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lator ideal-based zero-divisor graph by replacing the ideal I of R with the ideal

AnnR(M) for an R-module M . Also, we investigate a certain subgraph of the

annihilator ideal-based zero-divisor graph and obtain some related results.

Mathematics Subject Classification (2010): 13A99, 05C99, 13C99

Keywords: Zero-divisor, coreduced, complemented

1. Introduction

Throughout this paper, R will denote a commutative ring with identity. Also,

N and Z will denote the ring of positive integers and the ring of integers respec-

tively. Furthermore, for an R-module M , the symbol R̄ will be used to denote

R/AnnR(M).

A graph G is defined as the pair (V (G), E(G)), where V (G) is the set of vertices

of G and E(G) is the set of edges of G. For two distinct vertices a and b of V (G),

the notation a−b means that a and b are adjacent. A graph G is said to be complete

if a − b for all distinct a, b ∈ V (G), and G is said to be empty if E(G) = ∅. Note

by this definition that a graph may be empty even if V (G) 6= ∅. An empty graph

could also be described as totally disconnected. If |V (G)| ≥ 2, a path from a to

b is a series of adjacent vertices a − v1 − v2 − ... − vn − b. The length of a path

is the number of edges it contains. A cycle is a path that begins and ends at the

same vertex in which no edge is repeated, and all vertices other than the starting

and ending vertex are distinct. If a graph G has a cycle, the girth of G (notated

g(G)) is defined as the length of the shortest cycle of G; otherwise, g(G) = ∞. A

graph G is connected if for every pair of distinct vertices a, b ∈ V (G), there exists

a path from a to b. If there is a path from a to b with a, b ∈ V (G), then the

distance from a to b is the length of the shortest path from a to b and is denoted

d(a, b). If there is not a path between a and b, d(a, b) = ∞. The diameter of G is

diam(G) = sup{d(a, b)|a, b ∈ V (G)}.
The idea of a zero-divisor graph of a commutative ring was introduced by I.

Beck in 1988 [13]. He assumes that all elements of the ring are vertices of the
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graph and was mainly interested in colorings and then this investigation of coloring

of a commutative ring was continued by Anderson and Naseer in [2]. Anderson

and Livingston [3], studied the zero-divisor graph whose vertices are the nonzero

zero-divisors.

Let Z(R) be the set of zero-divisors of R. The zero-divisor graph of R denoted by

Γ(R), is a graph with vertices Z∗(R) = Z(R)\{0} and for distinct x, y ∈ Z∗(R) the

vertices x and y are adjacent if and only if xy = 0. This graph turns out to exhibit

properties of the set of the zero-divisors of a commutative ring with best way. The

zero-divisor graph helps us to study the algebraic properties of rings using graph

theoretical tools. We can translate some algebraic properties of a ring to graph

theory language and then the geometric properties of graphs help us explore some

interesting results in algebraic structures of rings. The zero-divisor graph of a

commutative ring has also been studied by several other authors (e.g., [4,5,14]).

In [22], Redmond introduced the definition of the zero-divisor graph with respect

to an ideal. Let I be an ideal of R. The zero-divisor graph of R with respect to I,

denoted by ΓI(R), is the graph whose vertices are the set

{x ∈ R \ I | xy ∈ I for some y ∈ R \ I}

with distinct vertices x and y are adjacent if and only if xy ∈ I. The zero-divisor

graph with respect to an ideal has been studied extensively by several authors (e.g.,

[1,6,16,17,19,21]).

In this paper, we study the annihilator ideal-based zero-divisor graph by replac-

ing the ideal I of R with the ideal AnnR(M) for an R-module M . Moreover, we

investigate a certain subgraph of ΓI(R) and obtain some related results.

2. On the annihilator ideal-based zero-divisor graphs over

comultiplication modules

Let M be an R-module. The subset ZR(M) of R is defined by

{r ∈ R | ∃0 6= m ∈M such that rm = 0}

and set Z∗R(M) = ZR(M) \AnnR(M).

An R-module M is said to be a multiplication module if for every submodule N

of M there exists an ideal I of R such that N = IM .

Lemma 2.1. Let M be an R-module. Then ZR(R̄) ⊆ ZR(M). Moreover, the

reverse inequality holds when M is a multiplication R-module.

Proof. Clearly, ZR(R̄) ⊆ ZR(M). Now let M be a multiplication R-module and

r ∈ ZR(M). Then there exists 0 6= m ∈ M such that rm = 0 and Rm = IM for
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some ideal I of R. As m 6= 0, there exists 0 6= a ∈ I such that aM 6= 0. Therefore,

raM = 0 implies that r ∈ ZR(R̄). �

The following example shows that the condition “M is a multiplication R-

module” in the last statement of Lemma 2.1 can not be omitted.

Example 2.2. Let p be a prime number and M be the Z-module Zp∞ . Then

ZZ(M) = pZ, but ZZ(Z/AnnZ(M)) = {0}.

Proposition 2.3. Let r be a vertex of ΓAnnR(M)(R) such that AnnR(rM) = P be

a prime ideal of R. Then r is adjacent to each vertex s such that AnnR(sM) 6⊆ P .

In particular, r is adjacent to each vertex s of ΓAnnR(M)(R) such that r 6= s and

s2 = 0.

Proof. Let s be a vertex of ΓAnnR(M)(R) such that AnnR(sM) 6⊆ P . Then

there exists t ∈ AnnR(sM) \ P . Thus tsM = 0 implies that ts ∈ AnnR(M) ⊆
AnnR(rM) = P . As t 6∈ P , we have s ∈ P = AnnR(rM). Hence r − s, as needed.

For the last assertion assume that AnnR(sM) ⊆ P = AnnR(rM) for some vertex

s of ΓAnnR(M)(R) such that s2 = 0. Then AnnR(s) ⊆ AnnR(sM) implies that

rMAnnR(s) ⊆ rMAnnR(sM) = 0. But as s2 = 0, s ∈ AnnR(s). Therefore,

rsM = 0 and r − s. �

Proposition 2.4. Let M be a multiplication R-module. Then for each r ∈ Z∗R(M)

there exists a non-zero ideal I of R such that I 6⊆ AnnR(M), I ⊆ ZR(M) and r−a
for each a ∈ I \AnnR(M).

Proof. First note that Z∗R(M) is equal to the set of vertices of ΓAnnR(M)(R) by

Lemma 2.1. Let r ∈ Z∗R(M). Then there exists 0 6= m ∈ M such that rm = 0.

As M is a multiplication R-module, there exists a non-zero ideal I of R such that

Rm = IM and so I 6⊆ AnnR(M). As rM 6= 0, there exists m1 ∈ M such that

rm1 6= 0. Now 0 = r(Rm) = rIM implies that I ⊆ ZR(M), and r − a for each

a ∈ I \AnnR(M). �

Let M be an R-module. The subset WR(M) of R is defined by {r ∈ R|rM 6= M}
[23] and set W ∗R(M) = WR(M) \AnnR(M).

M is said to be Hopfian (resp. co-Hopfian) if every surjective (resp. injective)

endomorphism f of M is an isomorphism.

A submodule N of M is said to be idempotent if N = (N :R M)2M . Also, M is

said to be fully idempotent if every submodule of M is idempotent [11].

Theorem 2.5. Let M be a fully idempotent R-module such that ΓAnnR(M)(R) is

complete. Then M is a simple module.
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Proof. Let N be a proper submodule of M . Then N = (N :R M)M = (N :R

M)2M . Clearly, (N :R M) ⊆WR(M/N) ⊆WR(M). By [11, 2.7], M is co-Hopfian.

Thus WR(M) ⊆ ZR(M). So by Lemma 2.1, ZR(R̄) = ZR(M) because M is a

multiplication R-module by [11, 2.7]. Therefore, WR(M) ⊆ ZR(R̄). Hence (N :R

M) ⊆ ZR(R̄). If (N :R M) = AnnR(M), then N = 0. Otherwise, as ΓAnnR(M)(R)

is complete, rsM = 0 for each r, s ∈ (N :R M) − AnnR(M). Therefore, (N :R

M)2M = 0. This implies that N = (N :R M)2M = 0, as needed. �

Corollary 2.6. Let M be a fully idempotent R-module. Then ΓAnnR(M)(R) is

complete if and only if M is a simple R-module.

An R-module M is said to be a comultiplication module if for every submodule

N of M there exists an ideal I of R such that N = (0 :M I) [7].

Lemma 2.7. Let M be an R-module. Then ZR(R̄) ⊆ WR(M). Moreover, the

reverse inequality holds when M is a comultiplication R-module.

Proof. Let r ∈ ZR(R̄). Then there exist 0̄ 6= s + AnnR(M) ∈ R̄ such that

r(s+AnnR(M)) = 0̄. Hence rsM = 0. Now if rM = M , then 0 = srM = sM 6= 0,

a contradiction. Therefore, rM 6= M . Thus ZR(R̄) ⊆ WR(M). Now let M be a

comultiplication R-module and r ∈ WR(M). Then rM 6= M and rM = (0 :M I)

for some ideal I of R. Hence IrM = 0. If IM = 0, then M ⊆ (0 :M I) = rM , a

contradiction. Thus there exists a ∈ I \ AnnR(M). Therefore, raM = 0 implies

that r ∈ ZR(R̄) as required. �

The following example shows that the converse of the Lemma 2.7 is not true in

general.

Example 2.8. Let M be the Z-module Z. Then WZ(M) = Z \ {1,−1}. But

ZZ(Z/AnnZ(M)) = {0}.

Proposition 2.9. Let M be a comultiplication R-module. Then for each r ∈
W ∗R(M) there exists a non-zero ideal I of R such that I 6⊆ AnnR(M), I ⊆WR(M)

and r − a for each a ∈ I \AnnR(M).

Proof. First note that W ∗R(M) is equal to the set of vertices of ΓAnnR(M)(R) by

Lemma 2.7. Let r ∈ W ∗R(M). Then rM 6= M . As M is a comultiplication R-

module, there exists a non-zero ideal I of R such that rM = (0 :M I). Thus

rIM = 0 and IM 6= 0. If IM = M , then rM = 0, a contradiction. Hence

I ⊆WR(M), I 6⊆ AnnR(M) and r − a for each a ∈ I \AnnR(M). �

A submodule N of an R-module M is said to be coidempotent if N = (0 :M

AnnR(N)2). Also, an R-module M is said to be fully coidempotent if every sub-

module of M is coidempotent [11].
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Theorem 2.10. Let M be a fully coidempotent R-module such that ΓAnnR(M)(R)

is complete. Then M is a simple module.

Proof. Let N be a non-zero submodule of M . Then N = (0 :M AnnR(N)) =

(0 :M AnnR(N)2). Clearly, AnnR(N) ⊆ ZR(N) ⊆ ZR(M). By [11, 3.9], M is

Hopfian. Thus ZR(M) ⊆ WR(M). So by Lemma 2.7, ZR(R̄) = WR(M) because

M is a comultiplication R-module by [11, 3.5]. Therefore, ZR(M) ⊆ ZR(R̄). Hence

AnnR(N) ⊆ ZR(R̄). If AnnR(N) = AnnR(M), then N = M . Otherwise, as

ΓAnnR(M)(R) is complete, rsM = 0 for each r, s ∈ AnnR(N)\AnnR(M). Therefore,

AnnR(N)2M = 0. This implies that M ⊆ (0 :M AnnR(N)2) = N , as needed. �

Corollary 2.11. Let M be a fully coidempotent R-module. Then ΓAnnR(M)(R) is

complete if and only if M is a simple R-module.

Recall that an R-module M is called a reduced module if rm = 0 implies that

rM ∩Rm = 0, where r ∈ R and m ∈M . It is clear that M is a reduced module if

r2m = 0 for r ∈ R, m ∈M implies that rm = 0.

Let M be an R-module. A proper submodule N of M is said to be completely

irreducible if N =
⋂

i∈I Ni, where {Ni}i∈I is a family of submodules of M , implies

that N = Ni for some i ∈ I. It is easy to see that every submodule of M is an

intersection of completely irreducible submodules of M [18]. Thus the intersection

of all completely irreducible submodules of M is zero.

An R-module M is said to be semisecond if rM = r2M for each r ∈ R [9].

Definition 2.12. We say that an R-module M is coreduced if (L :M r) = M

implies that L + (0 :M r) = M , where r ∈ R and L is a completely irreducible

submodule of M .

Theorem 2.13. Let M be an R-module. Then the following are equivalent.

(a) r2M ⊆ L implies that rM ⊆ L, where r ∈ R and L is a completely irre-

ducible submodule of M .

(b) r2M ⊆ N implies that rM ⊆ N , where r ∈ R and N is a submodule of M .

(c) M is coreduced.

(d) M is semisecond.

Proof. (a) ⇒ (b) Let r ∈ R and N be a submodule of M such that r2M ⊆ N .

There exist completely irreducible submodules Li (i ∈ I) of M such that N =

∩i∈ILi. Thus r2M ⊆ N = ∩i∈ILi ⊆ Li. This implies that rM ⊆ Li for each i ∈ I
by part (a). Therefore, rM ⊆ ∩i∈ILi = N , as required.

(b)⇒ (a) This is clear.
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(c)⇒ (a) Let r ∈ R and L be a completely irreducible submodule of M such that

r2M ⊆ L. Then ((L :M r) :M r) = M . One can see that (L :M r) is a completely

irreducible submodule of M . Hence by part (c), (L :M r) + (0 :M r) = M . Thus

(L :M r) = M and so rM ⊆ L.

(d) ⇒ (c) Let r ∈ R and L be a completely irreducible submodule of M such

that rM ⊆ L. Suppose that x ∈M . By part (d), rM = r2M . Therefore, rx = r2y

for some y ∈M . So that x− ry ∈ (0 :M r). Thus x = x− ry+ ry ∈ (0 :M r) + rM .

Hence M = (0 :M r) + rM ⊆ (0 :M r) + L ⊆M .

(a)⇔ (d) This follows from [9, 4.4]. �

A submoduleN of anR-moduleM is said to be copure if (N :M I) = N+(0 :M I)

for every ideal I of R [8]. Also an R-module M is said to be fully copure if every

submodule of M is copure [11].

Lemma 2.14. (a) Let R be a von Neumann regular ring. Then every R-

module is coreduced.

(b) Every fully copure R-module is a coreduced module. In particular, every

fully coidempotent R-module is a coreduced module.

Proof. (a) This follows from the fact that every finitely generated ideal is generated

by an idempotent.

(b) This is clear. Note that every fully coidempotent R-module is a fully copure

R-module [11, 3.13]. �

Proposition 2.15. Let M be a coreduced R-module. Then we have the following.

(a) AnnR(M) is a radical ideal, and hence R̄ is a reduced ring.

(b) Every homomorphic image of M is a coreduced R-module.

Proof. (a) Suppose that rn ∈ AnnR(M) for some n ≥ 1. Then rnM = 0 implies

that rnM ⊆ L for each completely irreducible submodule L of M . Thus rM ⊆ L for

each completely irreducible submodule L of M by Theorem 2.13. Therefore rM ⊆
∩i∈ILi = 0, where {Li}i∈I is a collection of all completely irreducible submodules

of M .

(b) This is clear. �

The following examples show that the classes of reduced modules and coreduced

modules are different.

Example 2.16. Every divisible module over an integral domain R is coreduced. In

particular, for each prime number p the Z-module Zp∞ is a coreduced Z-module.

But since p2(1/p2 +Z) = 0 and p(1/p2 +Z) 6= 0, the Z-module Zp∞ is not a reduced

Z-module.
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Example 2.17. The Z-module Z is reduced. But since 22Z ⊆ 4Z and 2Z 6⊆ 4Z,

the Z-module Z is not coreduced by Theorem 2.13.

A vertex a of a graph G is called a complement of b, if b is adjacent to a and no

vertex is adjacent to both a and b; that is, the edge a−b is not an edge of any triangle

in G. In this case, we write a ⊥ b. If every vertex of G has a complement, then G is

called complemented, and it is called uniquely complemented if it is complemented

and any two complements of vertex set are adjacent to the same vertices. As in

Anderson et al. [4], for vertices a, b of G, we have a ≤ b if a, b are not adjacent and

each vertex of G adjacent to b is also adjacent to a. If a ≤ b and b ≤ a we write

a ∼ b. Thus a ∼ b if and only if a, b are adjacent to exactly the same vertices and

a, b are not adjacent. Clearly, ∼ is an equivalent relation on G. So G is uniquely

complemented if G is complemented and whenever a ⊥ b and a ⊥ c, then b ∼ c.

Proposition 2.18. Let M be a coreduced R-module. Then ΓAnnR(M)(R) is uniquely

complemented if and only if ΓAnnR(M)(R) is complemented.

Proof. Use the technique of [19, 2.7]. �

Theorem 2.19. Let M be a fully coidempotent finitely generated R-module. Then

ΓAnnR(M)(R) is a complemented graph.

Proof. Suppose that α is a vertex of ΓAnnR(M)(R). Since ΓAnnR(M)(R) is a con-

nected graph, there is a vertex β such that αβM = 0. Put N := αM . Since M is

a fully coidempotent module, we have

N = (N :M AnnR(N))⇒ 0 = (0 :M/N AnnR(N))⇒ AnnR(N)M/N = M/N.

Hence as M/N is a finitely generated R-module, (N :R M) + AnnR(N) = R by

[20, Theorem 76]. Thus 1 = r + s for some r ∈ (N :R M), s ∈ AnnR(N). We shall

now assume that sM = 0 and derive a contradiction. Since M = rM + sM , then

M = rM ⊆ (N :R M)M ⊆ N = αM . This is the required contradiction. However,

since sαM = 0, s is a vertex of ΓAnnR(M)(R). Now we claim that s ⊥ α. Assume

that there exists a vertex c such that csM = 0 and cαM = 0. Since 1 = r + s, we

have cM ⊆ rcM + scM . On the other hand, rcM ⊆ (N :R M)cM ⊆ cαM = 0.

Hence cM = 0, which is a contradiction. Thus s ⊥ α. Consequently, ΓAnnR(M)(R)

is complemented. �

Corollary 2.20. Let M be a fully coidempotent finitely generated R-module. Then

ΓAnnR(M)(R) is a uniquely complemented graph.

Proof. This follows from Lemma 2.14, Proposition 2.18, and Theorem 2.19. �
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Let M be an R-module. A non-zero submodule S of M is said to be second if

for each a ∈ R, the homomorphism S
a→ S is either surjective or zero [24].

For a submodule N of M the the second radical (or second socle) of N is defined

as the sum of all second submodules of M contained in N and it is denoted by

sec(N) (or soc(N)). In case N does not contain any second submodule, the second

radical of N is defined to be (0) (see [10] and [15]).

Theorem 2.21. Let M be a finitely generated comultiplication R-module and N be

a submodule of M . Then sec(M) ⊆ N if and only if AnnR(N) ⊆
√
AnnR(M/N).

Proof. First suppose that sec(M) ⊆ N and AnnR(N) 6⊆
√
AnnR(M/N). Then

there exists t ∈ R such that tN = 0 and t 6∈
√
AnnR(M/N). Put Σ := {K ≤ M :

t 6∈
√
AnnR(M/K)}. Since N ∈ Σ, Σ 6= ∅. Clearly, (Σ,⊆) is a partially ordered

set. Suppose that Ω = {Ki}i∈I be a chain of elements of Σ. Since M is finitely gen-

erated, ∪i∈IAnnR(M/Ki) = AnnR(M/ ∪i∈I Ki). So t 6∈
√
AnnR(M/ ∪i∈I Ki).

Thus ∪i∈IKi is an upper bound for Ω in Σ. So by Zorn’s Lemma, Σ has a

maximal element, H say. We claim that AnnR(M/H) is a prime ideal of R.

If AnnR(M/H) = R, then t ∈ R =
√
AnnR(M/H), a contradiction. Now let

rs ∈ AnnR(M/H), r 6∈ AnnR(M/H), and s 6∈ AnnR(M/H). Then rM 6⊆ H

and sM 6⊆ H. Hence by maximality of H, t ∈
√
AnnR(M/(rM +H)) and

t ∈
√
AnnR(M/(sM +H)). Thus there exist n,m ∈ N such that tnM ⊆ sM +H

and tmM ⊆ rM +H. Therefore,

tn+mM ⊆ s(tmM) + tmH ⊆ s(rM +H) +H ⊆ srM +H = 0 +H.

It follows that t ∈
√
AnnR(M/H), which is a contradiction. Therefore, AnnR(M/H)

is a prime ideal of R. Clearly, AnnR(M/H) ⊆ AnnR((0 :M AnnR(M/H)). Let

r ∈ AnnR((0 :M AnnR(M/H)). Then r(0 :M AnnR(M/H)) = 0. Thus (0 :M

AnnR(M/H)) ⊆ (0 :M r). It follows that rM ⊆ AnnR(M/H)M ⊆ H. Hence

r ∈ AnnR(M/H). Therefore, (0 :M AnnR(M/H)) is a second submodule of M

by [7, 3.13]. So by assumption, (0 :M AnnR(M/H)) ⊆ N . Thus AnnR(N) ⊆
AnnR((0 :M AnnR(M/H))) = AnnR(M/H) ⊆

√
AnnR(M/H), a contradiction.

Conversely, suppose that AnnR(N) ⊆
√
AnnR(M/N) and S be a second sub-

module of M . It is enough to show that S ⊆ N . So suppose that S 6⊆ N .

Then as M is a comultiplication R-module, AnnR(N) 6⊆ AnnR(S). Thus there

exists a ∈ AnnR(N) \ AnnR(S). Therefore, a ∈
√
AnnR(M/N) and aS 6= 0.

As S is second, aS = S. There exists n ∈ N such that anM ⊆ N . Therefore,

S = anS ⊆ anM ⊆ N , a contradiction. �
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Proposition 2.22. Let M be an R-module. Then M is a coreduced R-module if

sec(M) = M . The converse holds when M is a finitely generated comultiplication

R-module.

Proof. First assume that sec(M) = M and r ∈ R. If S is a second submod-

ule of M , then rS = 0 or rS = S. Thus r2S = 0 or r2S = S. This implies

that rsec(M) = r2sec(M). Thus by assumption, rM = r2M . Therefore, M is

a coreduced R-module by Theorem 2.13. Conversely, let M be a comultiplication

coreduced R-module. If sec(M) 6= M . Then there exists a proper completely

irreducible submodule L of M such that sec(M) ⊆ L. Thus by Theorem 2.21,

AnnR(L) ⊆
√
AnnR(M/L). Since M is a comultiplication R-module and L is

proper, there exits t ∈ AnnR(L) \AnnR(M). Therefore, tnM ⊆ L for some n ∈ N.

This implies that tn+1M = 0. But as M is coreduced, tM = t2M by Theorem 2.13.

Therefore, tM = 0, which is a contradiction. �

Theorem 2.23. Let M be a finitely generated comultiplication R-module and

sec(M) ⊆ N 6= M . If ΓAnnR(M)(R) is complemented, then there exists a ∈
AnnR(N) such that atM = 0, at−iM 6= 0 and at−1 ⊥ ai, t = 2, 3 and 1 ≤ i ≤ t−2.

Proof. Since sec(M) ⊆ N 6= M and by [12, 2.12], sec(M) = (0 :M
√
AnnR(M)),√

AnnR(M) 6= AnnR(M). Therefore, there exists x ∈
√
AnnR(M) \ AnnR(M).

This implies that 0̄ 6= x + AnnR(M) ∈ Nil(R̄) and there exists h ∈ N such that

xhM = 0. Thus as R̄ is a multiplication R-module, there exists a ∈ (Rx̄ :R R̄) such

that atR̄ = 0, at−iR̄ 6= 0 and at−1 ⊥ ai, t = 2, 3 and 1 ≤ i ≤ t − 2 by [19, 3.3]. It

follows that Ra+AnnR(M) ⊆ Rx. So it follows that Rah+AnnR(M) ⊆ Rxh. Thus

ah ∈ AnnR(N). Therefore, ah ∈ AnnR(N) such that (ah)tM = 0, (ah)t−iM 6= 0

and (ah)t−1 ⊥ (ah)i, t = 2, 3 and 1 ≤ i ≤ t− 2. �

Lemma 2.24. Let M be a coreduced comultiplication R-module and I be an ideal

of R. If I ⊆ P , where P is a minimal prime ideal of AnnR(M), Then I ⊆WR(M).

Proof. By Lemma 2.15, R̄ is a reduced R-module. Hence since R̄ is a multiplication

R-module, I ⊆ ZR(R̄) by [6, 2.3]. As M is a comultiplication R-module, WR(M) =

ZR(R̄) by Lemma 2.7. Thus I ⊆WR(M). �

Theorem 2.25. Let M be a finitely generated comultiplication R-module. Then

we have the following.

(a) If R is a ring with |R̄| > 4 and ΓAnnR(M)(R) is a complete graph, then

either (0 :M ZR(R̄)) = 0 or (0 :M ZR(R̄)) = sec(M).

(b) If sec(M) 6= M and there are α, β ∈ V (ΓAnnR(M)(R)) such that Rα+Rβ 6⊆
WR(M), then diam(ΓAnnR(M)(R)) = 3.
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Proof. (a) Since R̄ is a multiplication R-module, R̄ = ZR(R̄)R̄ or Nil(R̄) =

ZR(R̄)R̄ by [19, 3.2]. Thus ZR(R̄) + AnnR(M) = R or ZR(R̄) + AnnR(M) =√
AnnR(M). Therefore, (0 :M ZR(R̄)) = 0 or (0 :M ZR(R̄)) = (0 :M

√
AnnR(M)).

Now the result follows from [12, 2.12].

(b) Since sec(M) ⊆ N 6= M and by [12, 2.12], sec(M) = (0 :M
√
AnnR(M)),√

AnnR(M) 6= AnnR(M). Therefore, there exists α ∈
√
AnnR(M) \ AnnR(M).

This implies that 0̄ 6= α + AnnR(M) ∈ Nil(R̄). Thus Nil(R̄) 6= 0. By Lemma

2.7, WR(M) = ZR(R̄). Thus diam(ΓAnnR(R̄)(R)) = 3 by [6, 2.8]. It follows that

diam(ΓAnnR(M)(R)) = 3. �

3. A certain subgraph of ΓI(R)

Definition 3.1. Let I be an ideal of R. We define the graph ΓI(AnnR(I)) of R

whose vertices are the set {x ∈ AnnR(I)\I : xy ∈ I for some y ∈ AnnR(I)\I} with

distinct vertices x and y are adjacent if and only if xy ∈ I. Clearly, when I = (0)

we have ΓI(AnnR(I)) = Γ(R).

Remark 3.2. (a) If AnnR(I) ⊆ I, then V (ΓI(AnnR(I))) = ∅. In particular

if AnnR(I) = 0, V (ΓI(AnnR(I))) = ∅. For example, for each ideal I of the

ring Z, we have V (ΓI(AnnZ(I))) = ∅.
(b) If R is an integral domain or I is a prime ideal of R, then V (ΓI(AnnR(I))) =

∅.
(c) It is clear that for each ideal I of R, ΓI(AnnR(I)) is a subgraph of ΓI(R).

But as we see in the Example 3.6 the converse is not true in general.

(d) If R is a comultiplication ring, then

ΓAnnR(I)(AnnR(AnnR(I))) = ΓAnnR(I)(R).

Example 3.3. In the following cases, for the graphs Γ(R/I) and ΓI(AnnR(I)), we

have |V (Γ(R/I))| = |V (ΓI(AnnR(I)))|.

(a) R = Z2 × Z2 × Z2 and I = 0× 0× Z2.

(b) R = Z4 × Z2 and I = 0× Z2.

(c) R = Z24 and I = 〈8〉.
(d) R = Z3 × Z3 × Z2 and I = 0× 0× Z2.

(e) R = Z2 × Z2 × Z3 and I = 0× 0× Z3.

(f) R = Z9 × Z3 and I = 0× Z3.

(g) R = Z6 × Z2 and I = 0× Z2.

(h) R = Z2[x]/〈x3〉 and I = 0× Z2.

(i) R = Z2 × Z2 × Z4 and I = 0× 0× Z4.

(j) R = Z2 × Z4 × Z2 and I = 0× 0× Z2.



ON THE IDEAL-BASED ZERO-DIVISOR GRAPHS 125

(k) R = Z6 × Z3 and I = 0× Z3.

Example 3.4. Let R = Z and I = 8Z. Then V (ΓI(AnnR(I))) = ∅, V (Γ(R/I)) =

{2̄, 4̄, 6̄}, and the vertex 4̄ is adjacent to both vertexes 2̄ and 6̄ in graph Γ(R/I). This

implies that Γ(R/I) is not isomorphic to a subgraph of ΓI(AnnR(I)) in general.

Example 3.5. Let p be a prime number and R = Z4p. Then the non-zero proper

ideals of R are 2Z4p, 2pZ4p, 4Z4p, and pZ4p. Since 2Z4p and pZ4p are prime

ideals of R, Γ2Z4p
(AnnZ4p

(2Z4p)) = ∅ and ΓpZ4p
(AnnZ4p

(pZ4p)) = ∅. Also, it is

straightforward to see that Γ4Z4p
(AnnZ4p(4Z4p)) = ∅ and Γ2pZ4p

(AnnZ4p(2pZ4p)) =

∅.

Example 3.6. Let R = Z24 and I = 12Z24. Then in the following figures we can

see the deference between the graphs ΓI(AnnR(I)), Γ(R/I), and ΓI(R).

Figure 1. ΓI(AnnR(I)).
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Figure 2. ΓI(R).
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Figure 3. Γ(R/I).
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8 3
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A vertex x of a connected graph G is a cut-point of G if there are vertices u, w

of G such that x is in every path from u to w (and x 6= u, x 6= w). Equivalently,

for a connected graph G, x is a cut-point of G if G \ {x} is not connected [22].

Remark 3.7. In [22, 3.2], it is shown that if I is a nonzero proper ideal if R, then

ΓI(R) has no cut-points. But this fact is not true for the subgraph ΓI(AnnR(I)) of

ΓI(R). For example, one can see that the vertex 12 is a cut-point of Γ〈8〉(AnnZ24
(〈8〉)).

Theorem 3.8. Let I be an ideal of R. Then ΓI(AnnR(I)) is connected with

diam(ΓI(AnnR(I))) ≤ 3. Furthermore, if ΓI(AnnR(I)) contains a cycle, then

gr(ΓI(AnnR(I))) ≤ 7.

Proof. Use the technique of [22, 2.4]. �

Let I be an ideal of R. Set Z̃(R/I) = {x+I ∈ R/I : ∃0 6= z+I ∈ R/I with zI =

0 and xz ∈ I}.

Theorem 3.9. Let I ⊆ J be proper ideals of R. If R/I = Z̃(R/I) ∪ U(R/I), then

V (ΓJ(AnnR(J))) ⊆ V (ΓI(AnnR(I))).

Proof. Let x ∈ V (ΓJAnnR(J))). Then xy ∈ J for some y ∈ AnnR(J) \ J . If

x+ I ∈ Z̃(R/I), then there is 0 6= z+ I ∈ R/I such that zI = 0 and zx ∈ I. Hence

x ∈ V (ΓI(AnnR(I))). Otherwise, x + I ∈ U(R/I) and so (x + I)(w + I) = 1 + I

for some w + I ∈ R/I. Thus xw = 1 + i for some i ∈ I, and hence

y = 1y = (xw − i)y ∈ J + I ⊆ J,

a contradiction. Thus V (ΓJ(AnnR(J))) ⊆ V (ΓI(AnnR(I))). �

Theorem 3.10. Let I be non-zero ideal of R and a ∈ V (ΓI(AnnR(I))), adjacent

to every vertex of V (ΓI(AnnR(I))). Then (I :R a)∩AnnR(I) is a maximal element

of the set {(I :R x) ∩ AnnR(I) : x ∈ AnnR(I) \ I}. Moreover, (I :R a) is a prime

ideal of R.



ON THE IDEAL-BASED ZERO-DIVISOR GRAPHS 127

Proof. One can see that V (ΓI(AnnR(I))) ∪ (AnnR(I) ∩ I) = (I :R a) ∩AnnR(I).

Now choose x ∈ AnnR(I) \ I. Let y ∈ (I :R x) ∩ AnnR(I). If y ∈ I, then y ∈ I ⊆
(I :R a) and we are done. If y 6∈ I, then yx ∈ I implies that y ∈ V (ΓI(AnnR(I))).

Thus ya ∈ I by assumption. Therefore, y ∈ (I :R a) as needed. Now prove that

(I :R a) is a prime ideal of R. Since a 6∈ I, (I :R a) 6= R. Let xy ∈ (I :R a) and

x 6∈ (I :R a) for some x, y ∈ R. Then xa 6∈ I and since aI = 0, xa ∈ AnnR(I).

Thus (I :R xa) ⊆ (I :R a) by assumption. Hence y ∈ (I :R a) and the proof is

completed. �

Theorem 3.11. Let I be an ideal of R and consider S =
√
I \ I. If S ∩ AnnR(I)

is a non-empty set, then 〈S ∩AnnR(I)〉 is connected.

Proof. Let x, y ∈ S ∩AnnR(I). If xy ∈ I, then we are done. Suppose that xy 6∈ I,

where xn, ym ∈ I and xn−1, ym−1 6∈ I. Hence, the path x− xn−1 − xy − ym−1 − y
is a path of length four from x to y. �

Theorem 3.12. Let I be a non-zero ideal of R. Then we have the following.

(a) If P1 and P2 are prime ideals of AnnR(I) and I ∩AnnR(I) = P1∩P2, then

ΓI(AnnR(I)) is a complete bipartite graph.

(b) If ΓI(AnnR(I)) is a complete bipartite graph, then there exist ideals P1 and

P2 of R such that I ∩ AnnR(I) = P1 ∩ P2. Moreover, if I =
√
I, then P1

and P2 are prime ideals of AnnR(I).

Proof. Use the technique of [21, 3.1]. �

Let S(I) = {x ∈ R : xy ∈ I for some y ∈ R \ I} [25].

Proposition 3.13. Let I be an ideal of R. Then we have the following.

(a) V (ΓI(AnnR(I))) = S(I)∩ (AnnR(I)\I). In particular, V (ΓI(AnnR(I)))∪
(AnnR(I) ∩ I) = S(I) ∩AnnR(I).

(b) If
√
I ∩AnnR(I) = I∩AnnR(I), then S(I)∩AnnR(I) ⊆ ∪P∈Min(I∩AnnR(I))P .

Proof. (a) This is straightforward.

(b) Let x ∈ S(I) ∩ AnnR(I). Then xI = 0 and there exists y ∈ R \ I such that

xy ∈ I. Set z = xy + y. Then xz ∈ I ∩AnnR(I) and z 6∈ I ∩AnnR(I). Therefore,

x ∈ S(I ∩ AnnR(I)). Thus S(I) ∩ AnnR(I) ⊆ S(I ∩ AnnR(I)). Now the result

follows from [17, 2.1]. �

Theorem 3.14. Let I be an ideal of R. Then we have the following.

(a) If I ∩AnnR(I) = 0, then ΓI(AnnR(I)) is a subgraph of Γ(R).

(b) If I ∩ AnnR(I) = 0, then ΓI(AnnR(I)) is isomorphic to a subgraph of

Γ(R/I).
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(c) If R/I be a reduced ring and ΓI(AnnR(I)) is a complete graph, then

ΓI(AnnR(I))) is a subgraph of Γ(R).

Proof. (a) Clearly V (ΓI(AnnR(I))) ⊆ Z∗(R) = V (ΓI(AnnR(I))). Now let x, y ∈
V (ΓI(AnnR(I))) and x is adjacent to y. Then xy ∈ I. Thus xy ∈ I∩AnnR(I) = 0,

as needed.

(b) Consider the map φ : V (ΓI(AnnR(I)))→ V (Γ(R/I)) defined by φ(x) = x+I.

It is easy to see that φ is graph homomorphism. Now let x + I = y + I. for some

x, y ∈ V (ΓI(AnnR(I)))). Then x − y ∈ I and so x − y ∈ I ∩ AnnR(I) = 0. Thus

x = x. Therefore, φ is monic.

(c) Clearly, V (ΓI(AnnR(I))) ⊆ V (Γ(R)). Now let x and y be two adjacent

elements of V (ΓI(AnnR(I))). Then xy ∈ I. Since x + xy ∈ AnnR(I), x + xy 6∈ I,

and (x+xy)y ∈ I, we have x+xy is a vertex of ΓI(AnnR(I))). Now as ΓI(AnnR(I))

is a complete graph, (x + xy)x ∈ I or x + xy = x. If (x + xy)x ∈ I, then x2 ∈ I.

Since R/I is reduced, x ∈ I, a contradiction. Therefore, x+ xy = x and so xy = 0

as requested. �
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