S1 and S3 at 4.12% and 3.86%, but 
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was not detected in S2. Meanwhile, artemisia ketone was found in all samples, though it was 

present in particularly high concentrations in S3 (9.04%).  

Table 1. Volatile compounds of A. sintenisii. 

Volatile compounds of A. sintenisii S1 S2  S3 IM 

No 
LRI  

(cal) 

LRI  

(lit) 
Compound % % %  

1 386 385 Acetaldehyde - 0.02 - a 

2 477 475 2-propanone - 0.35 - a 

3 533 532 Isobutanal - 0.02 - a 

4 554 552 2-propenal, 2-methyl- - 0.32 - a 

5 583 582 2-butanone - 0.03 - a 

6 620 619 Crotonaldehyde - 0.04 - a 

7 635 633 Acetic acid - 0.24 - a 

8 645 643 Butanal, 2-methyl- - 0.08 - a 

9 653 652 1-butanol - 0.03 - a,b 

10 676 675 n-pentanal - 0.03 - a,b 

11 723 722 1-butanol, 2-methyl- - 0.07 - a 

12 732 730 Methyl isobutyl ketone - 0.05 - a 

13 733 731 Pyrrole  0.09 - a 

14 750 748 2-butenal, 3-methyl- - 0.02 - a 

15 752 754 1-Pentanol - 0.02 - a,b 

16 774 775 Ethyl pyruvate - 0.01 - a 

17 776 777 Hexanal 0.07 0.25 - a,b 

18 797 798 4-Pentenal, 2-methyl- - 0.01 - a 

19 825 827 2-Hexenal - 0.02 - a 

20 836 837 3-Hexen-1-ol, (E)- - 0.01 0.01 a 

21 855 855 1-Hexanol 0.04 0.01 - a,b 

22 857 856 3-Methyl-3-butenyl acetate - 0.01 - a 

23 867 868 2-Methyl butyl acetate - 0.11 - a 

24 876 878 2,5-Octadiene, 3,4,5,6-tetramethyl- - - 0.04 a 

25 880 881 Heptanal - 0.03 - a,b 

26 885 886 Cyclofenchene - 0.03  a 

27 928 926 α-thujene 0.07 0.18 0.16 a 

28 936 935 α- pinene 1,81 2.29 3.41 a,b 

29 937 937 Benzaldehyde 0.02 0.8 0.01 a,b 

30 940 938 Valeric acid - 0.03 - a 

31 945 947 Camphene 1.5 1.3 1.95 a 

32 956 956 1-heptanol 0.01 - 0.01 a,b 

33 965 966 3-octanone 0.01 - - a 

34 966 968 Sabinene 0.68 - 0.02 a 

35 971 973 β-pinene 6.4 4.74 8.27 a 

36 982 982 Octanal 0.01 0.01 - a,b 

37 984 983 α-Myrcene - - 0.02 a 

38 987 986 3-Hexenyl acetate, (Z)- - 0.01 - a 

39 993 995 Hexanal, 2,2-dimethyl- - 0.05 - a 

40 998 999 α-Phellandrene 0.11 0.55 - a 

41 1000 1001 Yomogi alcohol - - 0.15 a 

42 1005 1007 (+)-4-carene 0.13 - - a 

43 1010 1011 α-terpinene - 0.1 0.07 a 

44 1021 1022 1,8-cineole 13.49 11.05 15.11 a 

45 1023 1024 l-limonene 0.28 0.5 - a 

46 1024 1025 p-Cymol - 1.19 0.25 a 

47 1042 1043 Cyclohexanol, 3,3,5-trimethyl- - - 0.12 a 

48 1045 1047 γ-Terpinene 0.33 0.24 0.19 a 

49 1046 1048 Artemisia ketone 1.69 0.09 9.04 a 

50 1065 1066 cis-linaloloxide 0.25 - - a 

51 1073 1072 Artemisia alcohol 1.27 0.03 0.63 a 

52 1076 1074 3,5-Heptadien-2-one, 6-methyl-(E)- - 1.29 - a 

53 1081 1079 α-terpinolene 0.17 0.08 0.05 a,b 
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54 1083 1081 Ethyl heptanoate 0.33 -  a 

55 1085 1086 Linalool - 0.72 0.58 a,b 

56 1087 1088 Phenethyl alcohol - 0.06 - a 

57 1089 1090 Pentanoic acid, 3-methylbutyl ester 0.02 - - a 

58 1092 1090 isopentyl pentanoate - - 0.03 a 

59 1094 1093 trans-sabinene hydrate 0.51 0.53 1.48 a 

60 1095 1093 Pentyl 3-methylbutanoate - 0.13 - a 

61 1104 1103 cis-pinene hydrate - 0.05 - a 

62 1106 1108 Bicyclo[3,1,1]heptan-2-one, 6,6-

dimethyl-, (1R)- 

- 0.07 - a 

63 1108 1109 Nopinone - - 0.07 a 

64 1112 1110 cis- verbenol - - 0.47 a 

65 1119 1117 2,3,3-trimethyl-3-cyclopentene 

acetaldehyde 

- 0.11 0.15 a 

66 1124 1125 p-menth-2-en-1-ol 0.49 - - a 

67 1126 1127 β-terpineol 0.16 - - a,b 

68 1132 1131 Camphane (Bornane) 10.43 11.94 11.49 a 

69 1135 1134 cis-limonene oxide 0.44 0.04  a 

70 1137 1138 4,5-Heptadien-2-one, 3,3,6-

trimethyl- 

0.23 - - a 

71 1141 1140 Pinocarvone 0.49 - - a 

72 1150 1152 Pinocarveol 0.37 1.37 0.53 a 

73 1152 1153 l-borneol 8.28 2.65 11.57 a,b 

74 1160 1162 p-methyl acetophenone - 0.08 0.01 a 

75 1162 1165 Butanoic acid, 3-hexenyl ester, (Z)- 0.07 - - a 

76 1164 1165 Terpinen-4-ol 0.86 0.22 0.27 a 

77 1166 1165 cis-p-mentha-1(7),8-dien-2-ol - 0.02 - a 

78 1167 1165 Z-3-hexenyl butanoate - - 0.08 a 

79 1168 1165 Thujol 3.54 -  a 

80 1171 1170 Myrtenal - 0.79 0.70 a 

81 1174 1175 n-caprylic acid - 0.02 - a 

82 1178 1177 Methyl chavicol - 0.10  a 

83 1179 1178 Anethofuran - 0.24 0.37 a 

84 1180 1179 cis-piperitol - 0.28 0.24 a 

85 1182 1189 2,6-dimethyl-3,7-octadiene-2-ol 0.17 - - a 

86 1193 1192 α-terpineol - 2.43 1.98 a 

87 1195 1194 trans-3(10)-Caren-2-ol 0.16 0.18 0.14 a 

88 1197 1198 2,7-Dimethyl-2,6-octadiene - - 0.09 a 

89 1199 1200 n-dodecane - 0.03 0.01 a,b 

90 1205 1206 trans-carveol - 0.26 0.16 a 

91 1207 1206 cis-sabinene hydrate acetate - 1.26 0.55 a 

92 1210 1212 Myrtenol - 0.97 0.86 a 

93 1213 1214 Cuminic aldehyde - 0.12  a 

94 1214 1215 cis-geraniol - 0.04 0.15 a 

95 1226 1228 Bornyl formate - - 0.06 a 

96 1230 1233 Piperitone 1.69 24.29 3.89 a 

97 1232 1234 Cyclohexanone, 2,6-bis(2-

methylpropylidene)- 

0.24 - - a 

98 1234 1235 Tetracyclo[6,3,2,0(2,5),0(1,8)] 

tridecan-9-ol, 4,4-dimethyl- 

- 2.32 0.91 a 

99 1235 1237 Isogeraniol - - 0,03 a 

100 1236 1237 Chavicol - 0.27 0.14 a 

101 1245 1247 Myrcenyl acetate - 0.05 - a 

102 1250 1251 3-cyclohexen-1-one, 2-isopropyl-5-

methyl- 

0.07 - - a 

103 1251 1252 Perilla aldehyde - 0.08 - a 

104 1255 1257 Linalyl acetate - 0.02 0.01 a 

105 1265 1267 Lavandulyl acetate - - 0.04 a 

106 1267 1268 Isobornyl acetate 0.04 0.05 - a 

107 1270 1273 Ascaridole - 0.21 - a 
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108 1279 1281 Pinocarvyl acetate - 0.01 0.01 a 

109 1281 1282 Perilla alcohol - 0.17 - a 

110 1284 1285 Isopulegol acetate - 0.09 - a 

111 1320 1322 Myrtenyl acetate - 0.04 - a 

112 1334 1336 Citronellyl acetate - - 0.01 a 

113 1338 1340 Eugenol - - 0.75 a,b 

114 1340 1342 trans-carvyl acetate - 0.05 0.05 a 

115 1342 1344 n-decanoic acid - 0.07 - a 

116 1350 1352 α-cubebene - - 0.03 a 

117 1352 1353 6-dodecanone - - 0.04 a 

118 1357 1359 cis-jasmone 0.15 1.23 1.07 a 

119 1360 1362 Phenol, 2-methoxy-3-(2-propenyl)- - 1.00 - a 

120 1362 1364 Linalyl propionate 1.36 - - a 

121 1374 1376 Methyleugenol 0.17 1.68 1.22 a,b 

122 1375 1376 α-copaene 0.33 0.34 - a 

123 1387 1389 6,8-Nonadien-2-one, 6-methyl-5-(1-

methyl ethylidene) 

- - 0.09 a 

124 1400 1400 n-tetradecane - 0.04 0.02 a,b 

125 1404 1405 (-)-α-cedren - - 0.62 a 

126 1410 1411 Iso-amyl benzoate - 0.04 - a 

127 1411 1412 3-methyl-3-butenyl benzoate - 0.06 - a 

128 1425 1424 trans-caryophyllene 0.39 0.54 1.09 a 

129 1430 1433 α-bergamotene 0.06 - - a 

130 1435 1436 Isoeugenol - 0.09 - a 

131 1444 1446 cis-β-santalene 0.5 - - a 

132 1447 1449 α-caryophyllene - - 0.04 a,b 

133 1450 1449 β-farnesene 0.23 - - a 

134 1452 1455 (+)-aromadendrene 0.25 - 0.52 a 

135 1470 1472 α-curcumene 0.20 0.74 1.31 a 

136 1474 1476 Germacrene D 0.23 - - a 

137 1490 1493 Zingiberene 1.20 0.26 - a 

138 1492 1494 Elemene 0.34 1.17 0.15 a 

139 1495 1497 β-bisabolene - 0.08 0.06 a 

140 1502 1504 6-methyl-3,5-heptadien-2-one 0.25 - - a 

141 1515 1517 β-nerolidol 1.03 - 1.05 a 

142 1525 1523 α-longipinene - 0.40 - a 

143 1550 1551 β-sesquiphellandrene - 0.29 0.36 a 

144 1552 1554 Germacrene B - 0.06 - a 

145 1573 1575 (+) spathulenol 2.52 0.42 0.11 a 

146 1580 1581 (-)-caryophyllene oxide 4.60 4.44 4.50 a 

147 1584 1586 cis-sesquisabinene hydrate 4.12 - - a 

148 1588 1590 Isoaromadendren-epoxid 0.54 - 0.25 a 

149 1590 1592 Salvial-4(14)-en-1-one - 0.15 - a 

150 1592 1593 Carotol - - 1.15 a 

151 1595 1597 α-cedrol - 0.41 - a 

152 1598 1600 Hexadecane - - 0.02 a,b 

153 1616 1618 longipinocarveol, trans- 2.32 - - a 

154 1618 1620 δ-cadinol 0.09 - - a 

155 1647 1649 β-eudesmol 4.12 - 3.86 a 

156 1664 1665 β-neoclovene 0.41 - - a 

157 1666 1668 α-bisabolol 0.43 0.02 0.39 a 

158 1674 1675 Acetic acid, 4a-

methyldecahydronaphthalen-1-yl 

ester 

- - 0.57 a 

159 1698 1700 Bergamotol, Z-,alpha,-trans- 0.86 4.29 - a 

160 1704 1705 Farnesol - 0.02 0.1 a,b 

161 1764 1765 3(10)-Caren-4-ol, acetoacetic acid 

ester 

0.53 - - a 

162 1793 1795 Hexadecanal 0.23 - - a,b 

163 1810 1812 2-decen-1-ol - 0.04 - a 
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164 1840 1842 Hexahydrofarnesyl acetone 0.17 - - a 

165 1896 1897 Geranyl linalool - 0.05 - a 

166 1940 1942 Palmitic acid 0.16 - - a 

167 2000 2000 Eicosane 0.97 - - a 

168 2036 2038 Stearaldehyde - 0.02 0.08 a 

169 2050 2052 9,12-octadecadien-1-ol, (Z,Z)- 0.23 - - a 

170 2400 2400 Tetracosane 0.61 - - a 

171 2452 2455 Fumaric acid, hexyl nonyl ester 0.41 - - a 

172 - - Unknown 0.12 -   

173 - - Unknown - 0.23 -  

   Monoterpenes 57.94 74.75 77.16  

   Sesquiterpenes 24.94 13.63 15.59  

   Others 4.18 8.59 3.34  

TOTAL (%) 87.06 96.97 96.09  

a: Compounds are listed in order of elution from a DB-5 column. b: Identification of components based on standard 

compounds; All values are expressed as mean ± standard deviation of triplicate measurements; LRI (cal): Linear retention 

indices (DB-5 column) calculated against n-alkanes. % values are calculated from FID data using standard LRI (lit): 

https://pubchem.ncbi.nlm.nih.gov S1: sample 1 obtained by Clevenger; S2: sample 2 obtained by CAR-PDMS type of SPME 

fiber; S3: Sample 3 obtained by PDMS-DVB type of SPME 

3.2. Antibacterial Activity Test 

The MIC values (v/v) of the essential oil are presented in Table 2. The oil exhibited the highest 

antibacterial activity against S. aureus ATCC 25923 and S. aureus ATCC 43300 (MRSA), with 

MIC of <1/512 for each bacterium. However, no antibacterial activity was observed against P. 

aeruginosa ATCC 27853.  

Table 2. MIC values of essential oil of A. sintenisii against tested bacteria. 

Test Bacteria 

 
Escherichia 

coli 

ATCC 25922 

Klebsiella 

pneumoniae 

ATCC 13883 

Staphylococcus 

aureus 

ATCC 25923 

Staphylococcus 

aureus 

ATCC 43300 

(MRSA) 

Enterococcus 

faecalis 

ATCC 29212 

Pseudomonas 

aeruginosa 

ATCC 27853 

EO of A. 

sintenisii 
1/128 1/32 <1/512 <1/512 1/8 - 

EO: Essential oil 

3.3. Antibiofilm Activity Test 

The essential oil of A. sintenisii did not exhibit antibiofilm activity against P. aeruginosa PAO1. 

To gain a more comprehensive understanding of its potential antibiofilm properties, further 

studies should be conducted using different test bacteria. 

4. DISCUSSION and CONCLUSION 

While distillation is a well-known and widely used classical method, the headspace solid-phase 

microextraction (HS-SPME) method is a simple, efficient and solvent-free technology that has 

gained increasing preference in analytical studies. SPME integrates sampling, extraction, 

concentration, and sample introduction into a single step without the need for solvents. The 

concentration of analytes in the sample is achieved through direct extraction onto fused silica 

fiber coated with an appropriate stationary phase. In this study, two adsorbents with different 

polarities, CAR-PDMS and PDMS-DVB, were employed in the SPME method to maximize 

the detection of chemical components present in essential oil. (Kataoka et al., 2000; Vas and 

Vekey, 2004). 

Sökmen et al. (2003) investigated the essential oil extracted using the Clevenger apparatus from 

the herbal parts of A. sintenisii collected from Sivas in 2003. The essential oil was characterized 

by a high monoterpene content, with camphor, eucalyptol, β-pinene, borneol, and piperitone 

identified as the major components. The composition of the essential oil obtained using the 
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Clevenger apparatus, one of the extraction methods employed in this study, was compared to 

the findings of Sökmen et al. The results of our investigation align with those of Sökmen et al., 

confirming the consistency in major components. Previous studies have also indicated 

variations in the chemical composition of essential oils derived from the Achillea species.  

These reports highlight that the essential oils of Achillea species, which are primarily rich in 

oxygenated monoterpenes, contain various subgroups of terpenes, including artemisia ketone, 

linalool, camphor, 1,8-cineole, piperitone, α-terpineol, caryophyllene, caryophyllene oxide, 

aromadendrene, β-eudesmol, and spathulenol, as well as hydrocarbons and fatty acids. Besides, 

it is reviewed that the most common components of Achillea essential oils include camphor, 

1,8-cineole (eucalyptol), cis- and trans-sabinene hydrate, borneol, α-thujone, β-thujone, 

linalool, and α-terpineol (Bader et al., 2022; Kordali et al., 2009; Maffei et al., 1993; 

Mohammadhosseini et al., 2017; Sökmen et al., 2003; Strzępek-Gomółka et al., 2021; Toplan 

et al., 2022; Turkmenoğlu et al., 2015). These findings partially align with our study. The 

variations in essential oil composition among Achillea species can be attributed to several 

factors, including geographical location, altitude, and climatic conditions, as well as differences 

in chemotypes and extraction methods used for obtaining essential oils. 

The antibacterial activity exhibited by the essential oil can be attributed to its chemical 

composition, which includes 1,8-cineol, l-borneol, camphane, and β-pinene as the most 

abundant constituents. The main compound of essential oil obtained through distillation was 

1,8-cineole, which is known for its pharmacological properties, particularly its anti-

inflammatory and antioxidant effects. Furthermore, 1,8-cineole has been shown to possess 

antibacterial and anti-quorum sensing properties against a wide range of pathogenic bacteria 

(Cai et al., 2020; Wang et al., 2022). Similarly, l-borneol, another major compound of the 

essential oils, is a natural monoterpenoid with antimicrobial activity and has been reported to 

exhibit synergistic effects with ciprofloxacin (Dorman and Deans, 2000; Leite-Sampaio et al., 

2022). The major sesquiterpenes identified in the essential oil were caryophyllene oxide, cis-

sesquisabinene hydrate, and β-eudesmol. The presence of these bioactive compounds is 

believed to play a crucial role in the antibacterial activity of the essential oil. 

The growing issue of antibiotic resistance necessitates the discovery of new antibacterial agents. 

In this study, the essential oil of A. sintenisii exhibited strong antibacterial activity against S. 

aureus ATCC 25923 and S. aureus ATCC 43300 (MRSA), yet it failed to inhibit the biofilm 

formed by P. aeruginosa PAO1. Methicillin-resistant S. aureus (MRSA) is widely recognized 

as a major cause of both hospital-acquired and community-acquired infections, largely due to 

its multidrug resistance. The significant activity of the essential oil against both S. aureus ATCC 

25923 and S. aureus ATCC 43300 (MRSA) suggests its promising potential as an antimicrobial 

agent against serious, difficult-to-treat infections. Given these findings, further research is 

warranted to explore its full therapeutic potential. Conversely, the essential oil of A. sintenisii, 

demonstrated no efficacy against the preformed biofilm of P. aeruginosa. To further investigate 

its antibiofilm potential, additional studies should be conducted using other biofilm-forming 

microorganisms. It is also required to fully elucidate the medical potential of the essential oil 

and to provide a comprehensive profile of its bioactive properties. 
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