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Abstract. In this paper, we generalize the concept of direct-injective modules

to finite-direct-injective modules. Various basic properties of these modules are

studied. We show that the class of finite-direct-injective modules lies between

the class of direct-injective modules and the class of simple-direct-injective

modules. Also, we characterize semisimple artinian rings, V -rings and regular

rings in terms of finite-direct-injective modules.
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1. Introduction

Throughout this paper, all rings are associative rings with unity and all modules

are unitary right modules. For a right R-module M , S = EndR(M) denotes the

endomorphism ring of M . For φ ∈ S, Ker(φ) and Im(φ) stand for kernel and image

of φ, respectively. The notations N ≤M , N ≤ess M and N ≤
⊕
M means that N

is a submodule, an essential submodule and a direct summand of M , respectively.

E(M) denotes the injective hull of M .

Y. Utumi [15] in a series of his papers on regular self injective rings observed

three conditions on a ring which is satisfied if the ring is self injective. These

conditions are currently known in the literature by C1, C2 and C3 conditions and

subsequently extended to modules as follows:

(C1): every submodule of M is essential in a direct summand of M .

(C2): every submodule of M which is isomorphic to a direct summand of M is

itself a direct summand of M .

(C3): sum of any two direct summands of M with zero intersection is again a

direct summand of M .
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The modules which satisfy the conditions C1, C2 and C3 is known as C1-module,

C2-module and C3-module, respectively. These modules were studied by Mohamed

and Müller in [9]. The concept of direct-injective modules which is the generaliza-

tion of quasi-injective modules was introduced by W. K. Nicholson [10]. Nicholson

et. al. [11] show that direct injective modules are equivalent to C2-modules. Re-

cently Camillo et. al. [2] generalize the concept of direct-injective modules to

simple-direct-injective modules. A module M is called simple-direct-injective if

every simple submodule isomorphic to a direct summand of M is itself a direct

summand of M . In this paper, we introduce the concept of finite-direct-injective

modules which is another generalization of direct-injective modules and it is inter-

esting to note that these classes of modules lies between the class of direct-injective

modules and the class of simple-direct-injective modules.

A module M is called finite-direct-injective if every finitely generated submodule

of M isomorphic to a direct summand of M is itself a direct summand of M . It is

the generalization of direct-injective modules. We give an example of a finite-direct-

injective module that is not a direct-injective module. In Section 2 of this paper

various basic properties of finite-direct-injective modules are studied. The class of

finite-direct-injective modules is not closed under direct sum, even though direct

summands of finite-direct-injective modules are finite-direct-injective. In Example

2.2 we will see that a direct sum of two finite-direct-injective modules need not be

finite-direct-injective. Also, we give a sufficient condition for a finite-direct-injective

module to be direct-injective. We also find a condition under which C3-modules

are finite-direct-injective.

In Section 3 of this paper, we characterize some well-known rings with the help

of finite-direct-injective modules. B. L. Osofsky [12] proved that a ring R with

property that all its cyclic right modules are injective is semisimple artinian. Here

we give a characterization of semisimple artinian ring in terms of finite-direct-

injective modules. A ring R is called a right V -ring if every simple right R-module

is injective. It is shown that a ring is right V -ring if and only if every finitely

cogenerated R-module is finite-direct-injective. According to G. Lee et. al. [7], a

right R-module M is called dual Rickart if, ∀φ ∈ S, φ(M) = Im(φ) = eM for some

e2 = e ∈ S. A module M is said to have the summand sum property (SSP ), if the

sum of any two direct summands of M is a direct summand of M (see for details,

[1], [5]). For a semihereditary ring R, it is shown that every finitely generated

projective R-module is finite-direct-injective if and only if every finitely generated

projective R-module is dual Rickart if and only if every finitely generated projective
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R-module satisfies summand sum property if and only if R is a regular ring. We

also characterize rings R for which every singular right R-module is finite-direct-

injective.

2. Finite-direct-injective modules

Here we introduce the concept of finite-direct-injective modules as a generaliza-

tion of direct-injective modules with counter example and discuss some properties

of finite-direct-injective modules.

Definition 2.1. A module M is called finite-direct-injective if every finitely gen-

erated submodule of M isomorphic to a direct summand of M is itself a direct

summand of M . A ring R is called right finite-direct-injective if the right R-module

R is finite-direct-injective.

Example 2.2. (1) Every direct-injective module is finite-direct-injective but the

converse need not be true. Here we give an example of a finite-direct-injective

module that is not direct-injective. Let R be a von Neumann regular ring which is

not semisimple. For instance, the endomorphism ring of an infinite dimensional

vector space. As R is not semisimple, RR has infinite Goldie dimension. So it

contains an infinite direct sum N =
⊕

n∈N Rrn of non zero left ideal. Note that

N is not a direct summand of R as it is not finitely generated. Let RM = RN, a

countable direct sum of copies of the ring R and N be the left ideal of R included in

the first copy of the ring inside M = RN. Clearly any finitely generated submodule

of M is a direct summand since R is regular. Hence M is finite-direct-injective but

it is not direct-injective because if we define an R-homomorphism f : N → M by

f(
∑
i∈N xiri) = (x1r1, x2r2, . . . , xnrn, . . . ). Let K = Im(f), then K is clearly a

direct summand of M isomorphic to N but N is not a direct summand of M .

(2) A module whose finitely generated submodule is a direct summand is trivially

finite-direct injective. In particular every strongly regular [14] and every finitely

generated projective modules over a von Neumann regular ring are finite-direct-

injective.

(3) Lee et. al. [8], defined a module M to be automorphism invariant if α(M) ≤M
for every automorphism α of the injective hull of M . In [4, Theorem 16], it was

shown that a module M is automorphism invariant if and only if it is pseudo-

injective. By [3, Theorem 2.6], every pseudo-injective module as well as every

automorphism invariant module is a C2 (direct-injective) module, and hence is a

finite-direct-injective module. However every finite-direct-injective module may not

be automorphism invariant. For example, if a ring R is von Neumann regular such
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that R is not a clean ring, then RR is direct-injective and hence finite-direct-injective

but it is not automorphism invariant.

Proposition 2.3. Every direct summand of a finite-direct-injective module is a

finite-direct-injective module.

Proof. Let M be a finite-direct-injective module and N be a direct summand of

M . Let X be a finitely generated submodule of N which is isomorphic to a direct

summand P of N . We have to show that X is also a direct summand of N . Since

P is a direct summand of N and N is a direct summand of M , we have P is a

direct summand of M . So X ∼= P ≤
⊕

M . Since M is finite-direct-injective, X

is a direct summand of M . Let M = X
⊕
Y for some Y ≤ M . By modular law

N = N ∩M = N ∩ (X
⊕
Y ) = X

⊕
(N ∩ Y ). Thus X is a direct summand of

N . �

It is interesting to examine whether an algebraic property is inherited by direct

sums. The examples given below shows that a direct sum of two finite-direct-

injective modules need not be finite-direct-injective.

Example 2.4. (1) Let S be a simple R-module that is not injective, so it is easy

to see that S and its injective hull E(S) are finite-direct-injective but S
⊕
E(S) is

not finite-direct-injective.

(2) Let

R =

[
F F

0 F

]
, A =

[
F F

0 0

]
, B =

[
0 0

0 F

]
where F is a field. Then RR = AR

⊕
BR. Both AR and BR are finite-direct-

injective, but RR is not a finite-direct-injective module.

Now let us see how finite-direct-injective modules correlate with direct-injective

modules and simple-direct-injective modules, as defined. We have the following

hierarchy:

Proposition 2.5. The following implications hold and are irreversible:

Direct-injective =⇒ finite-direct-injective =⇒ simple-direct-injective.

Proof. This is clear from the definitions. �

Remark 2.6. In general none of the implication given in above proposition is an

equivalence. For example Z as a Z-module is simple-direct-injective but it is not

finite-direct-injective as well as direct-injective.
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The next proposition gives a sufficient condition for a finite-direct-injective mod-

ule to be direct-injective.

Proposition 2.7. Let M be a finitely generated right R-module. Then M is finite-

direct-injective if and only if M is direct-injective. In particular, a ring R is right

finite-direct-injective if and only if it is right direct-injective.

Proof. Let M be a finite-direct-injective module and N be any submodule of M

such that N ∼= P ≤
⊕

M . Since M is finitely generated, therefore P is finitely

generated and so N is finitely generated and becomes direct summand of M as M

is finite-direct-injective. The converse is clear from the definition. Since any ring

R is cyclic as an R-module, therefore R is finite-direct-injective if and only if R is

direct-injective. �

The next proposition is an important tool which is used to develop some proper-

ties of finite-direct-injective modules and also help in the characterization of various

rings in terms of finite-direct-injective modules.

Proposition 2.8. Let M = M1

⊕
M2 for some submodules M1 and M2 with M1

finitely generated. If M is a finite-direct-injective module and f : M1 → M2 is a

homomorphism with Ker(f) ≤
⊕
M1, then Im(f) ≤

⊕
M2.

Proof. Let f : M1 → M2 be a module homomorphism with Ker(f) ≤
⊕
M1, say

M1 = Ker(f)
⊕
N . Then by fundamental theorem of module homomorphisms,

Im(f) ∼= M1/Ker(f) ∼= N . Since M1 is finitely generated so, M1/Ker(f) and

hence Im(f) is finitely generated. Also given that M is finite-direct-injective so,

Im(f) is a direct summand of M as N is a direct summand. Since Im(f) ≤M2 ≤
⊕

M , Im(f) ≤
⊕
M2. �

Corollary 2.9. Let M be a finite-direct-injective module, M = M1

⊕
M2 for

some submodules M1 and M2 with M1 finitely generated, and f : M1 → M2 be

a monomorphism. Then Im(f) ≤
⊕
M2.

Proof. The proof is clear from Proposition 2.8. �

Corollary 2.10. Let M be a finitely generated module and M
⊕
E(M) be finite-

direct-injective. Then M is injective.

Proof. Since the inclusion map i : M → E(M) is clearly a monomorphism then

by Corollary 2.9, i(M) = M ≤
⊕

E(M). Thus M = E(M) and hence M is

injective. �
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Proposition 2.11. If every 2-generated right R-module is finite-direct-injective,

then every finite dimensional right R-module is injective.

Proof. To show that every finite dimensional right R-module is injective we have

to show that every uniform module is injective. Let L be a uniform module and

for any 0 6= x ∈ E(L), 0 6= P ≤ xR and take 0 6= y ∈ P . Then xR
⊕
yR

is a finite-direct-injective module. By Corollary 2.9, yR ≤
⊕

xR. But as xR is

indecomposable yR = xR and so P = xR. Thus every cyclic submodule of xR is a

direct summand hence xR is semisimple and so E(L) is semisimple. Thus L = E(L)

is injective as desired. �

Proposition 2.12. Let M be a finite dimensional, direct-injective module. Then

EndR(M) is semilocal.

Proof. Since M is finite dimensional to prove that EndR(M) is semilocal we need

to show that every monomorphism α : M →M is an isomorphism. Since α(M) ∼=
M ≤

⊕
M and M is direct-injective, therefore α(M) ≤

⊕
M . But α(M) ≤ess M as

M is finite dimensional. Hence α(M) = M , so α is an isomorphism, as desired. �

Corollary 2.13. Let M be a finitely generated, finite dimensional, finite-direct-

injective module. Then EndR(M) is semilocal.

Proof. The proof follows easily from Propositions 2.7 and 2.12. �

It is observed that Z as a Z-module is a C3-module but it is not finite-direct-

injective. Thus every C3-module need not be finite-direct-injective. In the next

proposition we find the condition under which C3-modules are finite-direct-injective.

Proposition 2.14. The following statements hold :

(1) If M is a finite-direct injective module, then for any two direct summands

A and B of M with A ∩B = 0 and B finitely generated, A
⊕
B ≤

⊕
M .

(2) If M
⊕
M is a C3-module, then M is a finite-direct-injective module.

(3) Any direct sum of injective modules is finite-direct-injective.

Proof. (1) Suppose M is a finite-direct-injective module and A,B ≤
⊕

M with

A ∩ B = 0 and B is finitely generated. Write M = A
⊕
K for some K ≤ M and

let π : M → K be the natural projection. Since B is a finitely generated direct

summand of M with A ∩ B = 0, A
⊕
B = A

⊕
π(B) and π(B) ∼= B ≤

⊕
M .

Since M is a finite-direct-injective module, π(B) ≤
⊕

M . Write M = π(B)
⊕
C

for some C ≤ M , then K = K ∩M = K ∩ (π(B)
⊕
C) = π(B)

⊕
(C ∩K). Thus

M = A
⊕
K = A

⊕
π(B)

⊕
(C ∩K) = A

⊕
B
⊕

(C ∩K), as required.
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(2) Let M
⊕
M be a C3-module and K be a finitely generated submodule of M

such that K ∼= L ≤
⊕
M . We need to show that K ≤

⊕
M . Write M = L

⊕
N for

some N ≤ M . Since M
⊕
M = (L

⊕
N)

⊕
M = L

⊕
(M

⊕
N) is a C3-module,

and if we take σ : K → L as the preceeding isomorphism, σ−1 : L→M →M
⊕
N

splits by Lemma 3.2 of [2]. Hence K = σ−1(L) ≤
⊕
M .

(3) Let M =
⊕

i∈ιEi be an arbitrary direct sum of injective modules Ei. Let

A ∼= B ≤
⊕
M where A and B are finitely generated submodules of M . Since B

is finitely generated, B ≤
⊕

(
⊕

i∈F Ei) for some finite subset F ⊂ ι. Since finite

direct sums of injective modules are injective, B is injective and since A ∼= B, A is

injective and so A ≤
⊕
M , as required. �

Two modules A and B are called subisomorphic if A isomorphic to a submodule

of B and B is isomorphic to a submodule of A. According to Goldie [6], two modules

are subisomorphic if each has a monomorphism into the other one. A module M is

called directly finite if it is not isomorphic to a proper direct summand of itself.

Proposition 2.15. Let M be a finitely generated R-module such that M = A
⊕
B

is a finite-direct-injective module, where A and B are subisomorphic. If either A

or B is directly finite, then A ∼= B.

Proof. Since M is a finitely generated R-module and M = A
⊕
B, A and B are

also finitely generated. Let α : A → B and β : B → A be monomorphisms. Since

β(B) ∼= B ≤
⊕

M and M is a finite-direct-injective module, β(B) ≤
⊕

M , but

β(B) ≤ A, so β(B) ≤
⊕
A. Let A = β(B)

⊕
T for a submodule T ≤ A. Now as

αβ : B → B is a monomorphism, so αβ(B) ∼= B ≤
⊕
M and M is a finite-direct-

injective module, therefore αβ(B) ≤
⊕
B. Let B = αβ(B)

⊕
L for a submodule L

of B. According to our assumption let B be directly finite and since B ∼= αβ(B),

L = 0. Thus B = αβ(B) = α(A), so α is an isomorphism between A and B as

required. �

3. Characterization of rings using finite-direct-injective modules

In this section, we characterize some well-known rings with the help of finite-

direct-injective modules in which Corollary 2.10 play an important role. In the next

result, we characterize semisimple artinian rings in terms of finite-direct-injective

modules.

Proposition 3.1. The following conditions are equivalent for a ring R:

(1) R is semisimple artinian.

(2) Every R-module is finite-direct-injective.
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Proof. (1) =⇒ (2) This is clear.

(2) =⇒ (1) Let N be a cyclic R-module. By (2), N
⊕
E(N) is a finite direct

injective module. Hence by Corollary 2.10, N is injective. Thus according to

Osofsky Theorem [12], R is semisimple artinian. �

Now we characterize V -rings in terms of finite-direct-injective modules.

Theorem 3.2. The following conditions are equivalent for a ring R:

(1) R is right V -ring.

(2) Every finitely cogenerated R-module is finite-direct-injective.

Proof. (1) =⇒ (2) Let R be a right V -ring. Then every finitely cogenerated

module is injective by Theorem 23.1 of [16]. Hence every finitely cogenerated R-

module is finite-direct-injective.

(2) =⇒ (1) To show that R is a right V -ring we have to show that every simple

R-module is injective. Let M be a simple R-module. Then M
⊕
E(M) is finitely

cogenerated. By (2), it is a finite-direct-injective module. Hence by Corollary 2.10,

M is injective and thus R is a right V -ring. �

The next theorem characterizes regular rings in terms of finite-direct-injectivity.

Theorem 3.3. The following conditions are equivalent for a semihereditary ring

R:

(1) Every finitely generated projective R-module is finite-direct-injective.

(2) Every finitely generated projective R-module is dual Rickart.

(3) Every finitely generated projective R-module has SSP.

(4) Every finitely generated submodule of a finitely generated projective R-

module is a direct summand.

(5) R is a regular ring.

Proof. (1) =⇒ (2) Let M be a finitely generated projective R-module and

S = End(M). To show that M is dual Rickart we have to show that for any

s ∈ S, s(M) ≤
⊕
M . Since M

⊕
s(M) is finitely generated projective, by (1), it is

finite-direct-injective. Hence by Corollary 2.10, s(M) ≤
⊕
M , as desired.

(2) =⇒ (3) Every dual Rickart module satisfies SSP [7, Proposition 2.11].

Therefore by (2), every finitely generated projective R-module has SSP.

(3) =⇒ (4) Let N be a finitely generated submodule of a finitely generated

projective R-module M . Then N
⊕
M is finitely generated projective and so by

(3), it has SSP. Therefore N ≤
⊕
M .
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(4) =⇒ (5) Since R is a finitely generated projective R-module, by (4), every

cyclic right ideal of R is a direct summand of R. Hence R is a regular ring.

(5) =⇒ (1) Let R be a regular ring and M a finitely generated projective

R-module. Then every finitely generated submodule of M is a direct summand,

therefore M is trivially finite-direct-injective. �

Rings R for which every singular right R-modules are injective are called right

SI-rings. In the next proposition, we characterize right SI-ring with the help of

finite-direct-injective modules.

Proposition 3.4. The following conditions are equivalent for a ring R:

(1) R is a right SI-ring.

(2) Every singular right R-module is finite-direct-injective.

Proof. (1) =⇒ (2) Since R is a right SI-ring, every singular right R-module is

injective, therefore every singular right R-module is finite-direct-injective.

(2) =⇒ (1) Let M be a cyclic singular right R-module, then it is easy to

see that M
⊕
E(M), where E(M) is the injective hull of M , is singular and by

hypothesis it is finite-direct-injective. So by Corollary 2.10, M is injective. Thus

every cyclic singular right R-module is injective. Hence by [13, Corollary 5], every

singular right R-module is injective. Thus R is a right SI-ring. �
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