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1. Introduction

In this note we will consider certain 3-blocks with an elementary abelian defect
group D of order 9. Such blocks were first studied systematically by Kiyota [4].
He identified 11 different types of these blocks, depending on the structure of the
relevant inertial quotient, its action on D and a certain 2-cocycle. For some cases
he determined the numbers of irreducible ordinary and Brauer characters in these
blocks; for other cases these are unknown even today.

Here we will be concerned with one of these 11 types. In this case the block B
is nonnilpotent, its inertial quotient is a Klein four group, and it contains a unique
irreducible Brauer character and precisely 6 irreducible ordinary characters. In
the following, we consider B as an algebra over an algebraically closed field k of
characteristic 3. Then the basic algebra A of B is a symmetric local k-algebra of
dimension 9 which has a center of dimension 6. Moreover, A and B are, of course,
Morita equivalent. The isomorphism type of A, and thus the Morita equivalence
class of B, was determined by Kessar in [3].

It is the purpose of this paper to revisit some of her arguments and to provide
variations and simplifications of her methods. Some of these simplifications come
from additional properties of the blocks in question which were not used in [3]. We
hope that our variations may prove to be useful in more general situations. Some
of our methods are inspired by [11], the master’s thesis of the third author written
under the guidance of the first author.
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We also point out a little mistake in Proposition 5.5 of [3]. However, Kessar
assures us that this mistake does not influence the correctness of the main result in
[3]. The starting point of Kessar was as follows. Suppose that G is a finite group
such that the group algebra kG has a block B with elementary abelian defect group
D of order 9. Let b be the Brauer correspondent of B in NG(D), again a block
with defect group D. Using a result of the first author [7], she shows that the basic
algebra C of b has generators x, y and defining relations x3 = y3 = xy+ yx = 0 (cf.
p. 491 of [3]). Her goal is then to show that A and C are isomorphic. This then
ensures that B and b are Morita equivalent.

A result by Puig and Usami [10] shows that B and b are perfectly isometric.
This implies that A,B, b and C have isomorphic centers; in particular, we have
Z(A) ∼= Z(C). In order to show that A ∼= C we are going to use the following fact:
a3 ∈ K(A) = [A,A], for a ∈ J(A). This holds because the defect group D of B has
exponent 3, as will be explained in more detail in Section 2 below. This property
was not used in [3]; it simplifies some of the proofs and some of the defining relations
of our algebras.

We also use the fact that finitely generated modules over group algebras have a
finite complexity (cf. [1]). As the referees of an earlier version of this paper pointed
out, this is the first instance where this method is used to show that certain algebras
cannot be blocks of finite groups. We hope that it will turn out to be useful in other
situations as well.

We now give an outline of the paper. In Section 2, we present some preliminary
results that will be applied in later sections. In Section 3, we investigate a symmetric
k-algebra A of dimension 9 with symmetrising linear form λ, over an algebraically
closed field k of characteristic 3. We suppose that A is local with radical J := J(A)
and socle S := S(A). We assume that Z := Z(A) is isomorphic to Z(C) where C
is as above, and that a3 ∈ K := K(A), for a ∈ J . We will see that there are several
possibilities for A, given by Proposition 3.2, Proposition 3.4 (and Remark 3.5) and
Proposition 3.6. The algebras in Proposition 3.2 and Proposition 3.6 are both
unique (up to isomorphism) while the algebra in Proposition 3.4 depends on a
parameter γ ∈ k.

In Section 4 we will see that the unique simple module for the algebra in Propo-
sition 3.2 has infinite complexity, and in Section 5 we will prove the same thing for
the algebra in Proposition 3.6. So these two algebras cannot come from blocks of
finite groups. Thus our block B has to be Morita equivalent to one of the algebras
in Proposition 3.4 (and Remark 3.5). We also show that the unique simple module
for the algebras in Proposition 3.4 has complexity 2. Hence these algebras cannot
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be distinguished by complexity arguments. Thus at this point one has to fall back
on the arguments in [3], making use of the algebraic group Aut(A).

2. Preliminaries

Let k be an algebraically closed field and let R be a finite-dimensional k-algebra.
We denote by Z(R) the center of R and by K(R) = [R,R] the subspace of R
generated by all elements [r, s] = rs− sr (r, s ∈ R). Moreover, we denote by J(R)
the (Jacobson) radical and by S(R) the (left) socle of R. If R is symmetric then
S(R) is also the right socle of R. An ideal I will always be a two-sided ideal. In
this case we write I ER. In this section we collect some known results that will be
used in the sequel.

Lemma 2.1. Let I be an ideal in R, and let m,n ∈ N such that m ≤ n. Suppose
that In/In+1 is spanned by the residue classes of the products xi 1 . . . xi n (i =
1, . . . , d) where xi j ∈ I for all i, j. Then In+m/In+m+1 is spanned by the residue
classes of the products xj 1 . . . xj mxi 1 . . . xi n (i, j = 1, . . . , d). In particular, we
have

dim(In+m/In+m+1) ≤ (dim(In/In+1))2.

Proof. This is Lemma E of [6]. �

Lemma 2.2. Let R be symmetric and local. If dim(J(R)n/J(R)n+1) = 1 for an
n ∈ N then J(R)n−1 ⊆ Z(R).

Proof. This is Lemma G of [6]. �

Lemma 2.3. Let G be a finite group, and let B be a block of the group algebra kG
with defect group D. Suppose that char(k) = p > 0, and denote the exponent of D
by pe. Moreover, let A be any k-algebra Morita equivalent to B. Then ape ∈ K(A)
for a ∈ J(A).

Proof. For n ∈ N0 we define Tn(B) := {x ∈ B : xp
n ∈ K(B)} (resp. for A).

Then one can show (cf. item (9) of [8]) that T (B) :=
∑∞
n=0 Tn(B) = J(B) +K(B)

holds (resp. for A). Using this, Theorem J in [5] shows that xpe ∈ K(B) for every
x ∈ J(B). Then Corollary 5.3 in [2] implies that also xpe ∈ K(A) for x ∈ J(A). �

Lemma 2.4. Let char(k) = 3, and let C be the k-algebra with generators x, y and
defining relations x3 = y3 = xy+ yx = 0. Then the elements 1, x, y, x2, xy, y2, x2y,
xy2, x2y2 form a k-basis of C. Moreover, the elements 1, x2, y2, x2y, xy2, x2y2 form
a k-basis of Z(C), and J(Z(C))2 = kx2y2. In addition, the elements x2y, xy2, x2y2

form a k-basis of S(Z(C)), and the elements xy, x2y, xy2 form a k-basis of K(C).
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Proof. These assertions can be obtained by straightforward computations. �

3. Some symmetric local algebras of dimension 9

In this section k will denote an algebraically closed field of characteristic 3, and
A will be a symmetric local k-algebra of dimension 9, with symmetrising linear form
λ. We set J := J(A) and S := S(A), and we assume that Z := Z(A) is isomorphic
to Z(C) where C is as in Lemma 2.4. We also suppose that a3 ∈ K := K(A) for
a ∈ J .

For a subspace U of A we set U⊥ := {a ∈ A : λ(aU) = 0}. It is well-known
that Z⊥ = K and J⊥ = S. Moreover, for any ideal I of A, I⊥ is the (left or right)
annihilator of I in A, and thus an ideal in A. We start by proving some general
properties of A (cf. 3.3, 3.4 and 3.5 in [3]).

Lemma 3.1. The following properties hold:

(i) J(Z)EA, J(Z)K = 0 and J(Z)2 = S.
(ii) J(Z) +K = J(Z) +J2 = J(Z) +J(Z)⊥ = S(Z)⊥EA and dimS(Z)⊥ = 6.
(iii) J2 * Z,dim J2 ∈ {5, 6},dim J3 = 3,dim J4 = 1 and J5 = 0.
(iv) ab+ ba ∈ Z for a, b ∈ J ; in particular a2 ∈ Z for a ∈ J .
(v) J3 = J(Z)J = S(Z) = (K ∩ Z)⊕ S EA,K ⊕ S EA and dim(K ⊕ S) = 4.
(vi) There is a ∈ J such that a3 /∈ J4; in particular, a2 /∈ J3 and a /∈ J2.

Proof. (i) For z ∈ J(Z), we have Zz = kz+J(Z)z ⊆ kz+J(Z)2. Hence dimZz ≤
1 + dim J(Z)2 = 2, by Lemma 2.4. Thus A := A/(Az)⊥ is a symmetric local
k-algebra, and dimA = dimAz ≤ 5. Hence Theorem B in [6] shows that A is
commutative, i.e. K ⊆ (Az)⊥ and therefore AzK = 0.

This proves that AJ(Z)K = 0, so that AJ(Z) ⊆ K⊥ = Z. Hence AJ(Z) ⊆
Z ∩ J = J(Z) i.e. J(Z) = AJ(Z) E A, and J(Z)2 E A. Since dim J(Z)2 = 1 this
implies that J(Z)2 = S.

(ii) Since S(Z) = Z ∩ J(Z)⊥ = K⊥ ∩ J(Z)⊥ = (K + J(Z))⊥ we have

dim(K + J(Z)) = dimA− dimS(Z) = 9− 3 = 6

by Lemma 2.4. Since S(Z) ⊆ J(Z), we also have S(Z) = J(Z)∩J(Z)⊥ = (J(Z)⊥+
J(Z))⊥ EA and thus S(Z)⊥ EA.

Now A = k1 + J implies that K = [A,A] = [J, J ] ⊆ J2 and J(Z) + K ⊆
J(Z) + J2. Assume that dim(J(Z) + J2) > 6. Since dim J = 8 this would imply
J = J(Z) + J2 + kx for some x ∈ J . Hence A = Z + kx+ J2 = Z[x] + J2 = Z[x]
by Proposition 5.2 in [9]. Hence A would be commutative, a contradiction.

We conclude therefore that J(Z) +K = J(Z) + J2.
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(iii) By (i) and (ii), we have J(Z)J2 ⊆ J(Z)(J(Z) + J2) = J(Z)(J(Z) + K) =
J(Z)2 = S. Thus J(Z)J3 = 0 and J3 ⊆ J(Z)⊥; in particular, dim J3 ≤ 4.
By (ii), we also have dim(Z + J2) = 7 > dimZ; in particular, J2 * Z. Thus
Lemma 2.2 implies that dim J3/J4 ≥ 2, so that dim J3 ≥ 3, 1 ≤ dim J4 ≤ 2 and
dim J4/J5 = 1. Hence J3 ⊆ Z by Lemma 2.2. Thus J3 ⊆ J(Z) ∩ J(Z)⊥ = S(Z)
by (ii); in particular, dim J3 = 3 by Lemma 2.4. Hence dim J4 = 1, J5 = 0 and
5 ≤ dim J2 ≤ 6.

(iv) First we assume that c2 /∈ Z for some c ∈ J . In case c ∈ kc2 + Z we have
c − αc2 ∈ Z ∩ J = J(Z) for some α ∈ k. Hence multiplication with (1 − αc)−1

yields the contradiction c ∈ J(Z). Thus we must have c /∈ kc2 + Z; in particular,
dim(kc+ kc2 +Z) = 8. We write A = kc+ kc2 + kd+Z with d ∈ A and obtain the
contradiction K = [kc+ kc2 + kd, kc+ kc2 + kd] = k[c, d] + k[c2, d].Thus c2 ∈ Z for
c ∈ J . Hence ab+ ba = (a+ b)2 − a2 − b2 ∈ Z for a, b ∈ J .

(v) By (i), we have J(Z)2J = SJ = 0, so that J(Z)J ⊆ J(Z)⊥∩J(Z) = S(Z) by
(ii). In the proof of (iii), we observed that J3 ⊆ S(Z). Since dim J3 = 3 = dimS(Z)
this implies J3 = S(Z). We write J = kx+ ky + J(Z) + J2 with x, y ∈ J . Then

K = [kx+ ky + J2, kx+ ky + J2] ⊆ k[x, y] + J3 ⊆ k[x, y] + J(Z) = kxy + J(Z)

by (iv). Thus J = kx+ ky + J(Z) +K = kx+ ky + kxy + J(Z) and

J3 ⊆ kx3 + kx2y + kxyx+ kyx2 + kxy2 + kyxy + ky2x+ ky3 + J(Z)J.

Since x2, y2 ∈ J(Z) we have x3, x2y, yx2, xy2, y2x, y3 ∈ J(Z)J . Moreover, we have
xyx = (xy + yx)x − yx2 ∈ J(Z)J , and similarly yxy ∈ J(Z)J . Hence we obtain
S(Z) = J3 = J(Z)J . By (ii), we have

S(Z) = (J(Z) +K)⊥ = J(Z)⊥ ∩K⊥ = (J ∩ Z)⊥ ∩ Z = (J⊥ + Z⊥) ∩ Z

= (S +K) ∩ Z = S + (K ∩ Z) = S ⊕ (K ∩ Z);

for otherwise dimS = 1 would give the contradiction S ⊆ K ∩ Z ⊆ K ⊆ Ker(λ).
Since K ∩ S = 0 and (K + S)⊥ = K⊥ ∩ S⊥ = Z ∩ J = J(Z) E A the assertion

follows.
(vi) We assume that a3 ∈ J4 = S for all a ∈ J . Then a3 ∈ K ∩S = 0, i.e. a3 = 0

for all a ∈ J . Hence for a, b ∈ J , (iv) implies

0 = (a± b)3 = a3± a2b± aba± ba2 + ab2 + bab+ b2a± b3 = ±aba∓ a2b+ bab− ab2

so that bab = ab2 = b2a. Thus, in the situation above, we have [x, xy] = x2y−xyx =
0 and [y, xy] = yxy − xy2 = 0. Hence xy ∈ Z ∩ J = J(Z), a contradiction. �

Now we distinguish the two cases dim J2 = 5 and dim J2 = 6.
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Proposition 3.2. In case dim J2 = 5 the algebra A has a k-basis of the form
1, x, y, z, x2, xy, x3, x2y, x4 where yx = −xy, y2 = x2, z2 = x4 and 0 = xz = zx =
yz = zy = x3y.

Proof. By Lemma 3.1 (vi), there is x ∈ J\J2 such that x2 /∈ J3 and x3 /∈ J4. Then
x /∈ J(Z) + J2 since (c+ d)3 = c3 + d3 = 0 + 0 = 0 for c ∈ J(Z), d ∈ J2. Let y ∈ J
such that J = kx+ky+J(Z)+J2. Then, as in the proof of Lemma 3.1 (v), we have
J = kx+ky+kxy+J(Z), A = kx+ky+kxy+Z andK = k[x, y]⊕k[x, xy]⊕k[y, xy].
Let z ∈ J(Z) such that J(Z) + J2 = kz + J2. Since dim(J2 ∩Z) = 4, we also have
J2 ∩ Z = kx2 ⊕ J3. Thus J2 = kx2 + kxy + kyx + ky2 + J3 = kxy + (J2 ∩ Z) =
kx2 + kxy + J3. Since xy + yx ∈ J2 ∩ Z there is α ∈ k such that xy + yx ≡ αx2

(mod J3). Setting y′ := y + αx we obtain: xy′ + y′x = xy + yx − αx2 ∈ J3. We
may therefore replace y by y′ and thus assume that xy + yx ∈ J3. (Note that this
replacement does not affect the other conditions placed upon x, y, z.)

Since J3 = kx3 ⊕ kx2y ⊕ J4 by Lemma 2.1, there are α, β ∈ k such that xy +
yx ≡ αx3 + βx2y (mod J4). Then x′ := x + βx2 and y′ := y + αx2 satisfy
x′y′ + y′x′ ≡ xy + αx3 + βx2y + yx + αx3 + βyx2 ≡ 0 (mod J4). Hence we can
replace (x, y) by (x′, y′) and thus assume that xy + yx ∈ J4. (We point out again
that this replacement does not affect the other conditions placed upon x, y, z.)

We now have [x, y] = xy−yx ≡ 2xy (mod J4) and therefore 0 = 2x2[x, y] = x3y

by Lemma 3.1 (i). Hence J4 = kx4 + kx3y = kx4 by Lemma 2.1. We conclude
that xy + yx = αx4 for some α ∈ k. Setting y′ := y + αx3 we obtain: xy′ + y′x =
xy+ yx+αx4 +αx4 = 0 = x3y′. We can therefore replace y by y′ and assume that
xy + yx = 0 = x3y. (We stress again that this change does not affect our other
conditions on x, y, z. In the future, we will not mention these things explicitly.)

As before, we have J3 = kx3 ⊕ kx2y ⊕ kx4. Since [y, xy] = yxy − xy2 = xy2

and [y, xy] /∈ S we conclude that y2 /∈ J3. On the other hand, we have y2 ∈
Z ∩ J2 = kx2 + J3. Replacing y by a scalar multiple, if necessary, we may assume
that y2 ≡ x2 (mod J3); in particular, we have x2y2 = x4. Moreover, there are
α, β, γ ∈ k such that y2 = x2 + αx3 + βx2y + γx4. Then xy2 = x3 + αx4 where
xy2, x3 ∈ K. Thus αx4 ∈ K ∩ S = 0, i.e. α = 0.

Similarly, we have y3 = x2y + βx2y2 = x2y + βx4 where y3, x2y ∈ K since
[x, xy] = x2y − xyx = 2x2y. Thus βx4 ∈ K ∩ S = 0, i.e. β = 0.

Setting y′ := y + √γxy we obtain: (y′)2 = y2 + √γ(yxy + xy2) + γxyxy =
x2+γx4−γx2y2 = x2, xy′+y′x = xy+yx+√γ(x2y+xyx) = 0 and x3y′ = 0. Hence
we may replace y by y′ and therefore assume that xy + yx = 0 = x3y = y2 − x2.
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Now I := kx ⊕ ky ⊕ kx2 ⊕ kxy ⊕ kx3 ⊕ kx2y ⊕ kx4 E A. Thus I⊥ E A and
dim I⊥ = 2. If a ∈ I ∩ I⊥ then there are α, β, γ, δ, ε, ζ, η ∈ k such that a =
αx+βy+γx2+δxy+εx3+ζx2y+ηx4. Hence 0 = xa = αx2+βxy+γx3+δx2y+εx4,
i.e. α = β = γ = δ = ε = 0. Furthermore, we have 0 = ay = ζx2y2 = ζx4, i.e.
ζ = 0.

This shows that I ∩ I⊥ = S. Thus dim(I + I⊥) = 7 + 2− 1 = 8, i.e. I + I⊥ = J .
Let z′ ∈ I⊥ such that J = kz′ + I. Since z′I = 0 = Iz′ we have z′ ∈ Z. Since
J2 ⊆ I this implies that z′ /∈ J2. We may therefore replace z by z′ and assume
that z ∈ I⊥.

Then z2 ∈ S = kx4 by Lemma 3.1 (i). In case z2 = 0 we would have the
contradiction z ∈ J⊥ = S ⊆ I. Thus we must have z2 6= 0. Hence we replace z by
a scalar multiple and therefore assume that z2 = x4. So we finally have a basis of
the desired form. �

Next we turn to the case dim J2 = 6.

Lemma 3.3. In case dim J2 = 6 there are x, y ∈ J such that J = kx ⊕ ky ⊕ J2

and (xy + yx ∈ J3 or y2 ∈ J3).

Proof. By Lemma 3.1, there are x, y ∈ J such that x2 /∈ J3 and J = kx⊕ky⊕J2.
Then

J2 = kx2 + kxy + kyx+ ky2 + J3 = kxy + kx2 + ky2 + k(x+ y)2 + J3.

Since dim J2 = 6 this implies that dim(kx2 +ky2 +k(x+y)2 +J3) ≥ 5 = dim J(Z).
Thus J(Z) = kx2 + ky2 + k(x+ y)2 + J3, by (iv) and (v) of Lemma 3.1. Replacing
y by x+ y, if necessary, we may assume: J(Z) = kx2 + ky2 + J3.

Then there are α, β ∈ k such that xy + yx ≡ αx2 + βy2 (mod J3). We may
assume that α 6= 0 or β 6= 0; for otherwise the result follows. Without loss of
generality, we may assume that α 6= 0. Replacing y by α−1y, if necessary, we may
assume that α = 1.

In case β 6= 1 we set x′ := x+ σy and y′ := x+ τy where σ := 2 +
√

1− β and
τ := 2−

√
1− β. Then we also have J = kx′ ⊕ ky′ ⊕ J2 and

x′y′+y′x′ ≡ 2x2 +(σ+τ)(xy+yx)+2στy2 ≡ 2x2 +xy+yx+2βy2 ≡ 0 (mod J3).

Thus we may replace (x, y) by (x′, y′) and obtain the assertion.
Finally, let β = 1 and set y′ := y − x. Then J = kx ⊕ ky′ ⊕ J2 and (y′)2 =

y2 − yx− xy + x2 ∈ J3. Thus we can replace y by y′ and obtain the assertion. �
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Note that U := {a2 +J3 : a ∈ J} is a linear subspace of J2/J3 in case xy+ yx ∈
J3, but not in case y2 ∈ J3. Thus the two cases distinguished in Lemma 3.3 are
essentially different. Now we treat these two cases separately.

Proposition 3.4. Let x, y ∈ J such that J = kx ⊕ ky ⊕ J2 and xy + yx ∈ J3.
Choosing x and y appropriately, the elements 1, x, y, x2, xy, y2, x2y, xy2, x2y2 form
a k-basis of A with 0 = xy + yx = x3y = xy3 = x3 − βxy2 = y3 − γx2y where
β ∈ {0, 1} and γ ∈ k.

Proof. Our hypothesis implies that J2 = kx2 +kxy+kyx+ky2 +J3 = kxy+J(Z)
and A = Z ⊕ kx ⊕ ky ⊕ kxy. Thus K = k[x, y] ⊕ k[x, xy] ⊕ k[y, xy] and K ∩ Z =
k[x, xy]⊕k[y, xy]. Hence J3 = (K ∩Z)⊕S = k[x, xy]⊕k[y, xy]⊕S where [x, xy] ≡
−x2y (mod J4) and [y, xy] ≡ xy2 (mod J4). Therefore J3 = kx2y⊕ kxy2⊕ J4. In
particular, there are α, β ∈ k such that xy + yx ≡ αx2y + βxy2 (mod J4). Setting
x′ := x+ αx2 and y′ := y + βy2 we obtain J = kx′ ⊕ ky′ ⊕ J2 and

x′y′ + y′x′ ≡ xy + yx+ α(x2y + yx2) + β(xy2 + y2x) ≡ 0 (mod J4).

We can therefore replace (x, y) by (x′, y′) and then assume that xy + yx ∈ J4.
Now x3y = x2yx = −x3y implies that x3y = 0. Thus J4 = kx3y+kx2y2 = kx2y2

by Lemma 2.1. In particular, there exists α ∈ k such that xy+yx = αx2y2. Setting
y′ := y+αxy2 we get: xy′+y′x = xy+yx+α(x2y2 +x2y2) = 0. Therefore we may
replace y by y′ and assume that xy = −yx. Now xy3 = yxy2 = −xy3, i.e. xy3 = 0.

Since x3 ∈ K ∩Z = kx2y⊕ kxy2 there are α, β ∈ k such that x3 = αx2y+βxy2.
Then 0 = x3y = αx2y2, i.e. α = 0 and x3 = βxy2. Replacing y by

√
βy, if

necessary, we may assume that β ∈ {0, 1}. Similarly, there exist γ, δ ∈ k such that
y3 = γx2y + δxy2. Then 0 = xy3 = δx2y2, i.e. δ = 0 and y3 = γx2y. �

Remark 3.5. (i) In case β = 0 we can replace x by √γx, if necessary, and thus
assume that γ ∈ {0, 1}.

(ii) Thus let β = 1. In case γ = 0 we can exchange x and y and are then back
in the case β = 0. Thus we may assume γ 6= 0.

In case γ = 1 we get x4 = x2y2 = y4, i.e. x2(x2 − y2) = 0 = y2(x2 − y2). But
then x2 − y2 ∈ S(Z) = J3, a contradiction.

Hence we may assume that 0 6= γ 6= 1. Note that our results here differ slightly
from those in [3]. The reason is a mistake in [3]; one of the changes of bases there
is misleading since it is in conflict with earlier assumptions. However, the author of
[3] stresses that this mistake has no influence on the correctness of the main result.

Using the fact that (ζx + ηy)3 = (ζ3β + ζη2)xy2 + (ζ2η + η3γ)x2y for ζ, η ∈ k
one shows that W := {a+J2 : a ∈ J, a3 ∈ J4} is a point in case β = 1, 0 6= γ 6= 1,
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a line in case β = 0, γ = 1 and a union of two distinct lines in case β = γ = 0.
It remains to prove that in case β = 1, 0 6= γ 6= 1 different choices of γ lead to
non-isomorphic algebras. Thus suppose that we have two k-algebras A, Ã with
k-bases 1, x, y, x2, xy, y2, x2y, xy2, x2y2 and 1, x̃, ỹ, x̃2, x̃ỹ, ỹ2, x̃2ỹ, x̃ỹ2, x̃2ỹ2 respec-
tively. Suppose also that the relations 0 = xy + yx = x3y = xy3 = x3 − xy2 =
y3 − γx2y and 0 = x̃ỹ + ỹx̃ = x̃3ỹ = x̃ỹ3 = x̃3 − x̃ỹ2 = ỹ3 − γ̃x̃2ỹ hold where
γ, γ̃ ∈ k \ {0, 1}. Finally, suppose that f : A→ Ã is an isomorphism of k-algebras,
and set J := J(A), J̃ := J(Ã). Using the relations xy + yx = 0 and x̃ỹ + ỹx̃ = 0
one easily gets that either f(kx + J2) = kx̃ + J̃2 and f(ky + J2) = kỹ + J̃2,
or f(kx + J2) = kỹ + J̃2 and f(ky + J2) = kx̃ + J̃2. Then, using the relations
x3 − xy2 = 0 = y3 − γx2y and x̃3 − x̃ỹ2 = 0 = ỹ3 − γ̃x̃2ỹ one concludes that γ = γ̃

in both cases.
We now consider the remaining case.

Proposition 3.6. Let x, y ∈ J such that J = kx⊕ ky⊕ J2 and y2 ∈ J3. Choosing
x and y appropriately, the elements 1, x, y, x2, xy, yx, x3, xyx, x4 form a k-basis of
A with 0 = y2 = x2y = yx2 = yxy − x3.

Proof. Our hypothesis implies that J2 = kx2 ⊕ kxy ⊕ kyx ⊕ J3. As before, we
conclude that A = Z ⊕ kx ⊕ ky ⊕ kxy and K = k[x, y] ⊕ k[x, xy] ⊕ k[y, xy] where
0 6≡ [y, xy] ≡ yxy (mod J4), i.e. yxy /∈ S. Since y ·yxy = 0 we must have xyxy 6= 0,
so that J4 = kxyxy. Since the case xyx ∈ kyxy+J4 would lead to the contradiction
xyxy = 0, we must have J3 = kxyx⊕ kyxy ⊕ J4.

Thus there are α, β ∈ k such that x2y ≡ αxyx + βyxy (mod J4). Then 0 =
x2y2 = αxyxy implies that α = 0. Setting x′ := x − βy we obtain (x′)2y ≡
x2y−βyxy ≡ 0 (mod J4). Hence we may replace x by x′ and assume that x2y ∈ J4.

Again, there are α, β ∈ k such that x3 ≡ αxyx + βyxy (mod J4). Since 0 =
x3y = αxyxy we conclude that α = 0. Since J(Z) = kx2⊕k(xy+yx)⊕J3 we must
have x2 /∈ S(Z), by Lemma 3.1 (v). Since x2(xy + yx) = x3y + x2yx = 0 + 0 = 0
this implies x4 6= 0; in particular, we have x3 /∈ J4 and therefore β 6= 0. Now we
can replace y by

√
βy and assume that β = 1. Thus x3 − yxy ∈ J4.

Now we have J3 = kx3⊕kxyx⊕kx4. Hence the elements 1, x, y, x2, xy, yx, x3, xyx,
x4 form a basis of A, and there exists α ∈ k such that x2y = αx4. Setting y′ :=
y−αx2 we have x2y′ = 0, and x3−y′xy′ = x3−yxy+αx3y+αyx3 = x3−yxy ∈ J4.
We may therefore replace y by y′ and then assume that α = 0. Thus we now have
x2y = 0.

Hence there are α, β ∈ k such that y2 ≡ αx3 + βxyx (mod J4). Then y3 =
βxyxy ∈ K ∩ S = 0, so that β = 0 and y2 ≡ αx3 (mod J4). Suppose that α 6= 0.
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Then we set x′ := αx and y′ := αy. Hence we have (y′)2 ≡ α3x3 ≡ (x′)3 (mod J4)
and y′x′y′ ≡ α3x3 ≡ (x′)3 (mod J4) and, moreover, (x′)2y′ = 0. Thus we can
replace (x, y) by (x′, y′) and therefore assume that α = 1. Thus together we may
assume that α ∈ {0, 1}.

Let γ ∈ k such that yxy = x3 + γx4. Since K contains x3 and [y, xy] =
yxy − xy2 = x3 + γx4 − αx4 we must have (γ − α)x4 ∈ K ∩ S = 0, so that
γ = α.

Let β ∈ k such that y2 = αx3 + βx4. We set y′ := y + βxyx. Then 1, x, y′, x2,
xy′ = xy, y′x = yx, x3, xy′x = xyx, x4 form a basis of A with x2y′ = 0 = x5,
(y′)2 = αx3 and y′xy′ = x3 + αx4. Thus we may replace y by y′ and therefore
assume that β = 0.

Suppose that α = 1. We set y′ := y + xy + yx. Then 1, x, y′, x2, xy′ = xy +
xyx, y′x = yx + xyx, x3, xy′x = xyx, x4 form a basis of A with x2y′ = 0, x5 = 0,
(y′)2 = 0 and y′xy′ = x3. Thus we may replace y by y′ and therefore assume that
α = 0. �

Hence we are now left with the algebras in Proposition 3.2, in Proposition 3.4
and Remark 3.5, and in Proposition 3.6. It is easy to verify that these algebras are
indeed local and symmetric, satisfy a3 ∈ K for a ∈ J , and have a center isomorphic
to Z(C). In the next sections, we are going to compute the complexity of their
unique simple module.

4. The algebra in Proposition 3.2

The following proposition which was kindly provided by J. F. Carlson shows that
the algebra A of Proposition 3.2 leads to a contradiction. The argument here differs
considerably from the one in [3] which made use of the outer automorphism group
of the k-algebra A.

Proposition 4.1. Let k be a field (of arbitrary characteristic), and let A be a split
local k-algebra such that the following conditions hold:

(1) There are x, y, z ∈ J(A) such that x + J(A)2, y + J(A)2, z + J(A)2 are
k-linearly independent in J(A)/J(A)2, and

(2) xz = zx = yz = zy = 0.

Then there are a minimal projective resolution

. . . // P2
ϕ2 // P1

ϕ1 // P0
ϕ0=ε // k // 0

of the trivial A-module k ∼= A/J(A) and, for i ∈ N0, an A-basis ei,1, . . . , ei,ni
of Pi

with the following properties:
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(a) If i = 2m is even then ni ≥ 2m and zei,1, . . . , zei,2m ∈ Ki := Ker(ϕi).
(b) If i = 2m+1 is odd then ni ≥ 2m and xei,1, yei,1, . . . , xei,2m , yei,2m ∈ Ki :=

Ker(ϕi).

Proof. Suppose first that i = m = 0. Then we set P0 := A and let ϕ0 = ε :
A // k be canonical. Moreover, we set n0 := 1 = 20 and e0,1 := 1. Then
ϕ0 : P0 // k is a projective cover, and ze0,1 ∈ J(A) = K0.

Now suppose that we have already constructed P0, . . . , Pi and ϕ0, . . . , ϕi with
the desired properties. If i = 2m is even then Pi has an A-basis ei,1, . . . , ei,ni

such that ni ≥ 2m and zei,1, . . . , zei,2m ∈ Ki. Since ϕi : Pi // Ki−1 is a
projective cover, we have Ki = Ker(ϕi) ⊆ J(A)Pi. Thus also J(A)Ki ⊆ J(A)2Pi.
Since zei,1 + J(A)2Pi, . . . , zei,2m + J(A)2Pi are k-linearly independent in J(A)Pi/
J(A)2Pi, so are zei,1 + J(A)Ki, . . . , zei,2m + J(A)Ki in Ki/J(A)Ki. Thus there
are a projective cover ϕi+1 : Pi+1 // Ki and an A-basis ei+1,1, . . . , ei+1,ni+1

of Pi+1 such that ni+1 ≥ 2m and ϕi+1(ei+1,j) = zei,j for j = 1, . . . , 2m. Hence
ϕi+1(xei+1,j) = xzei,j = 0 and ϕi+1(yei+1,j) = yzei,j = 0 for j = 1, . . . , 2m, and
we have constructed a projective cover ϕi+1 : Pi+1 // Ki with the desired
properties.

Finally, if i = 2m+ 1 is odd then Pi has an A-basis ei,1, . . . , ei,ni
such that ni ≥

2m and xei,1, yei,1, . . . , xei,2m , yei,2m ∈ Ki. As before, we have J(A)Ki ⊆ J(A)2Pi.
Since xei,1 +J(A)2Pi, yei,1 +J(A)2Pi, . . . , xei,2m +J(A)2Pi, yei,2m +J(A)2Pi are k-
linearly independent in J(A)Pi/J(A)2Pi, so are xei,1 +J(A)Ki, yei,1 +J(A)Ki, . . . ,
xei,2m +J(A)Ki, yei,2m +J(A)Ki in Ki/J(A)Ki. Hence there are a projective cover
ϕi+1 : Pi+1 // Ki and an A-basis ei+1,1, . . . , ei+1,ni+1 of Pi+1 such that ni+1 ≥
2m+1 and ϕi+1(ei+1,2j−1) = xei,j and ϕi+1(ei+1,2j) = yei,j for j = 1, . . . , 2m.
Therefore ϕi+1(zei+1,2j−1) = zxei,j = 0 and ϕi+1(zei+1,2j) = zyei,j = 0 for j =
1, . . . , 2m, i.e. zei+1,1, . . . , zei+1,2m+1 ∈ Ki+1 = Ker(ϕi+1). So we have constructed
a projective cover ϕi+1 : Pi+1 // Ki with the desired properties also in this
case. �

Remark 4.2. In the situation above we have dimPi ≥ (dimA)2bi/2c for i ∈ N0.
In particular, the sequence (dimPi)∞i=0 grows exponentially. Thus the algebra A

cannot be Morita equivalent to a block of a group algebra; for otherwise the se-
quence (dimPi)∞i=0 would have polynomial growth since finitely generated modules
over blocks of finite group algebras have finite complexity (cf. [1], for example).

In the next section, we will show that also the unique simple module over the
k-algebra of Proposition 3.6 has infinite complexity. Thus it cannot be Morita
equivalent to a block of a group algebra.
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5. The algebra in Proposition 3.6

In this section, k will again be an algebraically closed field of characteristic 3, and
A will be the k-algebra of Proposition 3.6. Thus A has a k-basis 1, x, y, x2, xy, yx, x3,
xyx, x4 with relations 0 = y2 = x2y = yx2 = yxy − x3. We are going to show that
the unique simple A-module A/J ∼= k has infinite complexity. First we observe that
the (left) A-module Ay is spanned over k by the elements y = 1 · y, xy = x · y, x3 =
yx · y, x4 = xyx · y. In particular J3 · y 6= 0. We will denote a minimal projective
resolution of k by

P• : . . . // P2
ϕ2 // P1

ϕ1 // P0
ϕ0 // k // 0 .

Moreover let Kn := Ker(ϕn−1) for n ∈ N and K0 := k. We remind the reader
that for each n ∈ N the map ϕn factors into a projective cover Pn // // Kn of
Kn followed by the inclusion map Kn

� � // Pn−1 . Hence we get the following
picture with short exact sequences on the diagonals:

0

!!

0 0

!!

0

K3

==

� p

  

K1

==

� p

!!
. . . // P3

>> >>

ϕ3 // P2

�� ��

ϕ2 // P1

>> >>

ϕ1 // P0 .

. .
.
/�

@@

K2

��

/�

??

0

??

0

We observe that in our case, since A is a local k-algebra, every Pn for n ∈ N0 is
isomorphic to a finite direct sum of copies of A. Moreover, since ϕ0 can be chosen
as the natural projection of A onto A/J ∼= k, we obtain P0 = A, K1 = J and JK1 =
J2. Using this we obtain K1/JK1 = k(y + JK1)⊕ k(x+ JK1). Therefore we may
choose P1 := A2. Let B1 = {e1, e2} be an A-basis of P1, i. e. P1 = Ae1⊕Ae2. Then
ϕ1 : P1 → P0 can be chosen to be the map defined by ϕ1(a1e1 +a2e2) := a1y+a2x

for a1, a2 ∈ A. Doing so we observe that ye1, x
2e1 ∈ Ker(ϕ1) = K2 and that

ϕ1(e1) = y and ϕ1(e2) = x.
In the remaining part of this section we will inductively show that for n ∈ N the

number Nn of indecomposable direct summands of Pn can be bounded from below
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by the n-th Fibonacci number (which is true for n = 1 by the above calculations).
Since the Fibonacci sequence is of exponential (and not of polynomial) growth this
will show the claim we made on the complexity of the A-module k.

In view of this let us fix some m ∈ N and assume we have already constructed
the following part of a minimal projective resolution of k:

Pm
ϕm // Pm−1

ϕm−1 // . . .
ϕ2 // P1

ϕ1 // P0 = A
ϕ0 // k // 0.

As mentioned before let Nn for n ∈ N be the number of indecomposable direct sum-
mands of Pn, i. e. Pn ∼= ANn for n ∈ N. Let us denote by Bm = {e1, e2, . . . , eNm} an
A-basis of Pm, so that we have Pm = Ae1⊕Ae2⊕· · ·⊕AeNm . Since ϕm is a projective
cover of Km we obtain Km+1 = Ker(ϕm) ⊆ JPm, and therefore JKm+1 ⊆ J2Pm.
In particular the fact that A has Loewy length 5 yields J3 · JKm+1 ⊆ J5Pm = 0.
That means every element of JKm+1 is necessarily annihilated by J3. Finally let
αm, βm ∈ N0 with βm ≤ αm be such that the following conditions hold:

(i) ye1, ye2, . . . , yeαm
∈ Km+1.

(ii) x2e1, x
2e2, . . . , x

2eβm ∈ Km+1.
(iii) There exists an A-basis Bm−1 = {d1, . . . , dNm−1} of Pm−1 with the following

two properties:
• ϕm(ei) = ydi for i = 1, . . . , βm.
• If for i > βm we have ϕm(ei) =

∑Nm−1
j=1 ai,jdj with ai,j ∈ J for j =

1, . . . , Nm−1, then for j = 1, . . . , βm we even have ai,j ∈ kx+ J2.

The third item from the above list might seem quite confusing at start. The essence
of it is that we obtain restrictions on the occurring coefficients ai,j in the decom-
position of image elements of ϕm with regard to Bm−1 for certain preimages. Note
that we may always assume that ai,j ∈ J since we have Im(ϕm) = Ker(ϕm−1) ⊆
JPm−1 =

⊕Nm−1
j=1 (Jdj).

From our calculations before one readily checks that conditions (i)-(iii) hold for
m = 1 with α1 = β1 = 1 (take B0 = {1} and B1 = {e1, e2} in the notation
from before). Next we will check that under the assumptions (i)-(iii) we have
ye1, ye2, . . . , yeαm

/∈ JKm+1 and x2e1, x
2e2, . . . , x

2eβm
/∈ JKm+1. As we remarked

in the beginning of this section, we have J3 · yei 6= 0 for each i = 1, . . . , αm.
Since, on the other hand, we noticed that J3 annihilates JKm+1 we immedi-
ately get that yei /∈ JKm+1 for i = 1, . . . , αm. Hence it remains to show that
x2e1, x

2e2, . . . , x
2eβm

/∈ JKm+1. Let us therefore fix some j ∈ {1, . . . , βm} and
assume that x2ej ∈ JKm+1. Then, in particular, we have x2ej ∈ JKm+1ej . Next
we will show that this forces xej ∈ Km+1ej + kyxej + kxyxej . In view of this
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let us assume that xej /∈ Km+1ej + kyxej + kxyxej . We have yej ∈ Km+1ej by
(i) and x2ej ∈ Km+1ej by (ii). Since Ay + Ax2 = ky + kx2 + kxy + kx3 + kx4

we obtain (ky + kx2 + kxy + kx3 + kx4)ej ⊆ Km+1ej . Using this and our as-
sumption on x we conclude that xej + s /∈ Km+1ej for any s ∈ (ky + J2)ej . For
if xej + s ∈ Km+1ej for some s ∈ (ky + J2)ej then we could write s = s′ + s′′

with s′ ∈ (ky + kx2 + kxy + kx3 + kx4)ej ⊆ Km+1ej and s′′ ∈ (kyx + kxyx)ej .
Hence we had xej + s′′ ∈ Km+1ej but then xej ∈ Km+1ej + kyxej + kxyxej , a
contradiction. Taking into consideration the fact that Km+1 ⊆ JPm we infer that
Km+1ej ⊆ (ky + J2)ej . But this implies that x2ej ∈ JKm+1ej ⊆ (kxy + J3)ej ,
a contradiction. This shows that xej ∈ Km+1ej + kyxej + kxyxej , so that there
are ξ ∈ Km+1 and λ, µ ∈ k with xej = ξej + λyxej + µxyxej . Hence ξ is of the
following form:

ξ = (x− λyx− µxyx)ej +
∑

ej 6=e∈Bm

wee

with certain we ∈ J for e ∈ Bm\{ej}. Applying ϕm to the element ξ ∈ Km+1 and
using the first part of (iii) yields

0 = ϕm(ξ) = (xy − λx3 − µx4)dj +
∑

ej 6=e∈Bm

weϕm(e).

In particular we obtain, by using (iii) again,

(xy − λx3 − µx4)dj = −
∑

ej 6=e∈Bm

weϕm(e)dj

= −

 Nm∑
i=βm+1

wei
ai,j

 dj

with ai,j being the elements we introduced in (iii) when decomposing ϕm(ei) into an
A-linear combination of the elements in Bm−1. Because we have wei

∈ J and ai,j ∈
kx+ J2 for i > βm this last chain of equalities implies xydj ∈ (kx2 + kyx+ J3)dj ,
clearly a contradiction. This shows that

• ye1, ye2, . . . , yeαm ∈ Km+1\JKm+1, and
• x2e1, x

2e2, . . . , x
2eβm ∈ Km+1\JKm+1.

If we can now show that the cosets of ye1, ye2, . . . , yeαm
and x2e1, x

2e2, . . . , x
2eβm

are linearly independent in Km+1/JKm+1, then the factor module Km+1/JKm+1

has a k-basis consisting of the union of the cosets of the elements ye1, . . . , yeαm
,

x2e1, . . . , x
2eβm

and those of some other elements r1, . . . , rl ∈ Km+1 with l ∈ N0.
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Let us therefore assume that

αm∑
i=1

λiyei +
βm∑
i=1

µix
2ei ∈ JKm+1

for some λ1, . . . , λαm
, µ1, . . . , µβm

∈ k. Multiplying this inclusion with xyx and
using that J3 annihilates JKm+1 we obtain:

αm∑
i=1

λix
4ei = 0

and hence λ1 = · · · = λαm
= 0 since the ei are A-linearly independent. Thus we

have
βm∑
i=1

µix
2ei ∈ JKm+1.

Multiplying this with ej from the right we obtain µjx
2ej ∈ JKm+1ej for j =

1, . . . , βm. But now, apart from the coefficient µj , we are in the exact same situ-
ation as before when we were indirectly showing that x2ej /∈ JKm+1. Using the
same argument as in that case shows that µj must be zero since else we obtain a
contradiction. Hence µ1 = · · · = µβm

= 0 and this shows that we can write

Km+1/JKm+1 = kye1 ⊕ · · · ⊕ kyeαm
⊕ kx2e1 ⊕ · · · ⊕ kx2eβm

⊕ kr1 ⊕ · · · ⊕ krl,

where for s ∈ Km+1 we denote the coset s+ JKm+1 by s.
Since Bm is an A-basis of Pm and r1, . . . , rl ∈ Km+1 ⊆ JPm =

⊕Nm

j=1(Jej) we
can write

ri =
Nm∑
j=1

bi,jej

with bi,j ∈ J for i = 1, . . . , l and j = 1, . . . , Nm. Writing bi,j = byi,jy + b′i,j with
byi,j ∈ k and b′i,j ∈ kx+ J2 for i = 1, . . . , l and j = 1, . . . , αm we may replace ri by
ri −

∑αm

j=1 b
y
i,jyej for i = 1, . . . , l. On the level of cosets this just induces a change

of basis of Km+1/JKm+1. We may hence assume that the A-coefficients bi,j belong
to kx+ J2 for i = 1, . . . , l and j = 1, . . . , αm.

We can now construct a projective cover Pm+1 ofKm+1. For this we set Nm+1 :=
αm+βm+l and Pm+1 := ANm+1 . Note that Nm+1 ≥ αm+βm. Fixing some A-basis
Bm+1 = {f1, f2, . . . , fNm+1} of Pm+1 we have

Pm+1 = Af1⊕· · ·⊕Afαm
⊕Afαm+1⊕· · ·⊕Afαm+βm

⊕Afαm+βm+1⊕· · ·⊕AfNm+1 .
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We obtain a projective cover ϕm+1 : Pm+1 → Km+1 by setting

ϕm+1(fi) := yei for i = 1, . . . , αm,

ϕm+1(fαm+i) := x2ei for i = 1, . . . , βm,

ϕm+1(fαm+βm+i) := ri for i = 1, . . . , l,

and extending this A-linearly to all of Pm+1. From this we immediately infer:

ϕm+1(yfi) = y2ei = 0 for i = 1, . . . , αm,

ϕm+1(yfi) = (yx2)ei−αm
= 0 for i = αm + 1, . . . , αm + βm,

ϕm+1(x2fi) = (x2y)ei = 0 for i = 1, . . . , αm,

so that

yf1, yf2, . . . , yfαm+βm
∈ Km+2 and

x2f1, x
2f2, . . . , x

2fαm ∈ Km+2

hold. In view of the definition of αm and βm we set αm+1 := αm + βm and
βm+1 := αm. Then conditions (i) and (ii) are fulfilled for m + 1 instead of m and
Bm+1 instead of Bm. Using the "old" A-basis Bm = {e1, e2, . . . , eNm

} of Pm and
βm+1 = αm we see that also (iii) holds for m+ 1:

• By definition of ϕm+1 we have ϕm+1(fi) = yei for i = 1, . . . , αm.
• For i = 1, . . . , βm we have, by definition, ϕm+1(fαm+i) = x2ei and x2 ∈
kx + J2 for every such i. For i = 1, . . . , l we have, again by definition,
ϕm+1(fαm+βm+i) = ri. But we had written ri =

∑Nm

j=1 bi,jej and chosen
the ri so that bi,j ∈ kx+ J2 for j = 1, . . . , αm.

Now we are in the same situation as before and we can apply induction. Hence we
have α1 = 1, β1 = 1 and for any n ∈ N:

αn+1 = αn + βn,

βn+1 = αn,

Nn+1 ≥ αn + βn.

Since the sequence (αn)∞n=1 is the shifted Fibonacci sequence by the upper recursion,
and we have Nn+1 ≥ αn for n ∈ N, the claim on the number of indecomposable
summands of Pn follows. We have thus shown:

Proposition 5.1. Let A be the k-algebra of Proposition 3.6. Then the unique
simple A-module has infinite complexity.
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6. The algebras in Proposition 3.4

In this section, k will again be an algebraically closed field of characteristic 3,
and A will be one of the k-algebras in Proposition 3.4. Thus A has a k-basis
1, x, y, x2, xy, y2, x2y, xy2, x2y2 with relations xy + yx = 0, x3y = 0, xy3 = 0, x3 =
βxy2, y3 = γx2y where β, γ ∈ k. By Remark 3.5 we may assume that one of the
following holds:

(I) β = 0 and γ ∈ {0, 1}, or
(II) β = 1 and γ ∈ k \ {0, 1}.

For these types of symmetric algebras we want to calculate the complexity of the
trivial A-module k which is also the maximal possible complexity occurring among
all finite dimensional A-modules. We will show even more, namely:

Proposition 6.1. The unique simple A-module A/J ∼= k has complexity 2 given
that βγ 6= 1.

Since in either of the cases (I) and (II) we always have βγ 6= 1 this will show:

Corollary 6.2. The unique simple A-module A/J ∼= k has complexity 2 in both
case (I) and case (II).

Before we start we observe the following:

Remark 6.3. (i) The case β = γ = 0 actually leads to an algebra which is Morita-
equivalent to a block of a group algebra with defect group C2

3 . It is well known that
for this block the maximal complexity is 2.

(ii) Assuming βγ 6= 1 we can leave out the two relations x3y = 0 and xy3 = 0
in the definition of A at the beginning of this section since these follow from the
relations x3 = βxy2 and y3 = γx2y. For we have x3y = βxy3 = βγx3y and
xy3 = γx3y = γβxy3. Bringing everything on one side and dividing by 1 − βγ in
each of these two equations yields x3y = 0 resp. xy3 = 0.

Moreover we observe that the given relations on A imply the following additional
identities which will frequently be used later on:

x(x2 − βy2) = (x2 − βy2)x = 0,

y(x2 − βy2) = (x2 − βy2)y = (1− βγ)x2y,

x(γx2 − y2) = (γx2 − y2)x = (βγ − 1)xy2,

y(γx2 − y2) = (γx2 − y2)y = 0.
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Now we will calculate the first two terms of a minimal projective resolution

P• : . . . // P2
ϕ2 // P1

ϕ1 // P0
ϕ0 // k // 0

of the trivial A-module k. In order to do this we consider the short exact sequence

0 // K1 = J // A
ϕ0 // K0 = k // 0 ,

where ϕ0 is just the canonical projection of A onto A/J ∼= k. Clearly K1/JK1 =
kx ⊕ ky, where x resp. y are the images of x resp. y in K1/JK1. Using this we
get the second term of the minimal projective resolution by considering the short
exact sequence

0 // K2 // A2 ϕ1 // K1 // 0 .

Let e1, e2 denote the standard A-basis of P1 := A2. Then ϕ1 may be defined by
the rule a1e1 + a2e2 7→ a1x + a2y for a1, a2 ∈ A. With dim(K2) = dim(A2) −
dim(K1) = 10 and a short calculation we easily see that K2 has the k-basis
(x2−βy2)e1, x

2ye1, x
2y2e1, (γx2−y2)e2, xy

2e2, x
2y2e2, ye1+xe2, xye1+x2e2, y

2e1−
xye2, xy

2e1− x2ye2 and using J = Ax+Ay we obtain K2/JK2 = k(x2 − βy2)e1⊕
k(γx2 − y2)e2 ⊕ kye1 + xe2.

With the notation given above we will now continue to define projective covers
ϕn for n ≥ 2 and therefore compute a complete minimal projective resolution of
k. Doing this we will obtain that for each n ≥ 0 the projective module Pn can be
chosen to be An+1. Therefore there is a minimal projective resolution of k of the
form

. . . // A3 ϕ2 // A2 ϕ1 // A
ϕ0 // k // 0 ,

and this shows that k has complexity 2.
For now let n ≥ 1 be a fixed natural number. Denote the standard A-basis of

An+1 by e1, . . . , en+1 and the standard A-basis of An by d1, . . . , dn. We can define
the map ϕn : An+1 → An by defining it on the set {e1, . . . , en+1} and extending
this A-linearly to all of An+1. We set ϕn(ei) := e′i for i = 1, . . . , n + 1 where
e′1, . . . , e

′
n+1 ∈ An are defined as follows:
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(1) If n = 4q for some q ∈ N then

e′1 := (x2 − βy2)d1

e′2 := (γx2 − y2)d2

e′4m+3 := yd4m+1 − xd4m+3 for m = 0, . . . , q − 1

e′4m+4 := xd4m+2 − yd4m+4 for m = 0, . . . , q − 1

e′4m+5 := (γx2 − y2)d4m+3 + (x2 − βy2)d4m+5 for m = 0, . . . , q − 2

e′4m+6 := (x2 − βy2)d4m+4 + (γx2 − y2)d4m+6 for m = 0, . . . , q − 2

e′4q+1 := (γx2 − y2)d4q−1 + (−1)q(x2 − βy2)d4q

(2) If n = 4q + 1 for some q ∈ N then

e′1 := xd1

e′2 := yd2

e′4m+3 := yd4m+1 − (x2 − βy2)d4m+3 for m = 0, . . . , q − 1

e′4m+4 := xd4m+2 − (γx2 − y2)d4m+4 for m = 0, . . . , q − 1

e′4m+5 := (γx2 − y2)d4m+3 + xd4m+5 for m = 0, . . . , q − 1

e′4m+6 := (x2 − βy2)d4m+4 + yd4m+6 for m = 0, . . . , q − 2

e′4q+2 := (x2 − βy2)d4q + (−1)qyd4q+1

(3) If n = 4q + 2 for some q ∈ N0 then

e′1 := (x2 − βy2)d1

e′2 := (γx2 − y2)d2

e′4m+3 := yd4m+1 + xd4m+3 for m = 0, . . . , q − 1

e′4m+4 := xd4m+2 + yd4m+4 for m = 0, . . . , q − 1

e′4m+5 := (γx2 − y2)d4m+3 + (x2 − βy2)d4m+5 for m = 0, . . . , q − 1

e′4m+6 := (x2 − βy2)d4m+4 + (γx2 − y2)d4m+6 for m = 0, . . . , q − 1

e′4q+3 := yd4q+1 + (−1)qxd4q+2
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(4) If n = 4q + 3 for some q ∈ N0 then

e′1 := −xd1

e′2 := −yd2

e′4m+3 := yd4m+1 − (x2 − βy2)d4m+3 for m = 0, . . . , q

e′4m+4 := xd4m+2 − (γx2 − y2)d4m+4 for m = 0, . . . , q − 1

e′4m+5 := (γx2 − y2)d4m+3 − xd4m+5 for m = 0, . . . , q − 1

e′4m+6 := (x2 − βy2)d4m+4 − yd4m+6 for m = 0, . . . , q − 1

e′4q+4 := xd4q+2 − (−1)q(γx2 − y2)d4q+3

We now show by induction that

An+1 ϕn // An
ϕn−1 // . . .

ϕ2 // A2 ϕ1 // A
ϕ0 // k // 0 (∗)

is part of a minimal projective resolution of k. For n = 1 we have already done this
above and since we have K2/JK2 = k(x2 − βy2)e1 ⊕ k(γx2 − y2)e2 ⊕ kye1 + xe2,
the claim also holds true for n = 2. Thus let n ≥ 2, and suppose that we have
already shown that (∗) is part of a minimal projective resolution of k. We need to
show that

An+2 ϕn+1 // An+1 ϕn // An
ϕn−1 // . . .

ϕ2 // A2 ϕ1 // A
ϕ0 // k // 0 (∗∗)

is also part of a minimal projective resolution of k. Hence it suffices to prove that
ϕn ◦ ϕn+1 = 0 and that ϕn+1 : An+2 → Kn+1 := Ker(ϕn) is a projective cover. In
order to show these facts we distinguish the cases (1), . . . , (4). We will only consider
the cases (1) and (2) since, up to some signs and the calculation of the last element
e′n+1, case (3) is analogous to case (1) and case (4) is analogous to case (2). First
we note that the exactness of (∗) implies that

dim(Kn+1) =

9r + 1 : n = 2r − 1 for some r ∈ N

9r + 8 : n = 2r for some r ∈ N0
,

which can be shown by induction.
Now let us consider case (1), i.e. n = 4q for some q ∈ N. Then dim(Kn+1) =

18q+ 8. One checks that the following 18q+ 8 elements are contained in Kn+1 and
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k-linearly independent:

xe1, x
2e1, xye1, x

2ye1, xy
2e1, x

2y2e1,

ye2, xye2, y
2e2, x

2ye2, xy
2e2, x

2y2e2,

x2y2e4m+3 (m = 0, . . . , q − 1),

x2y2e4m+4 (m = 0, . . . , q − 1),

xye4m+5, x
2ye4m+5, xy

2e4m+5, x
2y2e4m+5 (m = 0, . . . , q − 1),

xye4m+6, x
2ye4m+6, xy

2e4m+6, x
2y2e4m+6 (m = 0, . . . , q − 2),

ye1 − (x2 − βy2)e3, y
2e1 + (βγ − 1)x2ye3,

xe2 − (γx2 − y2)e4, x
2e2 + (1− βγ)xy2e4,

(γx2 − y2)e4m+3 + xe4m+5, (βγ − 1)xy2e4m+3 + x2e4m+5 (m = 0, . . . , q − 1),

(x2 − βy2)e4m+4 + ye4m+6, (1− βγ)x2ye4m+4 + y2e4m+6 (m = 0, . . . , q − 2),

ye4m+5 − (x2 − βy2)e4m+7, y
2e4m+5 + (βγ − 1)x2ye4m+7 (m = 0, . . . , q − 2),

xe4m+6 − (γx2 − y2)e4m+8, x
2e4m+6 + (1− βγ)xy2e4m+8 (m = 0, . . . , q − 2),

(x2 − βy2)e4q + (−1)qye4q+1, (1− βγ)x2ye4q + (−1)qy2e4q+1.

Again, using J = Ax + Ay, we can extract the following k-basis of JKn+1

consisting of 14q + 6 elements from this list:

x2e1, xye1, x
2ye1, xy

2e1, x
2y2e1,

xye2, y
2e2, x

2ye2, xy
2e2, x

2y2e2,

x2y2e4m+3 (m = 0, . . . , q − 1),

x2y2e4m+4 (m = 0, . . . , q − 1),

xye4m+5, x
2ye4m+5, xy

2e4m+5, x
2y2e4m+5 (m = 0, . . . , q − 1),

xye4m+6, x
2ye4m+6, xy

2e4m+6, x
2y2e4m+6 (m = 0, . . . , q − 2),

y2e1 + (βγ − 1)x2ye3,

x2e2 + (1− βγ)xy2e4,

(βγ − 1)xy2e4m+3 + x2e4m+5 (m = 0, . . . , q − 1),

(1− βγ)x2ye4m+4 + y2e4m+6 (m = 0, . . . , q − 2),

y2e4m+5 + (βγ − 1)x2ye4m+7 (m = 0, . . . , q − 2),

x2e4m+6 + (1− βγ)xy2e4m+8 (m = 0, . . . , q − 2),

(1− βγ)x2ye4q + (−1)qy2e4q+1.
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Hence the cosets of the following 4q + 2 elements form a k-basis of Kn+1/JKn+1

and therefore prove the proposition for case (1):

f ′1 := xe1,

f ′2 := ye2,

f ′4m+3 := ye4m+1 − (x2 − βy2)e4m+3 (m = 0, . . . , q − 1),

f ′4m+4 := xe4m+2 − (γx2 − y2)e4m+4 (m = 0, . . . , q − 1),

f ′4m+5 := (γx2 − y2)e4m+3 + xe4m+5 (m = 0, . . . , q − 1),

f ′4m+6 := (x2 − βy2)e4m+4 + ye4m+6 (m = 0, . . . , q − 2),

f ′4q+2 := (x2 − βy2)e4q + (−1)qye4q+1.

Finally we consider case (2), i.e. n = 4q + 1 for some q ∈ N. Then dim(Kn+1) =
18q+10 and as before one checks that the following 18q+10 elements are contained
in Kn+1 and k-linearly independent:

(x2 − βy2)e1, x
2ye1, x

2y2e1, (γx2 − y2)e2, xy
2e2, x

2y2e2,

xy2e4m+3, x
2y2e4m+3, x

2ye4m+4, x
2y2e4m+4 (m = 0, . . . , q − 1),

x2ye4m+5, x
2y2e4m+5, xy

2e4m+6, x
2y2e4m+6 (m = 0, . . . , q − 1),

ye1 + xe3, xye1 + x2e3, y
2e1 − xye3, xy

2e1 − x2ye3,

xe2 + ye4, x
2e2 + xye4, xye2 − y2e4, x

2ye2 − xy2e4,

(γx2 − y2)e4m+3 + (x2 − βy2)e4m+5 (m = 0, . . . , q − 1),

(x2 − βy2)e4m+4 + (γx2 − y2)e4m+6 (m = 0, . . . , q − 1),

ye4m+5 + xe4m+7, xye4m+5 + x2e4m+7 (m = 0, . . . , q − 2),

y2e4m+5 − xye4m+7, xy
2e4m+5 − x2ye4m+7 (m = 0, . . . , q − 2),

xe4m+6 + ye4m+8, x
2e4m+6 + xye4m+8 (m = 0, . . . , q − 2),

xye4m+6 − y2e4m+8, x
2ye4m+6 − xy2e4m+8 (m = 0, . . . , q − 2),

ye4q+1 + (−1)qxe4q+2, xye4q+1 + (−1)qx2e4q+2,

y2e4q+1 − (−1)qxye4q+2, xy
2e4q+1 − (−1)qx2ye4q+2.
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Now the following 14q + 7 elements form a k-basis of JKn+1:

x2ye1, x
2y2e1, xy

2e2, x
2y2e2,

xy2e4m+3, x
2y2e4m+3, x

2ye4m+4, x
2y2e4m+4 (m = 0, . . . , q − 1),

x2ye4m+5, x
2y2e4m+5, xy

2e4m+6, x
2y2e4m+6 (m = 0, . . . , q − 1),

xye1 + x2e3, y
2e1 − xye3, xy

2e1 − x2ye3,

x2e2 + xye4, xye2 − y2e4, x
2ye2 − xy2e4,

xye4m+5 + x2e4m+7 (m = 0, . . . , q − 2),

y2e4m+5 − xye4m+7, xy
2e4m+5 − x2ye4m+7 (m = 0, . . . , q − 2),

x2e4m+6 + xye4m+8 (m = 0, . . . , q − 2),

xye4m+6 − y2e4m+8, x
2ye4m+6 − xy2e4m+8 (m = 0, . . . , q − 2),

xye4q+1 + (−1)qx2e4q+2, y
2e4q+1 − (−1)qxye4q+2,

xy2e4q+1 − (−1)qx2ye4q+2.

Thus the cosets of the following 4q + 3 elements form a k-basis of Kn+1/JKn+1

and therefore prove case (2):

f ′1 := (x2 − βy2)e1,

f ′2 := (γx2 − y2)e2,

f ′4m+3 := ye4m+1 + xe4m+3 (m = 0, . . . , q − 1),

f ′4m+4 := xe4m+2 + ye4m+4 (m = 0, . . . , q − 1),

f ′4m+5 := (γx2 − y2)e4m+3 + (x2 − βy2)e4m+5 (m = 0, . . . , q − 1),

f ′4m+6 := (x2 − βy2)e4m+4 + (γx2 − y2)e4m+6 (m = 0, . . . , q − 1),

f ′4q+3 := ye4q+1 + (−1)qxe4q+2.

This finishes the proof.
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