ON THE IDEAL-BASED ZERO-DIVISOR GRAPHS

H. Ansari-Toroghy, F. Farshadifar and F. Mahboobi-Abkenar
Received: 13 March 2017; Accepted: 02 August 2017
Communicated by A. Çiğdem Özcan

Abstract

Let R be a commutative ring. In this paper, we study the annihilator ideal-based zero-divisor graph by replacing the ideal I of R with the ideal $A n n_{R}(M)$ for an R-module M. Also, we investigate a certain subgraph of the annihilator ideal-based zero-divisor graph and obtain some related results.

Mathematics Subject Classification (2010): 13A99, 05C99, 13C99
Keywords: Zero-divisor, coreduced, complemented

1. Introduction

Throughout this paper, R will denote a commutative ring with identity. Also, \mathbb{N} and \mathbb{Z} will denote the ring of positive integers and the ring of integers respectively. Furthermore, for an R-module M, the symbol \bar{R} will be used to denote $R / A n n_{R}(M)$.

A graph G is defined as the pair $(V(G), E(G))$, where $V(G)$ is the set of vertices of G and $E(G)$ is the set of edges of G. For two distinct vertices a and b of $V(G)$, the notation $a-b$ means that a and b are adjacent. A graph G is said to be complete if $a-b$ for all distinct $a, b \in V(G)$, and G is said to be empty if $E(G)=\emptyset$. Note by this definition that a graph may be empty even if $V(G) \neq \emptyset$. An empty graph could also be described as totally disconnected. If $|V(G)| \geq 2$, a path from a to b is a series of adjacent vertices $a-v_{1}-v_{2}-\ldots-v_{n}-b$. The length of a path is the number of edges it contains. A cycle is a path that begins and ends at the same vertex in which no edge is repeated, and all vertices other than the starting and ending vertex are distinct. If a graph G has a cycle, the girth of G (notated $g(G))$ is defined as the length of the shortest cycle of G; otherwise, $g(G)=\infty$. A graph G is connected if for every pair of distinct vertices $a, b \in V(G)$, there exists a path from a to b. If there is a path from a to b with $a, b \in V(G)$, then the distance from a to b is the length of the shortest path from a to b and is denoted $d(a, b)$. If there is not a path between a and $b, d(a, b)=\infty$. The diameter of G is $\operatorname{diam}(G)=\sup \{d(a, b) \mid a, b \in V(G)\}$.

The idea of a zero-divisor graph of a commutative ring was introduced by I. Beck in 1988 [13]. He assumes that all elements of the ring are vertices of the
graph and was mainly interested in colorings and then this investigation of coloring of a commutative ring was continued by Anderson and Naseer in [2]. Anderson and Livingston [3], studied the zero-divisor graph whose vertices are the nonzero zero-divisors.

Let $Z(R)$ be the set of zero-divisors of R. The zero-divisor graph of R denoted by $\Gamma(R)$, is a graph with vertices $Z^{*}(R)=Z(R) \backslash\{0\}$ and for distinct $x, y \in Z^{*}(R)$ the vertices x and y are adjacent if and only if $x y=0$. This graph turns out to exhibit properties of the set of the zero-divisors of a commutative ring with best way. The zero-divisor graph helps us to study the algebraic properties of rings using graph theoretical tools. We can translate some algebraic properties of a ring to graph theory language and then the geometric properties of graphs help us explore some interesting results in algebraic structures of rings. The zero-divisor graph of a commutative ring has also been studied by several other authors (e.g., [4,5,14]).

In [22], Redmond introduced the definition of the zero-divisor graph with respect to an ideal. Let I be an ideal of R. The zero-divisor graph of R with respect to I, denoted by $\Gamma_{I}(R)$, is the graph whose vertices are the set

$$
\{x \in R \backslash I \mid x y \in I \text { for some } y \in R \backslash I\}
$$

with distinct vertices x and y are adjacent if and only if $x y \in I$. The zero-divisor graph with respect to an ideal has been studied extensively by several authors (e.g., [1,6,16,17,19,21]).

In this paper, we study the annihilator ideal-based zero-divisor graph by replacing the ideal I of R with the ideal $A n n_{R}(M)$ for an R-module M. Moreover, we investigate a certain subgraph of $\Gamma_{I}(R)$ and obtain some related results.

2. On the annihilator ideal-based zero-divisor graphs over comultiplication modules

Let M be an R-module. The subset $Z_{R}(M)$ of R is defined by

$$
\{r \in R \mid \exists 0 \neq m \in M \text { such that } r m=0\}
$$

and set $Z_{R}^{*}(M)=Z_{R}(M) \backslash A n n_{R}(M)$.
An R-module M is said to be a multiplication module if for every submodule N of M there exists an ideal I of R such that $N=I M$.

Lemma 2.1. Let M be an R-module. Then $Z_{R}(\bar{R}) \subseteq Z_{R}(M)$. Moreover, the reverse inequality holds when M is a multiplication R-module.

Proof. Clearly, $Z_{R}(\bar{R}) \subseteq Z_{R}(M)$. Now let M be a multiplication R-module and $r \in Z_{R}(M)$. Then there exists $0 \neq m \in M$ such that $r m=0$ and $R m=I M$ for
some ideal I of R. As $m \neq 0$, there exists $0 \neq a \in I$ such that $a M \neq 0$. Therefore, $r a M=0$ implies that $r \in Z_{R}(\bar{R})$.

The following example shows that the condition " M is a multiplication R module" in the last statement of Lemma 2.1 can not be omitted.

Example 2.2. Let p be a prime number and M be the \mathbb{Z}-module $\mathbb{Z}_{p \infty}$. Then $Z_{\mathbb{Z}}(M)=p \mathbb{Z}$, but $Z_{\mathbb{Z}}\left(\mathbb{Z} / A n n_{\mathbb{Z}}(M)\right)=\{0\}$.

Proposition 2.3. Let r be a vertex of $\Gamma_{A n n_{R}(M)}(R)$ such that $A n n_{R}(r M)=P$ be a prime ideal of R. Then r is adjacent to each vertex s such that $A n n_{R}(s M) \nsubseteq P$. In particular, r is adjacent to each vertex s of $\Gamma_{\operatorname{Ann}_{R}(M)}(R)$ such that $r \neq s$ and $s^{2}=0$.

Proof. Let s be a vertex of $\Gamma_{A n n_{R}(M)}(R)$ such that $A n n_{R}(s M) \nsubseteq P$. Then there exists $t \in A n n_{R}(s M) \backslash P$. Thus $t s M=0$ implies that $t s \in A n n_{R}(M) \subseteq$ $A n n_{R}(r M)=P$. As $t \notin P$, we have $s \in P=A n n_{R}(r M)$. Hence $r-s$, as needed. For the last assertion assume that $A n n_{R}(s M) \subseteq P=A n n_{R}(r M)$ for some vertex s of $\Gamma_{A n n_{R}(M)}(R)$ such that $s^{2}=0$. Then $A n n_{R}(s) \subseteq A n n_{R}(s M)$ implies that $r M A n n_{R}(s) \subseteq r M A n n_{R}(s M)=0$. But as $s^{2}=0, s \in \operatorname{Ann}_{R}(s)$. Therefore, $r s M=0$ and $r-s$.

Proposition 2.4. Let M be a multiplication R-module. Then for each $r \in Z_{R}^{*}(M)$ there exists a non-zero ideal I of R such that $I \nsubseteq A n n_{R}(M), I \subseteq Z_{R}(M)$ and $r-a$ for each $a \in I \backslash$ Ann $_{R}(M)$.

Proof. First note that $Z_{R}^{*}(M)$ is equal to the set of vertices of $\Gamma_{A n n_{R}(M)}(R)$ by Lemma 2.1. Let $r \in Z_{R}^{*}(M)$. Then there exists $0 \neq m \in M$ such that $r m=0$. As M is a multiplication R-module, there exists a non-zero ideal I of R such that $R m=I M$ and so $I \nsubseteq A n n_{R}(M)$. As $r M \neq 0$, there exists $m_{1} \in M$ such that $r m_{1} \neq 0$. Now $0=r(R m)=r I M$ implies that $I \subseteq Z_{R}(M)$, and $r-a$ for each $a \in I \backslash \operatorname{Ann}_{R}(M)$.

Let M be an R-module. The subset $W_{R}(M)$ of R is defined by $\{r \in R \mid r M \neq M\}$ [23] and set $W_{R}^{*}(M)=W_{R}(M) \backslash \operatorname{Ann}_{R}(M)$.
M is said to be Hopfian (resp. co-Hopfian) if every surjective (resp. injective) endomorphism f of M is an isomorphism.

A submodule N of M is said to be idempotent if $N=\left(N:_{R} M\right)^{2} M$. Also, M is said to be fully idempotent if every submodule of M is idempotent [11].

Theorem 2.5. Let M be a fully idempotent R-module such that $\Gamma_{A n n_{R}(M)}(R)$ is complete. Then M is a simple module.

Proof. Let N be a proper submodule of M. Then $N=\left(N:_{R} M\right) M=\left(N:_{R}\right.$ $M)^{2} M$. Clearly, $\left(N:_{R} M\right) \subseteq W_{R}(M / N) \subseteq W_{R}(M)$. By [11, 2.7], M is co-Hopfian. Thus $W_{R}(M) \subseteq Z_{R}(M)$. So by Lemma 2.1, $Z_{R}(\bar{R})=Z_{R}(M)$ because M is a multiplication R-module by [11, 2.7]. Therefore, $W_{R}(M) \subseteq Z_{R}(\bar{R})$. Hence $\left(N:_{R}\right.$ $M) \subseteq Z_{R}(\bar{R})$. If $\left(N:_{R} M\right)=A n n_{R}(M)$, then $N=0$. Otherwise, as $\Gamma_{A n n_{R}(M)}(R)$ is complete, $r s M=0$ for each $r, s \in\left(N:_{R} M\right)-A n n_{R}(M)$. Therefore, $\left(N:_{R}\right.$ $M)^{2} M=0$. This implies that $N=\left(N:_{R} M\right)^{2} M=0$, as needed.

Corollary 2.6. Let M be a fully idempotent R-module. Then $\Gamma_{A n n_{R}(M)}(R)$ is complete if and only if M is a simple R-module.

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)[7]$.

Lemma 2.7. Let M be an R-module. Then $Z_{R}(\bar{R}) \subseteq W_{R}(M)$. Moreover, the reverse inequality holds when M is a comultiplication R-module.

Proof. Let $r \in Z_{R}(\bar{R})$. Then there exist $\overline{0} \neq s+A n n_{R}(M) \in \bar{R}$ such that $r\left(s+A n n_{R}(M)\right)=\overline{0}$. Hence $r s M=0$. Now if $r M=M$, then $0=s r M=s M \neq 0$, a contradiction. Therefore, $r M \neq M$. Thus $Z_{R}(\bar{R}) \subseteq W_{R}(M)$. Now let M be a comultiplication R-module and $r \in W_{R}(M)$. Then $r M \neq M$ and $r M=\left(0:_{M} I\right)$ for some ideal I of R. Hence $\operatorname{Ir} M=0$. If $I M=0$, then $M \subseteq\left(0:_{M} I\right)=r M$, a contradiction. Thus there exists $a \in I \backslash A n n_{R}(M)$. Therefore, raM = 0 implies that $r \in Z_{R}(\bar{R})$ as required.

The following example shows that the converse of the Lemma 2.7 is not true in general.

Example 2.8. Let M be the \mathbb{Z}-module \mathbb{Z}. Then $W_{\mathbb{Z}}(M)=\mathbb{Z} \backslash\{1,-1\}$. But $Z_{\mathbb{Z}}\left(\mathbb{Z} / A n n_{\mathbb{Z}}(M)\right)=\{0\}$.

Proposition 2.9. Let M be a comultiplication R-module. Then for each $r \in$ $W_{R}^{*}(M)$ there exists a non-zero ideal I of R such that $I \nsubseteq \operatorname{Ann}_{R}(M), I \subseteq W_{R}(M)$ and $r-a$ for each $a \in I \backslash A n n_{R}(M)$.

Proof. First note that $W_{R}^{*}(M)$ is equal to the set of vertices of $\Gamma_{A n n_{R}(M)}(R)$ by Lemma 2.7. Let $r \in W_{R}^{*}(M)$. Then $r M \neq M$. As M is a comultiplication R module, there exists a non-zero ideal I of R such that $r M=\left(0:_{M} I\right)$. Thus $r I M=0$ and $I M \neq 0$. If $I M=M$, then $r M=0$, a contradiction. Hence $I \subseteq W_{R}(M), I \nsubseteq A n n_{R}(M)$ and $r-a$ for each $a \in I \backslash \operatorname{Ann}_{R}(M)$.

A submodule N of an R-module M is said to be coidempotent if $N=\left(0:_{M}\right.$ $\left.A n n_{R}(N)^{2}\right)$. Also, an R-module M is said to be fully coidempotent if every submodule of M is coidempotent [11].

Theorem 2.10. Let M be a fully coidempotent R-module such that $\Gamma_{A n n_{R}(M)}(R)$ is complete. Then M is a simple module.

Proof. Let N be a non-zero submodule of M. Then $N=\left(0:_{M} \operatorname{Ann} n_{R}(N)\right)=$ $\left(0:_{M} \operatorname{Ann}_{R}(N)^{2}\right)$. Clearly, $\operatorname{Ann}_{R}(N) \subseteq Z_{R}(N) \subseteq Z_{R}(M)$. By [11, 3.9], M is Hopfian. Thus $Z_{R}(M) \subseteq W_{R}(M)$. So by Lemma 2.7, $Z_{R}(\bar{R})=W_{R}(M)$ because M is a comultiplication R-module by [11, 3.5]. Therefore, $Z_{R}(M) \subseteq Z_{R}(\bar{R})$. Hence $A n n_{R}(N) \subseteq Z_{R}(\bar{R})$. If $A n n_{R}(N)=A n n_{R}(M)$, then $N=M$. Otherwise, as $\Gamma_{A n n_{R}(M)}(R)$ is complete, $r s M=0$ for each $r, s \in A n n_{R}(N) \backslash A n n_{R}(M)$. Therefore, $A n n_{R}(N)^{2} M=0$. This implies that $M \subseteq\left(0:_{M} A n n_{R}(N)^{2}\right)=N$, as needed.

Corollary 2.11. Let M be a fully coidempotent R-module. Then $\Gamma_{A n n_{R}(M)}(R)$ is complete if and only if M is a simple R-module.

Recall that an R-module M is called a reduced module if $r m=0$ implies that $r M \cap R m=0$, where $r \in R$ and $m \in M$. It is clear that M is a reduced module if $r^{2} m=0$ for $r \in R, m \in M$ implies that $r m=0$.

Let M be an R-module. A proper submodule N of M is said to be completely irreducible if $N=\bigcap_{i \in I} N_{i}$, where $\left\{N_{i}\right\}_{i \in I}$ is a family of submodules of M, implies that $N=N_{i}$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [18]. Thus the intersection of all completely irreducible submodules of M is zero.

An R-module M is said to be semisecond if $r M=r^{2} M$ for each $r \in R$ [9].
Definition 2.12. We say that an R-module M is coreduced if ($L:_{M} r$) $=M$ implies that $L+\left(0:_{M} r\right)=M$, where $r \in R$ and L is a completely irreducible submodule of M.

Theorem 2.13. Let M be an R-module. Then the following are equivalent.
(a) $r^{2} M \subseteq L$ implies that $r M \subseteq L$, where $r \in R$ and L is a completely irreducible submodule of M.
(b) $r^{2} M \subseteq N$ implies that $r M \subseteq N$, where $r \in R$ and N is a submodule of M.
(c) M is coreduced.
(d) M is semisecond.

Proof. $(a) \Rightarrow(b)$ Let $r \in R$ and N be a submodule of M such that $r^{2} M \subseteq N$. There exist completely irreducible submodules $L_{i}(i \in I)$ of M such that $N=$ $\cap_{i \in I} L_{i}$. Thus $r^{2} M \subseteq N=\cap_{i \in I} L_{i} \subseteq L_{i}$. This implies that $r M \subseteq L_{i}$ for each $i \in I$ by part (a). Therefore, $r M \subseteq \cap_{i \in I} L_{i}=N$, as required.
$(b) \Rightarrow(a)$ This is clear.
$(c) \Rightarrow(a)$ Let $r \in R$ and L be a completely irreducible submodule of M such that $r^{2} M \subseteq L$. Then $\left(\left(L:_{M} r\right):_{M} r\right)=M$. One can see that $\left(L:_{M} r\right)$ is a completely irreducible submodule of M. Hence by part (c), $\left(L:_{M} r\right)+\left(0:_{M} r\right)=M$. Thus $\left(L:_{M} r\right)=M$ and so $r M \subseteq L$.
$(d) \Rightarrow(c)$ Let $r \in R$ and L be a completely irreducible submodule of M such that $r M \subseteq L$. Suppose that $x \in M$. By part (d), $r M=r^{2} M$. Therefore, $r x=r^{2} y$ for some $y \in M$. So that $x-r y \in\left(0:_{M} r\right)$. Thus $x=x-r y+r y \in\left(0:_{M} r\right)+r M$. Hence $M=\left(0:_{M} r\right)+r M \subseteq\left(0:_{M} r\right)+L \subseteq M$.
$(a) \Leftrightarrow(d)$ This follows from $[9,4.4]$.
A submodule N of an R-module M is said to be copure if $\left(N:_{M} I\right)=N+\left(0:_{M} I\right)$ for every ideal I of $R[8]$. Also an R-module M is said to be fully copure if every submodule of M is copure [11].

Lemma 2.14. (a) Let R be a von Neumann regular ring. Then every R module is coreduced.
(b) Every fully copure R-module is a coreduced module. In particular, every fully coidempotent R-module is a coreduced module.

Proof. (a) This follows from the fact that every finitely generated ideal is generated by an idempotent.
(b) This is clear. Note that every fully coidempotent R-module is a fully copure R-module [11, 3.13].

Proposition 2.15. Let M be a coreduced R-module. Then we have the following.
(a) $A n n_{R}(M)$ is a radical ideal, and hence \bar{R} is a reduced ring.
(b) Every homomorphic image of M is a coreduced R-module.

Proof. (a) Suppose that $r^{n} \in \operatorname{Ann}_{R}(M)$ for some $n \geq 1$. Then $r^{n} M=0$ implies that $r^{n} M \subseteq L$ for each completely irreducible submodule L of M. Thus $r M \subseteq L$ for each completely irreducible submodule L of M by Theorem 2.13 . Therefore $r M \subseteq$ $\cap_{i \in I} L_{i}=0$, where $\left\{L_{i}\right\}_{i \in I}$ is a collection of all completely irreducible submodules of M.
(b) This is clear.

The following examples show that the classes of reduced modules and coreduced modules are different.

Example 2.16. Every divisible module over an integral domain R is coreduced. In particular, for each prime number p the \mathbb{Z}-module $\mathbb{Z}_{p^{\infty}}$ is a coreduced \mathbb{Z}-module. But since $p^{2}\left(1 / p^{2}+\mathbb{Z}\right)=0$ and $p\left(1 / p^{2}+\mathbb{Z}\right) \neq 0$, the \mathbb{Z}-module $\mathbb{Z}_{p \infty}$ is not a reduced \mathbb{Z}-module.

Example 2.17. The \mathbb{Z}-module \mathbb{Z} is reduced. But since $2^{2} \mathbb{Z} \subseteq 4 \mathbb{Z}$ and $2 \mathbb{Z} \nsubseteq 4 \mathbb{Z}$, the \mathbb{Z}-module \mathbb{Z} is not coreduced by Theorem 2.13.

A vertex a of a graph G is called a complement of b, if b is adjacent to a and no vertex is adjacent to both a and b; that is, the edge $a-b$ is not an edge of any triangle in G. In this case, we write $a \perp b$. If every vertex of G has a complement, then G is called complemented, and it is called uniquely complemented if it is complemented and any two complements of vertex set are adjacent to the same vertices. As in Anderson et al. [4], for vertices a, b of G, we have $a \leq b$ if a, b are not adjacent and each vertex of G adjacent to b is also adjacent to a. If $a \leq b$ and $b \leq a$ we write $a \sim b$. Thus $a \sim b$ if and only if a, b are adjacent to exactly the same vertices and a, b are not adjacent. Clearly, \sim is an equivalent relation on G. So G is uniquely complemented if G is complemented and whenever $a \perp b$ and $a \perp c$, then $b \sim c$.

Proposition 2.18. Let M be a coreduced R-module. Then $\Gamma_{A n n_{R}(M)}(R)$ is uniquely complemented if and only if $\Gamma_{A n n_{R}(M)}(R)$ is complemented.

Proof. Use the technique of $[19,2.7]$.
Theorem 2.19. Let M be a fully coidempotent finitely generated R-module. Then $\Gamma_{A n n_{R}(M)}(R)$ is a complemented graph.

Proof. Suppose that α is a vertex of $\Gamma_{A n n_{R}(M)}(R)$. Since $\Gamma_{A n n_{R}(M)}(R)$ is a connected graph, there is a vertex β such that $\alpha \beta M=0$. Put $N:=\alpha M$. Since M is a fully coidempotent module, we have

$$
N=\left(N:_{M} \operatorname{Ann}_{R}(N)\right) \Rightarrow 0=\left(0:_{M / N} \operatorname{Ann}_{R}(N)\right) \Rightarrow \operatorname{Ann}_{R}(N) M / N=M / N
$$

Hence as M / N is a finitely generated R-module, $\left(N:_{R} M\right)+A n n_{R}(N)=R$ by [20, Theorem 76]. Thus $1=r+s$ for some $r \in\left(N:_{R} M\right), s \in A n n_{R}(N)$. We shall now assume that $s M=0$ and derive a contradiction. Since $M=r M+s M$, then $M=r M \subseteq\left(N:_{R} M\right) M \subseteq N=\alpha M$. This is the required contradiction. However, since $s \alpha M=0, s$ is a vertex of $\Gamma_{A n n_{R}(M)}(R)$. Now we claim that $s \perp \alpha$. Assume that there exists a vertex c such that $c s M=0$ and $c \alpha M=0$. Since $1=r+s$, we have $c M \subseteq r c M+s c M$. On the other hand, $r c M \subseteq\left(N:_{R} M\right) c M \subseteq c \alpha M=0$. Hence $c M=0$, which is a contradiction. Thus $s \perp \alpha$. Consequently, $\Gamma_{A n n_{R}(M)}(R)$ is complemented.

Corollary 2.20. Let M be a fully coidempotent finitely generated R-module. Then $\Gamma_{A n n_{R}(M)}(R)$ is a uniquely complemented graph.

Proof. This follows from Lemma 2.14, Proposition 2.18, and Theorem 2.19.

Let M be an R-module. A non-zero submodule S of M is said to be second if for each $a \in R$, the homomorphism $S \xrightarrow{a} S$ is either surjective or zero [24].

For a submodule N of M the the second radical (or second socle) of N is defined as the sum of all second submodules of M contained in N and it is denoted by $\sec (N)($ or $\operatorname{soc}(N))$. In case N does not contain any second submodule, the second radical of N is defined to be (0) (see [10] and [15]).

Theorem 2.21. Let M be a finitely generated comultiplication R-module and N be a submodule of M. Then $\sec (M) \subseteq N$ if and only if $A n n_{R}(N) \subseteq \sqrt{A n n_{R}(M / N)}$.

Proof. First suppose that $\sec (M) \subseteq N$ and $A n n_{R}(N) \nsubseteq \sqrt{A n n_{R}(M / N)}$. Then there exists $t \in R$ such that $t N=0$ and $t \notin \sqrt{A n n_{R}(M / N)}$. Put $\Sigma:=\{K \leq M$: $\left.t \notin \sqrt{A n n_{R}(M / K)}\right\}$. Since $N \in \Sigma, \Sigma \neq \emptyset$. Clearly, (Σ, \subseteq) is a partially ordered set. Suppose that $\Omega=\left\{K_{i}\right\}_{i \in I}$ be a chain of elements of Σ. Since M is finitely generated, $\cup_{i \in I} A n n_{R}\left(M / K_{i}\right)=A n n_{R}\left(M / \cup_{i \in I} K_{i}\right)$. So $\left.t \notin \sqrt{A n n_{R}\left(M / \cup_{i \in I} K_{i}\right.}\right)$. Thus $\cup_{i \in I} K_{i}$ is an upper bound for Ω in Σ. So by Zorn's Lemma, Σ has a maximal element, H say. We claim that $A n n_{R}(M / H)$ is a prime ideal of R. If $A n n_{R}(M / H)=R$, then $t \in R=\sqrt{A n n_{R}(M / H)}$, a contradiction. Now let $r s \in A n n_{R}(M / H), r \notin A n n_{R}(M / H)$, and $s \notin A n n_{R}(M / H)$. Then $r M \nsubseteq H$ and $s M \nsubseteq H$. Hence by maximality of $H, t \in \sqrt{A n n_{R}(M /(r M+H))}$ and $t \in \sqrt{A n n_{R}(M /(s M+H))}$. Thus there exist $n, m \in \mathbb{N}$ such that $t^{n} M \subseteq s M+H$ and $t^{m} M \subseteq r M+H$. Therefore,

$$
t^{n+m} M \subseteq s\left(t^{m} M\right)+t^{m} H \subseteq s(r M+H)+H \subseteq s r M+H=0+H
$$

It follows that $t \in \sqrt{A n n_{R}(M / H)}$, which is a contradiction. Therefore, $A n n_{R}(M / H)$ is a prime ideal of R. Clearly, $A n n_{R}(M / H) \subseteq A n n_{R}\left(\left(0:_{M} A n n_{R}(M / H)\right)\right.$. Let $r \in A n n_{R}\left(\left(0:_{M} A n n_{R}(M / H)\right)\right.$. Then $r\left(0:_{M} A n n_{R}(M / H)\right)=0$. Thus $\left(0:_{M}\right.$ $\left.A n n_{R}(M / H)\right) \subseteq\left(0:_{M} r\right)$. It follows that $r M \subseteq A n n_{R}(M / H) M \subseteq H$. Hence $r \in A n n_{R}(M / H)$. Therefore, $\left(0:_{M} A n n_{R}(M / H)\right)$ is a second submodule of M by $[7,3.13]$. So by assumption, $\left(0:_{M} A n n_{R}(M / H)\right) \subseteq N$. Thus $A n n_{R}(N) \subseteq$ $A n n_{R}\left(\left(0:_{M} A n n_{R}(M / H)\right)\right)=A n n_{R}(M / H) \subseteq \sqrt{A n n_{R}(M / H)}$, a contradiction.

Conversely, suppose that $A n n_{R}(N) \subseteq \sqrt{A n n_{R}(M / N)}$ and S be a second submodule of M. It is enough to show that $S \subseteq N$. So suppose that $S \nsubseteq N$. Then as M is a comultiplication R-module, $A n n_{R}(N) \nsubseteq A n n_{R}(S)$. Thus there exists $a \in A n n_{R}(N) \backslash A n n_{R}(S)$. Therefore, $a \in \sqrt{A n n_{R}(M / N)}$ and $a S \neq 0$. As S is second, $a S=S$. There exists $n \in \mathbb{N}$ such that $a^{n} M \subseteq N$. Therefore, $S=a^{n} S \subseteq a^{n} M \subseteq N$, a contradiction.

Proposition 2.22. Let M be an R-module. Then M is a coreduced R-module if $\sec (M)=M$. The converse holds when M is a finitely generated comultiplication R-module.

Proof. First assume that $\sec (M)=M$ and $r \in R$. If S is a second submodule of M, then $r S=0$ or $r S=S$. Thus $r^{2} S=0$ or $r^{2} S=S$. This implies that $\operatorname{rsec}(M)=r^{2} \sec (M)$. Thus by assumption, $r M=r^{2} M$. Therefore, M is a coreduced R-module by Theorem 2.13 . Conversely, let M be a comultiplication coreduced R-module. If $\sec (M) \neq M$. Then there exists a proper completely irreducible submodule L of M such that $\sec (M) \subseteq L$. Thus by Theorem 2.21, $A n n_{R}(L) \subseteq \sqrt{A n n_{R}(M / L)}$. Since M is a comultiplication R-module and L is proper, there exits $t \in A n n_{R}(L) \backslash A n n_{R}(M)$. Therefore, $t^{n} M \subseteq L$ for some $n \in \mathbb{N}$. This implies that $t^{n+1} M=0$. But as M is coreduced, $t M=t^{2} M$ by Theorem 2.13. Therefore, $t M=0$, which is a contradiction.

Theorem 2.23. Let M be a finitely generated comultiplication R-module and $\sec (M) \subseteq N \neq M . \quad$ If $\Gamma_{A n n_{R}(M)}(R)$ is complemented, then there exists $a \in$ $A n n_{R}(N)$ such that $a^{t} M=0, a^{t-i} M \neq 0$ and $a^{t-1} \perp a^{i}, t=2,3$ and $1 \leq i \leq t-2$.

Proof. Since $\sec (M) \subseteq N \neq M$ and by [12, 2.12], $\sec (M)=\left(0:_{M} \sqrt{A n n_{R}(M)}\right)$, $\sqrt{A n n_{R}(M)} \neq A n n_{R}(M)$. Therefore, there exists $x \in \sqrt{A n n_{R}(M)} \backslash A n n_{R}(M)$. This implies that $\overline{0} \neq x+\operatorname{Ann}_{R}(M) \in \operatorname{Nil}(\bar{R})$ and there exists $h \in \mathbb{N}$ such that $x^{h} M=0$. Thus as \bar{R} is a multiplication R-module, there exists $a \in\left(R \bar{x}:_{R} \bar{R}\right)$ such that $a^{t} \bar{R}=0, a^{t-i} \bar{R} \neq 0$ and $a^{t-1} \perp a^{i}, t=2,3$ and $1 \leq i \leq t-2$ by [19, 3.3]. It follows that $R a+A n n_{R}(M) \subseteq R x$. So it follows that $R a^{h}+A n n_{R}(M) \subseteq R x^{h}$. Thus $a^{h} \in A n n_{R}(N)$. Therefore, $a^{h} \in A n n_{R}(N)$ such that $\left(a^{h}\right)^{t} M=0,\left(a^{h}\right)^{t-i} M \neq 0$ and $\left(a^{h}\right)^{t-1} \perp\left(a^{h}\right)^{i}, t=2,3$ and $1 \leq i \leq t-2$.

Lemma 2.24. Let M be a coreduced comultiplication R-module and I be an ideal of R. If $I \subseteq P$, where P is a minimal prime ideal of $A n n_{R}(M)$, Then $I \subseteq W_{R}(M)$.

Proof. By Lemma 2.15, \bar{R} is a reduced R-module. Hence since \bar{R} is a multiplication R-module, $I \subseteq Z_{R}(\bar{R})$ by $[6,2.3]$. As M is a comultiplication R-module, $W_{R}(M)=$ $Z_{R}(\bar{R})$ by Lemma 2.7. Thus $I \subseteq W_{R}(M)$.

Theorem 2.25. Let M be a finitely generated comultiplication R-module. Then we have the following.
(a) If R is a ring with $|\bar{R}|>4$ and $\Gamma_{A n n_{R}(M)}(R)$ is a complete graph, then either $\left(0:_{M} Z_{R}(\bar{R})\right)=0$ or $\left(0:_{M} Z_{R}(\bar{R})\right)=\sec (M)$.
(b) If $\sec (M) \neq M$ and there are $\alpha, \beta \in V\left(\Gamma_{A n n_{R}(M)}(R)\right)$ such that $R \alpha+R \beta \nsubseteq$ $W_{R}(M)$, then $\operatorname{diam}\left(\Gamma_{A n n_{R}(M)}(R)\right)=3$.

Proof. (a) Since \bar{R} is a multiplication R-module, $\bar{R}=Z_{R}(\bar{R}) \bar{R}$ or $\operatorname{Nil}(\bar{R})=$ $Z_{R}(\bar{R}) \bar{R}$ by [19, 3.2]. Thus $Z_{R}(\bar{R})+A n n_{R}(M)=R$ or $Z_{R}(\bar{R})+A n n_{R}(M)=$ $\sqrt{A n n_{R}(M)}$. Therefore, $\left(0:_{M} Z_{R}(\bar{R})\right)=0$ or $\left(0:_{M} Z_{R}(\bar{R})\right)=\left(0:_{M} \sqrt{A n n_{R}(M)}\right)$. Now the result follows from [12, 2.12].
(b) Since $\sec (M) \subseteq N \neq M$ and by [12, 2.12], $\sec (M)=\left(0:_{M} \sqrt{A n n_{R}(M)}\right)$, $\sqrt{A n n_{R}(M)} \neq A n n_{R}(M)$. Therefore, there exists $\alpha \in \sqrt{A n n_{R}(M)} \backslash A n n_{R}(M)$. This implies that $\overline{0} \neq \alpha+\operatorname{Ann}_{R}(M) \in \operatorname{Nil}(\bar{R})$. Thus $\operatorname{Nil}(\bar{R}) \neq 0$. By Lemma 2.7, $W_{R}(M)=Z_{R}(\bar{R})$. Thus $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}_{R}(\bar{R})}(R)\right)=3$ by $[6,2.8]$. It follows that $\operatorname{diam}\left(\Gamma_{A n n_{R}(M)}(R)\right)=3$.

3. A certain subgraph of $\Gamma_{I}(R)$

Definition 3.1. Let I be an ideal of R. We define the graph $\Gamma_{I}\left(A n n_{R}(I)\right)$ of R whose vertices are the set $\left\{x \in A n n_{R}(I) \backslash I: x y \in I\right.$ for some $\left.y \in A n n_{R}(I) \backslash I\right\}$ with distinct vertices x and y are adjacent if and only if $x y \in I$. Clearly, when $I=(0)$ we have $\Gamma_{I}\left(\operatorname{Ann}_{R}(I)\right)=\Gamma(R)$.

Remark 3.2. (a) If $\operatorname{Ann}_{R}(I) \subseteq I$, then $V\left(\Gamma_{I}\left(\operatorname{Ann}_{R}(I)\right)\right)=\emptyset$. In particular if $A n n_{R}(I)=0, V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right)=\emptyset$. For example, for each ideal I of the ring \mathbb{Z}, we have $V\left(\Gamma_{I}\left(A n n_{\mathbb{Z}}(I)\right)\right)=\emptyset$.
(b) If R is an integral domain or I is a prime ideal of R, then $V\left(\Gamma_{I}\left(\operatorname{Ann}_{R}(I)\right)\right)=$ \emptyset.
(c) It is clear that for each ideal I of $R, \Gamma_{I}\left(A n n_{R}(I)\right)$ is a subgraph of $\Gamma_{I}(R)$. But as we see in the Example 3.6 the converse is not true in general.
(d) If R is a comultiplication ring, then

$$
\Gamma_{A n n_{R}(I)}\left(A n n_{R}\left(A n n_{R}(I)\right)\right)=\Gamma_{A n n_{R}(I)}(R)
$$

Example 3.3. In the following cases, for the graphs $\Gamma(R / I)$ and $\Gamma_{I}\left(A n n_{R}(I)\right)$, we have $|V(\Gamma(R / I))|=\left|V\left(\Gamma_{I}\left(\operatorname{Ann}_{R}(I)\right)\right)\right|$.
(a) $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $I=0 \times 0 \times \mathbb{Z}_{2}$.
(b) $R=\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ and $I=0 \times \mathbb{Z}_{2}$.
(c) $R=\mathbb{Z}_{24}$ and $I=\langle 8\rangle$.
(d) $R=\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2}$ and $I=0 \times 0 \times \mathbb{Z}_{2}$.
(e) $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$ and $I=0 \times 0 \times \mathbb{Z}_{3}$.
(f) $R=\mathbb{Z}_{9} \times \mathbb{Z}_{3}$ and $I=0 \times \mathbb{Z}_{3}$.
(g) $R=\mathbb{Z}_{6} \times \mathbb{Z}_{2}$ and $I=0 \times \mathbb{Z}_{2}$.
(h) $R=\mathbb{Z}_{2}[x] /\left\langle x^{3}\right\rangle$ and $I=0 \times \mathbb{Z}_{2}$.
(i) $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and $I=0 \times 0 \times \mathbb{Z}_{4}$.
(j) $R=\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ and $I=0 \times 0 \times \mathbb{Z}_{2}$.
(k) $R=\mathbb{Z}_{6} \times \mathbb{Z}_{3}$ and $I=0 \times \mathbb{Z}_{3}$.

Example 3.4. Let $R=\mathbb{Z}$ and $I=8 \mathbb{Z}$. Then $V\left(\Gamma_{I}\left(\operatorname{Ann}_{R}(I)\right)\right)=\emptyset, V(\Gamma(R / I))=$ $\{\overline{2}, \overline{4}, \overline{6}\}$, and the vertex $\overline{4}$ is adjacent to both vertexes $\overline{2}$ and $\overline{6}$ in graph $\Gamma(R / I)$. This implies that $\Gamma(R / I)$ is not isomorphic to a subgraph of $\Gamma_{I}\left(A n n_{R}(I)\right)$ in general.

Example 3.5. Let p be a prime number and $R=\mathbb{Z}_{4 p}$. Then the non-zero proper ideals of R are $\overline{2} \mathbb{Z}_{4 p}, \overline{2 p} \mathbb{Z}_{4 p}, \overline{4} \mathbb{Z}_{4 p}$, and $\bar{p} \mathbb{Z}_{4 p}$. Since $\overline{2} \mathbb{Z}_{4 p}$ and $\bar{p} \mathbb{Z}_{4 p}$ are prime ideals of $R, \Gamma_{\overline{2} \mathbb{Z}_{4 p}}\left(A n n_{\mathbb{Z}_{4 p}}\left(\overline{2} \mathbb{Z}_{4 p}\right)\right)=\emptyset$ and $\Gamma_{\bar{p} \mathbb{Z}_{4 p}}\left(A n n_{\mathbb{Z}_{4 p}}\left(\bar{p} \mathbb{Z}_{4 p}\right)\right)=\emptyset$. Also, it is straightforward to see that $\Gamma_{\overline{4} \mathbb{Z}_{4 p}}\left(A n n_{\mathbb{Z}_{4 p}}\left(\overline{4} \mathbb{Z}_{4 p}\right)\right)=\emptyset$ and $\Gamma_{\overline{2 p} \mathbb{Z}_{4 p}}\left(A n n_{\mathbb{Z}_{4 p}}\left(\overline{2 p} \mathbb{Z}_{4 p}\right)\right)=$ \emptyset.

Example 3.6. Let $R=\mathbb{Z}_{24}$ and $I=12 \mathbb{Z}_{24}$. Then in the following figures we can see the deference between the graphs $\Gamma_{I}\left(A n n_{R}(I)\right), \Gamma(R / I)$, and $\Gamma_{I}(R)$.

Figure 1. $\Gamma_{I}\left(A n n_{R}(I)\right)$.

Figure 2. $\Gamma_{I}(R)$.

Figure 3. $\Gamma(R / I)$.

A vertex x of a connected graph G is a cut-point of G if there are vertices u, w of G such that x is in every path from u to w (and $x \neq u, x \neq w$). Equivalently, for a connected graph G, x is a cut-point of G if $G \backslash\{x\}$ is not connected [22].

Remark 3.7. In [22, 3.2], it is shown that if I is a nonzero proper ideal if R, then $\Gamma_{I}(R)$ has no cut-points. But this fact is not true for the subgraph $\Gamma_{I}\left(A n n_{R}(I)\right)$ of $\Gamma_{I}(R)$. For example, one can see that the vertex 12 is a cut-point of $\Gamma_{\langle 8\rangle}\left({A n n_{\mathbb{Z}_{24}}}(\langle 8\rangle)\right)$.

Theorem 3.8. Let I be an ideal of R. Then $\Gamma_{I}\left(A n n_{R}(I)\right)$ is connected with $\operatorname{diam}\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right) \leq 3$. Furthermore, if $\Gamma_{I}\left(A n n_{R}(I)\right)$ contains a cycle, then $\operatorname{gr}\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right) \leq 7$.

Proof. Use the technique of [22, 2.4].
Let I be an ideal of R. Set $\widetilde{Z}(R / I)=\{x+I \in R / I: \exists 0 \neq z+I \in R / I$ with $z I=$ 0 and $x z \in I\}$.
Theorem 3.9. Let $I \subseteq J$ be proper ideals of R. If $R / I=\widetilde{Z}(R / I) \cup U(R / I)$, then $V\left(\Gamma_{J}\left(A n n_{R}(J)\right)\right) \subseteq V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right)$.

Proof. Let $\left.x \in V\left(\Gamma_{J} A n n_{R}(J)\right)\right)$. Then $x y \in J$ for some $y \in A n n_{R}(J) \backslash J$. If $x+I \in \widetilde{Z}(R / I)$, then there is $0 \neq z+I \in R / I$ such that $z I=0$ and $z x \in I$. Hence $x \in V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right)$. Otherwise, $x+I \in U(R / I)$ and so $(x+I)(w+I)=1+I$ for some $w+I \in R / I$. Thus $x w=1+i$ for some $i \in I$, and hence

$$
y=1 y=(x w-i) y \in J+I \subseteq J
$$

a contradiction. Thus $V\left(\Gamma_{J}\left(A n n_{R}(J)\right)\right) \subseteq V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right)$.
Theorem 3.10. Let I be non-zero ideal of R and $a \in V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right)$, adjacent to every vertex of $V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right)$. Then $\left(I:_{R} a\right) \cap A n n_{R}(I)$ is a maximal element of the set $\left\{\left(I:_{R} x\right) \cap A n n_{R}(I): x \in A n n_{R}(I) \backslash I\right\}$. Moreover, $\left(I:_{R}\right.$ a) is a prime ideal of R.

Proof. One can see that $V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right) \cup\left(A n n_{R}(I) \cap I\right)=\left(I:_{R} a\right) \cap A n n_{R}(I)$. Now choose $x \in \operatorname{Ann}_{R}(I) \backslash I$. Let $y \in\left(I:_{R} x\right) \cap A n n_{R}(I)$. If $y \in I$, then $y \in I \subseteq$ $\left(I:_{R} a\right)$ and we are done. If $y \notin I$, then $y x \in I$ implies that $y \in V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right)$. Thus $y a \in I$ by assumption. Therefore, $y \in\left(I:_{R} a\right)$ as needed. Now prove that $\left(I:_{R} a\right)$ is a prime ideal of R. Since $a \notin I,\left(I:_{R} a\right) \neq R$. Let $x y \in\left(I:_{R} a\right)$ and $x \notin\left(I:_{R} a\right)$ for some $x, y \in R$. Then $x a \notin I$ and since $a I=0, x a \in A n n_{R}(I)$. Thus $\left(I:_{R} x a\right) \subseteq\left(I:_{R} a\right)$ by assumption. Hence $y \in\left(I:_{R} a\right)$ and the proof is completed.

Theorem 3.11. Let I be an ideal of R and consider $S=\sqrt{I} \backslash I$. If $S \cap A n n_{R}(I)$ is a non-empty set, then $\left\langle S \cap A n n_{R}(I)\right\rangle$ is connected.

Proof. Let $x, y \in S \cap A n n_{R}(I)$. If $x y \in I$, then we are done. Suppose that $x y \notin I$, where $x^{n}, y^{m} \in I$ and $x^{n-1}, y^{m-1} \notin I$. Hence, the path $x-x^{n-1}-x y-y^{m-1}-y$ is a path of length four from x to y.

Theorem 3.12. Let I be a non-zero ideal of R. Then we have the following.
(a) If P_{1} and P_{2} are prime ideals of $\operatorname{Ann}_{R}(I)$ and $I \cap A n n_{R}(I)=P_{1} \cap P_{2}$, then $\Gamma_{I}\left(A n n_{R}(I)\right)$ is a complete bipartite graph.
(b) If $\Gamma_{I}\left(A n n_{R}(I)\right)$ is a complete bipartite graph, then there exist ideals P_{1} and P_{2} of R such that $I \cap \operatorname{Ann}_{R}(I)=P_{1} \cap P_{2}$. Moreover, if $I=\sqrt{I}$, then P_{1} and P_{2} are prime ideals of $A n n_{R}(I)$.

Proof. Use the technique of $[21,3.1]$.
Let $S(I)=\{x \in R: x y \in I$ for some $y \in R \backslash I\}[25]$.
Proposition 3.13. Let I be an ideal of R. Then we have the following.
(a) $V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right)=S(I) \cap\left(\operatorname{Ann}_{R}(I) \backslash I\right)$. In particular, $V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right) \cup$ $\left(A n n_{R}(I) \cap I\right)=S(I) \cap A n n_{R}(I)$.
(b) If $\sqrt{I \cap A n n_{R}(I)}=I \cap A n n_{R}(I)$, then $S(I) \cap A n n_{R}(I) \subseteq \cup_{P \in \operatorname{Min}\left(I \cap A n n_{R}(I)\right)} P$.

Proof. (a) This is straightforward.
(b) Let $x \in S(I) \cap A n n_{R}(I)$. Then $x I=0$ and there exists $y \in R \backslash I$ such that $x y \in I$. Set $z=x y+y$. Then $x z \in I \cap A n n_{R}(I)$ and $z \notin I \cap A n n_{R}(I)$. Therefore, $x \in S\left(I \cap A n n_{R}(I)\right)$. Thus $S(I) \cap A n n_{R}(I) \subseteq S\left(I \cap A n n_{R}(I)\right)$. Now the result follows from [17, 2.1].

Theorem 3.14. Let I be an ideal of R. Then we have the following.
(a) If $I \cap \operatorname{Ann}_{R}(I)=0$, then $\Gamma_{I}\left(A n n_{R}(I)\right)$ is a subgraph of $\Gamma(R)$.
(b) If $I \cap A n n_{R}(I)=0$, then $\Gamma_{I}\left(A n n_{R}(I)\right)$ is isomorphic to a subgraph of $\Gamma(R / I)$.
(c) If R / I be a reduced ring and $\Gamma_{I}\left(A n n_{R}(I)\right)$ is a complete graph, then $\left.\Gamma_{I}\left(A n n_{R}(I)\right)\right)$ is a subgraph of $\Gamma(R)$.

Proof. (a) Clearly $V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right) \subseteq Z^{*}(R)=V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right)$. Now let $x, y \in$ $V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right)$ and x is adjacent to y. Then $x y \in I$. Thus $x y \in I \cap A n n_{R}(I)=0$, as needed.
(b) Consider the $\operatorname{map} \phi: V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right) \rightarrow V(\Gamma(R / I))$ defined by $\phi(x)=x+I$. It is easy to see that ϕ is graph homomorphism. Now let $x+I=y+I$. for some $\left.x, y \in V\left(\Gamma_{I}\left(\operatorname{Ann}_{R}(I)\right)\right)\right)$. Then $x-y \in I$ and so $x-y \in I \cap A n n_{R}(I)=0$. Thus $x=x$. Therefore, ϕ is monic.
(c) Clearly, $V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right) \subseteq V(\Gamma(R))$. Now let x and y be two adjacent elements of $V\left(\Gamma_{I}\left(A n n_{R}(I)\right)\right)$. Then $x y \in I$. Since $x+x y \in A n n_{R}(I), x+x y \notin I$, and $(x+x y) y \in I$, we have $x+x y$ is a vertex of $\left.\Gamma_{I}\left(A n n_{R}(I)\right)\right)$. Now as $\Gamma_{I}\left(A n n_{R}(I)\right)$ is a complete graph, $(x+x y) x \in I$ or $x+x y=x$. If $(x+x y) x \in I$, then $x^{2} \in I$. Since R / I is reduced, $x \in I$, a contradiction. Therefore, $x+x y=x$ and so $x y=0$ as requested.

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

[1] F. Aliniaeifard, M. Behboodi, E. Mehdi-Nezhad and A. M. Rahimi, The annihilating-ideal graph of a commutative ring with respect to an ideal, Comm. Algebra, 42(5) (2014), 2269-2284.
[2] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159(2) (1993), 500-514.
[3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(2) (1999), 434-447.
[4] D. F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra, 180(3) (2003), 221-241.
[5] D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring, II, in Ideal Theoretic Methods in Commutative Algebra, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, (2001), 61-72.
[6] D. F. Anderson, S. Ghalandarzadeh, S. Shirinkam and P. Malakooti Rad, On the diameter of the graph $\Gamma_{\operatorname{Ann}(M)}(R)$, Filomat, 26(3) (2012), 623-629.
[7] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11(4) (2007), 1189-1201.
[8] H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci., 8(1) (2009), 105-113.
[9] H. Ansari-Toroghy and F. Farshadifar, The dual notions of some generalizations of prime submodules, Comm. Algebra, 39(7) (2011), 2396-2416.
[10] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq., 19 (spec 1) (2012), 1109-1116.
[11] H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull. Iranian Math. Soc., 38(4) (2012), 987-1005.
[12] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime radicals of submodules, Asian-Eur. J. Math., 6(2) (2013), 1350024 (11 pp).
[13] I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208-226.
[14] G. A. Cannon, K. M. Neuerburg and S. P. Redmond, Zero-divisor graphs of nearrings and semigroups, in Nearrings and Nearfields (eds: H. Kiechle, A. Kreuzer, M.J. Thomsen), Springer, Dordrecht, (2005), 189-200.
[15] S. Çeken, M. Alkan and P. F. Smith, The dual notion of the prime radical of a module, J. Algebra, 392 (2013), 265-275.
[16] P. Dheena and B. Elavarasan, An ideal-based zero-divisor graph of 2-primal near-rings, Bull. Korean Math. Soc., 46(6) (2009), 1051-1060.
[17] S. Ebrahimi Atani and A. Yousefian Darani, Zero-divisor graphs with respect to primal and weakly primal ideals, J. Korean Math. Soc., 46(2) (2009), 313-325.
[18] L. Fuchs, W. Heinzer and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in: Abelian Groups, Rings, Modules and Homological Algebra, Lect. Notes Pure Appl. Math., 249, Chapman \& Hall/CRC, Boca Raton, FL, (2006), 121-145.
[19] Sh. Ghalandarzadeh, S. Shirinkam and P. Malakooti Rad, Annihilator idealbased zero-divisor graphs over multiplication modules, Comm. Algebra, 41(3) (2013), 1134-1148.
[20] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
[21] H. R. Maimani, M. R. Pournaki and S. Yassemi, Zero-divisor graph with respect to an ideal, Comm. Algebra, 34(3) (2006), 923-929.
[22] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9) (2003), 4425-4443.
[23] S. Yassemi, Maximal elements of support and cosupport, May 1997, http://streaming.ictp.it/preprints/P/97/051.pdf.
[24] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37(4) (2001), 273-278.
[25] A. Yousefian Darani, Notes on the ideal-based zero-divisor graph, J. Math. Appl., 32 (2010), 103-107.

Habibollah Ansari-Toroghy (Corresponding Author) and Farideh Mahboobi-Abkenar Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Guilan
Rasht, Iran
e-mails: ansari@guilan.ac.ir (H. Ansari-Toroghy)
mahboobi@phd.guilan.ac.ir (F. Mahboobi-Abkenar)

Faranak Farshadifar

Farhangian University
Tehran, Iran
e-mail: f.farshadifar@gmail.com

