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zero-divisor graphs with 14 or fewer vertices.

Mathematics Subject Classification (2010): 20M14, 05C25

Keywords: Zero-divisor graph, commutative ring without identity

1. Introduction

Let R be a commutative ring with nonzero identity, and let Z(R) be its set of

zero-divisors. As in [9], the zero-divisor graph of R is the (simple) graph Γ(R)

with vertices Z(R) \ {0}, and distinct vertices x and y are adjacent if and only if

xy = 0. This concept is due to Beck [16], who let all the elements of R be vertices

and was mainly interested in colorings (also see [2]). The zero-divisor graph of

a commutative ring with identity has been studied extensively by many authors;

see the two survey articles [5] and [18]. It is now customary to assume that rings

have an identity (cf. [1]), but the above definition of Γ(R) certainly holds for a

commutative ring without identity. The purpose of this article is to investigate the

zero-divisor graph of a commutative ring without identity.

Although some results on the zero-divisor graph do not depend on an identity

(see Theorem 2.2) and a few results have been given without assuming an identity

(cf. [13]), there has been no systematic study for commutative rings without an

identity. The concept of zero-divisor graph of a commutative ring was extended to

commutative semigroups by DeMeyer, McKenzie, and Schneider in [20]. Let S be

a (multiplicative) commutative semigroup with 0 (i.e., 0x = 0 for every x ∈ S),

and let Z(S) = {x ∈ S | xy = 0 for some 0 6= y ∈ S } be the set of zero-divisors

of S. Then the zero-divisor graph of S is the (simple) graph G(S) with vertices

Z(S) \ {0}, the set of nonzero zero-divisors of S, and two distinct vertices x and y
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are adjacent if and only if xy = 0. Thus Γ(R) = G(S), where S = R or S = Z(R)

as a multiplicative semigroup whether or not R has an identity. For a recent survey

article on G(S), see [6].

When studying commutative rings R without identity, there are two distinct

natural cases, either R = Z(R) or Z(R) ( R. The first case holds when R is finite,

and either case may hold when R is infinite. Things are particularly nice for finite

commutative rings R without identity since |V (Γ(R))| = |R|−1. In the second case,

Γ(R) is isomorphic to the zero-divisor graph of a commutative ring with identity,

namely, Γ(RS), where S = R \ Z(R).

In Section 2, we give some properties of Γ(R) for a commutative ring R. In

Section 3, we study the zero-divisor graph for commutative rings R with R =

Z(R); a special case is when R is a finite commutative ring without identity. We

pay particular attention to the diameter and girth of Γ(R) and also determine

when Γ(R) is a complete, complete bipartite, or star graph. In Section 4, we

study commutative rings R without identity and Z(R) ( R and briefly discuss the

compressed zero-divisor graph ΓE(R). In Section 5, we determine all zero-divisor

graphs on 14 or fewer vertices for commutative rings without identity and compare

this to commutative rings with identity. In Section 6, we give tables that show

which diameters and girths can be realized by zero-divisor graphs of several types

of commutative rings.

All rings will be commutative. To avoid confusion, we will use the terminology

commutative ring with identity, commutative ring without identity, and just com-

mutative ring for either case. We let Z(R), Nil(R), and U(R) denote the set of

zero-divisors, the ideal of nilpotent elements, and set of units (possibly empty) for

a commutative ring R. A regular element of R is an x ∈ R \ Z(R), and the total

quotient ring of R is T (R) = RS , where S = R\Z(R) (T (R) = R if R = Z(R)). For

an additive abelian group G, let G0 be the induced commutative ring with trivial

multiplication. As usual, Z, Zn, Q, and Fq will denote the ring of integers, integers

modulo n, rational numbers, and the finite field with q elements, respectively.

We next recall some concepts from graph theory; a general reference for graph

theory is [17]. Throughout, G will be a simple graph with V (G) its set of vertices,

i.e., G is undirected with no multiple edges or loops. We say that G is connected

if there is a path between any two distinct vertices of G. For vertices x and y of

G, define d(x, y) to be the length of a shortest path from x to y (d(x, x) = 0 and

d(x, y) =∞ if there is no path). The diameter of G is diam(G) = sup{ d(x, y) | x
and y are vertices of G }. The girth of G, denoted by gr(G), is the length of a

shortest cycle in G (gr(G) =∞ if G contains no cycles).
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A graph G is complete if any two distinct vertices of G are adjacent. The complete

graph with n vertices will be denoted by Kn (we allow n to be an infinite cardinal

number). A complete bipartite graph is a graph G which may be partitioned into

two disjoint nonempty vertex sets A and B such that two distinct vertices of G are

adjacent if and only if they are in distinct vertex sets. If one of the vertex sets is

a singleton, then we call G a star graph. We denote the complete bipartite graph

by Km,n, where |A| = m and |B| = n (again, we allow m and n to be infinite

cardinals); so a star graph is a K1,n.

Let H be a subgraph of a graph G. Then H is an induced subgraph of G if every

edge in G with endpoints in H is also an edge in H. For a vertex x of a graph G,

let N(x) be the set of vertices in G that are adjacent to x and N(x) = N(x)∪{x}.
A vertex x of G is called an end if there is only one vertex adjacent to x (i.e., if

|N(x)| = 1).

Most of the results in this paper are from the the second-named author’s PhD

dissertation [28] at The University of Tennessee under the direction of the first-

named author.

2. Zero-divisor graphs

Let R be a commutative ring (again, “commutative ring” means the ring may

or may not have an identity). Associate to R a (simple) graph Γ(R) with vertices

the nonzero zero-divisors of R, and two distinct vertices x and y are adjacent if

and only if xy = 0. Note that Γ(R) is the empty graph if and only if R = {0} or

Z(R) = {0}. To avoid any trivialities, we will implicitly assume that R 6= {0} and

Γ(R) is not the empty graph.

We first give two examples of how commutative rings without identity arise

naturally from commutative rings with identity.

Example 2.1. (a) Let A be a commutative ring with identity. If Z(A) is an (nec-

essarily prime) ideal of A, then R = Z(A) is a commutative ring without identity

and R = Z(R) = Z(A). Thus Γ(R) = Γ(A). This would be the case when A is a

zero-dimensional (e.g., finite) local ring.

(b) Let A be a commutative ring with identity and x ∈ A \ (Z(A) ∪ U(A)), i.e.,

x is a non-unit regular element of A. Then R = xA is a commutative ring without

identity, Z(R) ( R since x ∈ R \ Z(R), and Γ(R) ∼= Γ(A) via xa ↔ a. Note that

in this case, A, and hence R, is necessarily infinite.
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We next observe that many of the fundamental zero-divisor graph results for

commutative rings with identity from [9] also hold for commutative rings without

identity.

Theorem 2.2. Let R be a commutative ring.

(1) Γ(R) is connected with diam(Γ(R)) ∈ {0, 1, 2, 3}.
(2) gr(Γ(R)) ∈ {3, 4,∞}.
(3) Γ(R) is complete if and only if R ∼= Z2 × Z2 or Z(R)2 = {0}.
(4) If Z(R) 6= {0}, then Γ(R) is finite if and only if R is finite.

Proof. (1) The proof in [9, Theorem 2.3] and easier proof in [5, Theorem 2.2] hold

for commutative rings without identity (and semigroups). The result for semigroup

zero-divisor graphs is given in [20, Theorem 1.2].

(2) The proof in [5, Theorem 2.3] holds for commutative rings without identity

(and semigroups), and the result for semigroup zero-divisor graphs is given in [20,

Theorem 1.5].

(3) The proof in [9, Theorem 2.8] holds for commutative rings without identity

(in the proof of [9, Theorem 2.5], just note that if a ∈ R is idempotent, then

R = Ra ⊕ {r − ra | r ∈ R}). The R = Z(R) case is also observed in [13, Lemma

2.2].

(4) The proof in [9, Theorem 2.2] and easier proof in [5, Theorem 2.1] hold for

commutative rings without identity. �

The following results will be needed in later sections.

Theorem 2.3. Let R be a finite commutative ring.

(1) If R does not have an identity, then R = Z(R).

(2) ([3, Lemma 4.4]) If R does not have an identity, then either R = Nil(R)

or R = R1 ×R2, where R1 has an identity and R2 = Nil(R2) 6= {0}.

Proof. (1) is well known and is also a consequence of (2). �

Theorem 2.4. Let R be an infinite commutative ring.

(1) diam(Γ(R)) 6= 0.

(2) If diam(Γ(R)) = 1, then gr(Γ(R)) 6=∞ (i.e., gr(Γ(R)) = 3).

(3) If R has an identity and diam(Γ(R)) = 3, then gr(Γ(R)) 6= ∞ (i.e.,

gr(Γ(R)) ∈ {3, 4}).

Proof. (1) and (2) follow from Theorem 2.2(4) since Γ(R) is infinite when R is

infinite and Z(R) 6= {0}.
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(3) If R is reduced, then gr(Γ(R)) =∞ if and only if Γ(R) = K1,n [11, Theorem

2.4]. Since diam(K1,n) = 2 (for n ≥ 2), no such reduced ring has the desired

diameter and girth. If R has nonzero nilpotent elements, then gr(Γ(R)) =∞ if and

only if either Γ(R) is a singleton, Γ(R) = K̄1,3, or Γ(R) = K1,n (where K̄m,3 is the

graph formed by joining Km,3 to the graph K1,m by identifying the center of K1,m

with a point in the size 3 partition of Km,3) [11, Theorem 2.5]. The first two cases

are finite graphs, and the last case has diameter 2. Thus no such nonreduced ring

has the desired diameter and girth. �

Although many results hold for Γ(R) whether or not R has an identity, there are

major differences. We end this section with five examples which illustrate this for

finite commutative rings; details will be given in later sections.

Example 2.5. (a) There are many graphs that can only be realized as the zero-

divisor graphs of commutative rings with identity or of commutative rings without

identity, but not both. For example, the complete bipartite graph K2,2 can only

be realized as the zero-divisor graph of a commutative ring with identity (let R =

Z3 × Z3), and the complete graph K5 can only be realized by a commutative ring

without identity (let R = Z0
6). Moreover, 5 is the fewest number of vertices for which

there are graphs that can be realized as zero-divisor graphs only by a commutative

ring with identity and other graphs that can be realized as zero-divisor graphs only

by a commutative ring without identity.

(b) Let n ≥ 1 be an integer. Then Γ(R) = Kn for a finite commutative ring R

with identity if and only if n = pk − 1 for a prime p and integer k ≥ 1 [9, Theorem

2.10]. However, for every integer n ≥ 1, Γ(Z0
n+1) = Kn.

(c) Let m,n ≥ 1 be integers. Then Γ(R) = Km,n for a finite commutative ring

R with identity if and only if m = pi − 1 and n = qj − 1 for primes p, q and

integers i, j ≥ 1 [9, Theorem 2.13 and p. 43]. In particular, Γ(R) = K1,n for a

finite commutative ring R with identity if and only if n = pk − 1 for a prime p and

integer k ≥ 1. However, for a finite commutative ring R without identity, Γ(R) is

complete bipartite if and only if Γ(R) is either K1,1, K1,2, or K1,2pk−2 for a prime

p and integer k ≥ 1. So, for example, K1,3 can be realized only by F4 × Z2, K1,14

only by F8 × Z0
2, and K1,2 by either Z3 × Z2 or Z2 × Z0

2.

(d) For every integer n ≥ 1, there is a commutative ring Rn without identity such

that |V (Γ(Rn))| = n, namely, Rn = Z0
n+1 has Γ(Rn) = Kn. However, for com-

mutative rings with identity, there need not be a zero-divisor graph with n vertices.

For example, there are no commutative rings with 1210, 3342, or 5466 zero-divisors,
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and thus there are no zero-divisor graphs of commutative rings with identity with

1209, 3341, or 5465 vertices [26].

(e) There are no finite commutative rings R without identity and either gr(Γ(R)) =

4 or diam(Γ(R)) = 3. However, for finite commutative rings with identity, gr(Γ(R)) =

4 and diam(Γ(R)) = 3 for R = Z12.

3. Commutative rings with R = Z(R)

In this section, we consider commutative rings where every element is a zero-

divisor. Clearly such rings have no identity, and Theorem 2.3(1) gives that every

finite commutative ring without identity falls into this category. We begin by

concentrating on the girth of Γ(R).

Theorem 3.1. Let R be a commutative ring with R = Z(R).

(1) Γ(R) is complete if and only if xy = 0 for every x, y ∈ R.

(2) gr(Γ(R)) ∈ {3,∞}.
(3) If diam(Γ(R)) = 3, then gr(Γ(R)) = 3.

(4) If gr(Γ(R)) =∞, then Γ(R) is either K1 or a star graph.

(5) Γ(R) is complete bipartite if and only if it is a star graph.

Proof. (1) This is a special case of Theorem 2.2(3).

(2) By Theorem 2.2(2), it suffices to show that Γ(R) contains a 3-cycle when it

has a 4-cycle. So suppose a — b — c — d — a is a 4-cycle for nonzero vertices

a, b, c, and d with ac 6= 0 6= bd. Since a − b 6= 0, there is a 0 6= t ∈ R such that

t(a− b) = 0.

Case 1: ta = tb 6= 0. Then a(ta) = a(tb) = t(ab) = 0, (ta)b = t(ab) = 0, and

ta /∈ {a, b, c, d} since ac 6= 0 6= bd. Thus a — ta — b — a is a 3-cycle.

Case 2: ta = tb = 0. If t /∈ {a, b}, then a — b — t — a is a 3-cycle.

So suppose t ∈ {a, b}. Then either a2 = 0 or b2 = 0. If a2 = b2 = 0,

then a + b /∈ {0, a, b} (a + b = 0 would imply that a = −b, and thus

ac = (−b)c = 0, a contradiction). This would give the 3-cycle a — a+ b —

b — a. So suppose that only one of a2 = 0 or b2 = 0 holds.

Without loss of generality, let a2 = 0 and b2 6= 0. Repeating the above

argument also gives, without loss of generality, that c2 = 0 and d2 6= 0.

Now, 0 6= ac ∈ V (Γ(R)) and a(ac) = a2c = 0, b(ac) = 0, c(ac) = ac2 = 0,

and d(ac) = 0. Again, ac /∈ {a, b, c, d} since it would lead to a similar

contradiction as above. Thus a — ac — d — a is a 3-cycle.

Therefore gr(Γ(R)) = 3.
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(3) Let x, y ∈ V (Γ(R)) with d(x, y) = 3 and x — a — b — y a shortest path

from x and y. Since x 6= y, we have x − y 6= 0, and thus t(x − y) = 0 for some

0 6= t ∈ R. This implies that tx = ty 6= 0 since otherwise x — t — y would be a

path in Γ(R), and therefore d(x, y) = 2, a contradiction.

We claim that ta = tb = 0. To prove this claim, assume ta 6= 0. Then x(ta) =

(xa)t = 0 and (ta)y = (yt)a = (xt)a = 0. Thus x — ta — y is a path and

d(x, y) = 2, a contradiction. Hence ta = 0, and similarly, tb = 0.

Next, we show that t /∈ {0, a, b}. Clearly t 6= 0. If t = a, then 0 = ax = tx =

ty = ay implying that x — a — y is a path, a contradiction. So t 6= a, and similarly,

t 6= b. Thus t ∈ V (Γ(R)) is distinct from a and b, and t — a — b — t is a 3-cycle.

Therefore gr(Γ(R)) = 3.

(4) By Theorem 2.2(2) and (3) above, diam(Γ(R)) ∈ {0, 1, 2}. It is easily shown

that any connected (simple) graph G with diam(G) ∈ {0, 1, 2}, gr(G) =∞, and at

least 2 vertices must be a star graph.

(5) This is clear since gr(Γ(R)) ∈ {3,∞} by (2) above. �

We get a sharper result when every element of R is nilpotent, i.e., when R =

Z(R) = Nil(R). Note that Nil(R) 6= {0} when R is a finite commutative ring

without identity by Theorem 2.3(2). However, we may have Nil(R) = {0} when

R = Z(R) is infinite (let R = ⊕∞n=1Z2). The diameter case of the next theorem for

commutative rings with Z(R) = Nil(R) has been observed by several authors, and

the diameter and girth results were given for semigroup zero-divisor graphs in [19,

Theorem 5].

Theorem 3.2. Let R be a commutative ring with R = Nil(R). Then diam(Γ(R)) ∈
{0, 1, 2} and gr(Γ(R)) ∈ {3,∞}. Moreover, if gr(Γ(R)) 6= 3, then Γ(R) is either

K1, K2 = K1,1, or K1,2.

Proof. Let 0 6= x ∈ R be nilpotent. Assume that for some vertex y, d(x, y) = 3.

Let x — a — b — y be a shortest path from x to y. Since x is nilpotent and xb 6= 0,

we have xnb 6= 0, but xn+1b = 0, for some integer n ≥ 1. Then xnb is a vertex in

our graph and x — xnb — y is a path, a contradiction. Thus diam(Γ(R)) ∈ {0, 1, 2}
when R = Nil(R).

By Theorem 3.1(2), gr(Γ(R)) ∈ {3,∞} when R = Nil(R) (= Z(R)). For the

“moreover” statement, we consider three cases (this also gives another proof that

gr(Γ(R)) ∈ {3,∞}).

Case 1: Let a2 = 0 for every a ∈ R. If |R| ≤ 3, then Γ(R) is K1 or K2; so

suppose that |R| ≥ 4. Let a, b, c ∈ V (Γ(R)) be distinct such that a — b —
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c is a path in Γ(R). Such a path exists since Γ(R) is connected. Consider

d = a+b. Clearly d 6= a, b. If d = 0, then a = −b, and thus ac = (−b)c = 0.

In this case, a — b — c — a is a 3-cycle. So suppose that d 6= 0. Then

bd = b(a + b) = ba + ab2 = 0 and ad = a(a + b) = a2 + ab = 0, implying

that a — b — a + b — a is a 3-cycle; so gr(Γ(R)) = 3.

Case 2: Suppose there is an a ∈ R with a2 6= 0, but a3 = 0. Then a2 ∈
V (Γ(R)) and a2 — a is a path in Γ(R). If a is not an end, then there is

a 0 6= b ∈ R such that a2 6= b and b is adjacent to a. Then ab = 0, which

implies that a2b = 0. Thus a2 — a — b — a2 is a 3-cycle. So suppose

that a is an end. Clearly a2 + a ∈ R \ {0, a, a2}; so a2 + a — a2 — a is

a path. The existence of a2 + a shows that there is a b ∈ R \ {0, a, a2}
adjacent to a2. If gr(Γ(R)) 6= 3, then Γ(R) is a star graph (with center a2)

by Theorem 3.1(4).

Case 3: Suppose there is an a ∈ R with an = 0, but an−1 6= 0 for some

integer n ≥ 4. Then an−1, an−2, and an−1 + an−2 are distinct nonzero

elements of R. Thus an−2 — an−1 — an−1 + an−2 — an−2 is a 3-cycle in

Γ(R) (since n ≥ 4); so gr(Γ(R)) = 3.

Let gr(Γ(R)) = ∞ with Γ(R) 6= K1 or K2; we know that Γ(R) must be a star

graph. By Case 2 above, there is an a ∈ R such that a2 6= 0, a3 = 0, and a is an

end. To show that Γ(R) = K1,2, we consider the size of the ring. We have already

shown that Γ(R) contains the induced subgraph a2 + a — a2 — a. We show that

R = {0, a, a2, a2 + a}.
Note that a an end forces a2 = −a2. Suppose there is an end vertex b distinct

from a and a2 +a. If b 6= −a, then a+ b 6= 0. We claim that a+ b /∈ {0, a, b, a2 +a}.
To see this claim, it is clear that a + b 6= a and a + b 6= b. If a + b = a2 + a, then

b = a2, a contradiction to b being an end. Thus a + b /∈ {0, a, b, a2 + a}. Note that

(ab)a = a2b = 0 since b is an end and Γ(R) is a star graph with center a2. This

forces ab = a2. Hence (a+b)(a2 +a) = a3 +a2 +a2b+ab = 2a2 = 0 since a2 = −a2.

Then a + b — a2 + a — a2 — a + b is a 3-cycle, a contradiction. So b = −a. Thus

|V (Γ(R))| = 4 which implies that |R| = 5. Since R does not have an identity, this

means that R has trivial multiplication as there are only two nonisomorphic rings

of prime order p: Zp and Z0
p. Hence Γ(R) = K4, a contradiction. So b = a or

b = a2 + a, and thus R = {0, a, a2, a2 + a}. Therefore Γ(R) = K1,2. �

The next theorem relaxes the condition in Theorem 3.2 that R = Nil(R) to just

R = Z(R).
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Theorem 3.3. Let R be a commutative ring with R = Z(R) and gr(Γ(R)) 6= 3.

Then Γ(R) is either K1, K2 = K1,1, K1,2, K1,2pn−2, or K1,m, where p is prime,

n ≥ 1 is an integer, and m is an infinite cardinal number.

Proof. Let R = Z(R) and gr(Γ(R)) = ∞. Then by Theorems 3.1(2) and 3.1(4),

Γ(R) is either K1 or a star graph. If R = Nil(R), then Γ(R) is either K1, K2 =

K1,1, or K1,2 by Theorem 3.2. Thus we may assume that R is finite with Nil(R) (
Z(R) = R.

By Theorem 2.3(2), we have R = R1 × R2, where R1 has an identity and

R2 = Nil(R2) 6= {0}. We consider three cases (this also gives another proof that

gr(Γ(R)) ∈ {3,∞}).

Case 1: |R2| = 2 (so R2
∼= Z0

2) and R1 is not an integral domain. Then there

are 0 6= c, d ∈ R1 such that cd = 0 and R2 = {0, a} with a2 = 0. Thus

(c, 0) — (d, a) — (0, a) — (c, 0) is a 3-cycle; so gr(Γ(R)) = 3.

Case 2: |R2| = 2 and R1 is an integral domain. Thus R = {(x, 0) | 0 6= x ∈
R1}∪{(x, a) | 0 6= x ∈ R1}∪{(0, 0), (0, a)}; so Γ(R) is a complete bipartite

graph with partitions {(0, a)} and {(x, y) | 0 6= x ∈ R1 and y ∈ {0, a}}.
Hence gr(Γ(R)) = ∞. In this case, Γ(R) is a star graph with center (0, a)

and ends {(x, y) | 0 6= x ∈ R1 and y ∈ {0, a}}. So Γ(R) = K1,2k, where

k = |R1| − 1. Since R1 is an integral domain (finite field), |R1| = pn for

some prime p and integer n ≥ 1 (so R1
∼= Fpn). Thus Γ(R) = K1,2pn−2.

Case 3: |R2| ≥ 3. Theorem 2.2(1) gives 0 6= a, b ∈ R2 with ab = 0 and a 6= b.

Then (0, a) — (0, b) — (1, 0) — (0, a) is a 3-cycle; so gr(Γ(R)) = 3.

So, if R is finite with Nil(R) ( Z(R) and gr(Γ(R)) 6= 3, then Γ(R) = K1,2pn−2

from Case 2. �

Remark 3.4. Clearly Γ(R) = K1 if and only if R ∼= Z0
2, and Γ(R) = K2 if and

only if R ∼= Z0
3. The proof of Theorem 3.2 shows that for R = Nil(R), Γ(R) = K1,2

if and only if R ∼= {0, 2, 4, 6} ⊆ Z8. Theorem 2.3(2) and Case 2 of the proof of

Theorem 3.3 show that for R 6= Nil(R), Γ(R) = K1,2pn−2 if and only if R ∼=
Fpn × Z0

2. Moreover, for F an infinite field, Γ(F × Z0
2) = K1,m, where |F | = m.

The next corollary gives a quick summary of possible girths for various diameters

of the zero-divisor graphs of commutative rings R = Z(R). Tables 24 and 25 give

some examples of the realizable cases.

Corollary 3.5. Let R be a commutative ring with R = Z(R).

(1) If diam(Γ(R)) = 0, then gr(Γ(R)) =∞.

(2) If diam(Γ(R)) = 1, then gr(Γ(R)) ∈ {3,∞}.
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(3) If diam(Γ(R)) = 2, then gr(Γ(R)) ∈ {3,∞}.
(4) If diam(Γ(R)) = 3, then gr(Γ(R)) = 3.

We next turn to the diameter of Γ(R). Our goal is to show that diam(Γ(R)) ∈
{0, 1, 2} when R is a finite commutative ring without identity (note that we may

have diam(Γ(R)) = 3 when R = Z(R) is infinite, see Example 6.1).

Theorem 3.6. Let R = R1 ×R2 be a commutative ring, where R1 has an identity

and R2 = Nil(R2) 6= {0}. Then R = Z(R) and diam(Γ(R)) = 2.

Proof. Clearly R = Z(R). For 0 6= b ∈ R2, let x = (1, 0) and y = (1, b). Then

0 6= x, y ∈ Z(R) and xy 6= 0; so d(x, y) ≥ 2. Thus diam(Γ(R)) ≥ 2. For distinct

x, y ∈ Z(R) \ {(0, 0)}, we consider cases, where a, c ∈ R1 and b, d ∈ R2 are all

nonzero.

Case 1: Let x = (a, 0) and y = (0, b). Then xy = 0 and d(x, y) = 1.

Case 2: Let x = (a, 0) and y = (c, 0). For z = (0, b), then xz = yz = 0; so

d(x, y) ≤ 2.

Case 3: Let x = (0, b) and y = (0, d). For z = (1, 0), then xz = yz = 0; so

d(x, y) ≤ 2.

Case 4: Let x = (a, 0) and y = (c, d). Let n ≥ 2 be an integer such that

dn = 0, but dn−1 6= 0. For z = (0, dn−1), then xz = yz = 0; so d(x, y) ≤ 2.

Case 5: Let x = (0, b) and y = (c, d). If bd = 0, then xy = 0 and d(x, y) = 1.

Otherwise, Theorem 3.2 gives a 0 6= f ∈ R2 distinct from b and d such that

bf = fd = 0. For z = (0, f), then xz = yz = 0; so d(x, y) = 2.

Case 6: Let x = (a, b) and y = (c, d). If b = d, then there is an integer

n ≥ 2 with bn = 0 and bn−1 6= 0. For z = (0, bn−1), then xz = yz = 0;

so d(x, y) ≤ 2. If b 6= d, then Theorem 3.2 gives a 0 6= f ∈ R2 with

bf = fd = 0. For z = (0, f), then xz = yz = 0; so d(x, y) ≤ 2.

Thus d(x, y) ≤ 2 for every 0 6= x, y ∈ R. Therefore diam(Γ(R)) ≤ 2, which implies

that diam(Γ(R)) = 2. �

For a finite commutative ring without identity, we can sharpen Theorem 2.2.

Theorem 3.7. Let R be a finite commutative ring without identity. Then diam(Γ(R)) ∈
{0, 1, 2} and gr(Γ(R)) ∈ {3,∞}.

Proof. By Theorem 2.3(1), R = Z(R). Thus gr(Γ(R)) ∈ {3,∞} by Theorem 3.1(2).

If R = Nil(R), then diam(Γ(R)) ∈ {0, 1, 2} by Theorem 3.2. Otherwise, diam(Γ(R)) ∈
{0, 1, 2} by Theorems 2.3(2) and 3.6. �
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Corollary 3.8. Let R be a finite commutative ring with Nil(R) ( R = Z(R).

Then the following statements are equivalent.

(1) gr(Γ(R)) 6= 3.

(2) gr(Γ(R)) =∞.

(3) Γ(R) is a complete bipartite graph.

(4) Γ(R) is a star graph.

(5) Γ(R) = K1,2pn−2 for some prime p and integer n ≥ 1.

Proof. This follows directly from Theorem 3.1 and the proof of Theorem 3.3. �

4. Commutative rings with Z(R) ( R

In this section, we study commutative rings R without identity and Z(R) ( R.

Such rings are necessarily infinite by Theorem 2.3(1). We also briefly discuss the

compressed zero-divisor graph ΓE(R) for R a commutative ring without identity.

The next several theorems will aide in the classification of some of the diameters

and girths of zero-divisor graphs in Section 6.

Theorem 4.1. Let R be a commutative ring with total quotient ring T (R). Then

Γ(T (R)) ∼= Γ(R).

Proof. We may assume that Z(R) ( R. For a commutative ring R without iden-

tity, the proof is essentially the same as for commutative rings with identity given

in [10, Theorem 2.2], except replace x/1 by sx/s for s ∈ S = R \ Z(R). �

Theorem 4.2. Let R be a commutative ring without identity and Z(R) ( R. Then

T (R) has an identity and Γ(R) ∼= Γ(T (R)).

Proof. Let R be a commutative ring without identity and a regular element s ∈
S = R \ Z(R). Then T (R) = RS has identity s/s, and Γ(R) ∼= Γ(T (R)) by

Theorem 4.1. �

If R = Z(R), then gr(Γ(R)) ∈ {3,∞} and gr(Γ(R)) = 3 when diam(Γ(R)) = 3

by Theorem 3.1. When R does not have an identity and Z(R) ( R, we may have

gr(Γ(R)) = 4. For example, R = 2Z× Z4 has diam(Γ(R)) = 3 and gr(Γ(R)) = 4.

Theorem 4.3. Let R be a commutative ring without identity and Z(R) ( R. If

diam(Γ(R)) = 3, then gr(Γ(R)) ∈ {3, 4}.

Proof. By Theorem 4.2, Γ(R) ∼= Γ(T (R)); so diam(Γ(T (R))) = 3. Moreover,

T (R) is an infinite ring with identity since R is infinite; so gr(Γ(T (R))) ∈ {3, 4} by

Theorem 2.4(3). Thus, if diam(Γ(R)) = 3, then gr(Γ(R)) ∈ {3, 4}. �
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These results show that the zero-divisor graph of a commutative ring with a

non-unit regular element can be realized by both a ring with identity and a ring

without identity. Note that since these rings have a non-unit regular element, they

are necessarily infinite. Specifically, let R be a commutative ring with a non-unit

regular element x. If R has an identity, use Example 2.1(b); if R does not have an

identity, use Theorem 4.2. Thus commutative rings without identity and Z(R) ( R

behave very much like commutative rings with identity.

We next briefly consider the compressed zero-divisor graph ΓE(R) for R a com-

mutative ring. Define a congruence relation ∼ on R by x ∼ y if and only if

annR(x) = annR(y), and let RE = R/∼ = { [x]∼ | x ∈ R } (from now on, denote

[x]∼ by [x]). Then RE is a semigroup under the multiplication [x][y] = [xy], and

the compressed zero-divisor graph of R is ΓE(R) = G(RE). For commutative rings

with identity, this graph was defined in [23] (using different notation) and has been

further studied in [7], [8], [18], and [27].

The next theorem relates the compressed zero-divisor graph of a commutative

ring with identity to a commutative ring without identity. Note that we may replace

Z0
2 by any ring with trivial multiplication.

Theorem 4.4. Let R be a commutative ring with identity. Then T = R× Z0
2 is a

commutative ring without identity, T = Z(T ), and ΓE(T ) ∼= ΓE(R).

Proof. Clearly T = Z(T ) and T has no identity. Define ϕ : R/∼ −→ T/∼ by

ϕ([x]) = [(x, 0)]. It is easily verified that annR(x) = annR(y) for x, y ∈ R if and

only if annT ((x, 0)) = annT ((y, 0)), and [(x, 0)] = [(x, 1)] for every x ∈ R. Thus

ϕ is a well-defined bijection. Moreover, ϕ restricts to a graph isomorphism from

ΓE(R) to ΓE(T ) since [(x, 0)][(y, 0)] = [(0, 0)] if and only if [x][y] = [0]. �

The following theorem is the compressed zero-divisor graph analog of Theo-

rems 4.1 and 4.2.

Theorem 4.5. Let R be a commutative ring with total quotient ring T (R). Then

ΓE(T (R)) ∼= ΓE(R). In particular, if R has no identity and Z(R) ( R, then T (R)

has an identity and ΓE(R) ∼= ΓE(T (R)).

Proof. The proof is essentially the same as for commutative rings with identity in

[7, Theorem 3.2]. The “in particular” statement is clear. �

Thus every graph that can be realized as a compressed zero-divisor graph by a

commutative ring with identity can be realized by a commutative ring without iden-

tity, and every graph that can be realized as a compressed zero-divisor graph by a
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commutative ring without identity and Z(R) ( R can be realized by a commutative

ring with identity.

Remark 4.6. The results in this section motivate the following two questions.

(a) Let R be an infinite commutative ring with identity. Is there a commutative

ring T without identity such that Γ(R) ∼= Γ(T )?

(b) Let R be a commutative ring with R = Z(R). Is there a commutative ring T

with identity such that ΓE(R) ∼= ΓE(T )?

5. Classification of small finite commutative rings without identity

In this section, we classify up to isomorphism all commutative rings without

identity that have a zero-divisor graph with 14 or fewer vertices. Three papers,

[14], [15], and [21] (together with an errata sheet), were helpful in determining

the nonisomorphic rings of order 8. In [21], they also reference results for the

nonisomorphic rings of other orders.

Recall that if a finite ring R has |R| = pn1
1 · · · p

nk

k for distinct primes pi and

integers ki ≥ 1, then R = R1 ⊕ · · · ⊕Rk for subrings Ri with |Ri| = pni
i .

For rings whose underlying abelian group structure is a cyclic group of order

k, the commutative rings are xZ[x]/(kx, x2 − kix), where ki is a positive divisor

of k. These rings are commutative, and the only such ring with an identity is

xZ[x]/(kx, x2−x) ∼= Zk. Thus we are interested in the other types of these rings in

this paper. The ring xZ[x]/(kx, x2 − kx) is the commutative ring of order k with

trivial multiplication.

For rings with order p2 for some prime p, there are eleven nonisomorphic rings:

Zp2 , xZ[x]/(p2x, x2−px), Z0
p2 , Zp×Zp, Zp×Z0

p, Z0
p×Z0

p, Fp2 , Zp[x]/(x2), xZp[x]/x3Zp[x],

A = {[ a b
0 0 ] | a, b ∈ Zp}, and B = {[ 0 a

0 b ] | a, b ∈ Zp}. We will be interested in the

rings xZ[x]/(p2x, x2− px), Z0
p2 , Zp×Z0

p, Z0
p×Z0

p, and xZp[x]/x3Zp[x], as these are

the rings that are commutative without an identity.

The number of associative rings of order p3 is given in [21]. We need only worry

about the case when p = 2 in this paper. Recall that |V (Γ(R))| = |R| − 1 as it will

aid in finding the nonisomorphic classes of rings.

Tables 1, 2, 3, 4, 5, and 6 give the list of nonisomorphic commutative rings

without identity, their abelian group structure type, and their zero-divisor graph.
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Table 1. Rings with graphs on 1, 2, and 3 vertices

Vertices Group Type R Graph

1 Z2 Z0
2 K1

2 Z3 Z0
3 K2

3 Z4 Z0
4 K3

Z2 × Z2 Z0
2 × Z2 Figure 1

Z2 × Z2 Z0
2 × Z0

2 K3

Z4
xZ[x]/(4x, x2 − 2x) Figure 1

Z2 × Z2
xZ2[x]/x3Z2[x] Figure 1

ba c

Figure 1. 3-vertex graph

Table 2. Rings with graphs on 4, 5, and 6 vertices

Vertices Group Type R Graph

4 Z5 Z0
5 K4

5 Z6 Z0
6 K5

Z6 Z0
2 × Z3 Figure 2a

Z6 Z2 × Z0
3 Figure 2b

6 Z7 Z0
7 K6

{0, 1}

{1, 0}

{0, 2} {1, 1}

{1, 2}

(a)

{0, 1}

{0, 2}

{1, 0}

{1, 1}

{1, 2}

(b)

Figure 2. 5-vertex graphs
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Table 3. Rings with graphs on 7 vertices

Vertices Group Type R Graph

7 Z2 × Z2 × Z2 Z0
2 × Z2 × Z2 Figure 3a

Z2 × Z2 × Z2 Z0
2 × Z0

2 × Z2 Figure 3b

Z2 × Z2 × Z2 Z0
2 × Z0

2 × Z0
2 K7

Z2 × Z4 Z0
2 × Z4 Figure 3c

Z2 × Z4 Z2 × Z0
4 Figure 3b

Z2 × Z4 Z0
2 × Z0

4 K7

Z2 × Z4 Z2 × xZ[x]/(4x, x2 − 2x) Figure 3a

Z2 × Z4 Z0
2 × xZ[x]/(4x, x2 − 2x) Figure 3b

Z2 × Z2 × Z2 Z0
2 × F4 Figure 3d

Z2 × Z2 × Z2 Z0
2 × Z2[x]/(x2) Figure 3c

Z2 × Z2 × Z2 Z2 × xZ2[x]/x3Z2[x] Figure 3a

Z2 × Z2 × Z2 Z0
2 × xZ2[x]/x3Z2[x] Figure 3b

Z8 Z0
8 K7

Z8
xZ[x]/(8x, x2 − 2x) Figure 3c

Z8
xZ[x]/(8x, x2 − 4x) Figure 3b

Z2 × Z4 Max Ideal of Z4[x]/(x2) Figure 3e

Z2 × Z4 Max Ideal of Z4[x]/(x2 − 2x) Figure 3f

Z2 × Z4 Max Ideal of Z4[x]/(x2 − 2) Figure 3c

Z2 × Z4 Ideal 〈x, y〉 of Z4[x, y]/(2x, x2, xy, y2 − x) Figure 3b

Z2 × Z4 Ideal 〈x, y〉 of Z4[x, y]/(2x, x2 − 2y, xy, y2) Figure 3b

Z2 × Z4 Ideal 〈x, y〉 of Z4[x, y]/(2x, x2 − 2y, xy, y2 − 2y) Figure 3f

Z2 × Z2 × Z2 Max Ideal of Z2[x, y]/(x3, xy, y2) Figure 3b

Z2 × Z2 × Z2 Max Ideal of Z2[x, y]/(x3, xy, y2 − x2) Figure 3f

Z2 × Z2 × Z2 Max Ideal of Z2[x, y]/(x2, y2) Figure 3e

Z2 × Z2 × Z2
xZ2[x]/x4Z2[x] Figure 3c
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e

g

a

d

f

b

c

(a)

f

ca

b

e gd

(b)

e

a

c

b

g

d

f

(c)

{0, a}

{1, 0}{0, a + 1}

{1, 1} {1, a}

{1, a + 1}

{0, 1}

(d)

e

a

d

g

c f

b

(e)

f

a

g

d

e

b

c

(f)

Figure 3. 7-vertex graphs

Table 4. Rings with graphs on 8, 9, and 10 vertices

Vertices Group Type R Graph

8 Z9 Z0
9 K8

Z3 × Z3 Z0
3 × Z3 Figure 4

Z3 × Z3 Z0
3 × Z0

3 K8

Z9
xZ[x]/(9x, x2 − 3x) Figure 4

Z3 × Z3
xZ3[x]/x3Z3[x] Figure 4

9 Z10 Z0
10 K9

Z10 Z0
2 × Z5 Figure 5a

Z10 Z2 × Z0
5 Figure 5b

10 Z11 Z0
11 K10

e

a

b

g

c

h

f

d

Figure 4. 8-vertex graph

{0, 1}

{1, 0}

{0, 2}

{0, 3}

{0, 4} {1, 1}

{1, 2}

{1, 3}

{1, 4}

(a)

{0, 1}

{0, 2} {0, 3}

{0, 4}

{1, 0} {1, 1} {1, 2} {1, 3} {1, 4}

(b)

Figure 5. 9-vertex graphs
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Table 5. Rings with graphs on 11 vertices

Vertices Group Type R Graph

11 Z12 Z0
12 K11

Z2 × Z6 Z0
2 × Z6 Figure 6a

Z2 × Z6 Z2 × Z0
6 Figure 6b

Z2 × Z6 Z0
2 × Z0

6 K11

Z12 Z0
3 × Z4 Figure 6c

Z12 Z3 × Z0
4 Figure 6d

Z2 × Z6 Z0
2 × Z0

2 × Z3 Figure 6d

Z2 × Z6 Z2 × Z2 × Z0
3 Figure 6e

Z12 Z3 × xZ[x]/(4x, x2 − 2x) Figure 6a

Z12 Z0
3 × xZ[x]/(4x, x2 − 2x) Figure 6b

Z2 × Z6 Z3 × xZ2[x]/x3Z2[x] Figure 6a

Z2 × Z6 Z0
3 × xZ2[x]/x3Z2[x] Figure 6b

i

a

f

e

d

b
c

g

j

k

h

(a)

a

b

c

d

e

i kg jf h

(b)

{2, 3}

{1, 0}

{2, 0}

{0, 2}

{1, 2}

{2, 2}

{1, 3}

{2, 1}

{1, 1}

{0, 3}

{0, 1}

(c)

a c

b

kd

f g i jhe

(d)

{0, 0, 1}

{0, 0, 2}

{0, 1, 0}

{0, 1, 1}

{0, 1, 2}

{1, 0, 0}

{1, 0, 1}

{1, 0, 2}

{1, 1, 0}

{1, 1, 1}

{1, 1, 2}

(e)

Figure 6. 11-vertex graphs

Table 6. Rings with graphs on 12, 13, and 14 vertices

Vertices Group Type R Graph

12 Z13 Z0
13 K12

13 Z14 Z0
14 K13

Z14 Z0
2 × Z7 Figure 7a

Z14 Z2 × Z0
7 Figure 7b

14 Z15 Z0
15 K14

Z15 Z0
3 × Z5 Figure 8a

Z15 Z3 × Z0
5 Figure 8b
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{0, 1}

{1, 0}

{0, 2}

{0, 3}

{0, 4}

{0, 5}

{0, 6} {1, 1}

{1, 2}

{1, 3}

{1, 4}

{1, 5}

{1, 6}

(a)

{0, 1}

{0, 2}

{0, 3} {0, 4}

{0, 5}

{0, 6}

{1, 0}

{1, 1}

{1, 2} {1, 3} {1, 4}

{1, 5}

{1, 6}

(b)

Figure 7. 13-vertex graphs

{1, 4}

{1, 0}

{2, 0}

{0, 2}

{0, 3}

{0, 4}

{2, 3}

{1, 1}

{2, 2}

{1, 2}

{2, 4}

{1, 3}

{2, 1}

{0, 1}

(a)

{0, 1}

{0, 2} {0, 3}

{0, 4}

{1, 0}

{1, 1}

{1, 2}

{1, 3} {1, 4} {2, 0} {2, 1}

{2, 2}

{2, 3}

{2, 4}

(b)

Figure 8. 14-vertex graphs

The work in this section is analogous to Redmond’s for commutative rings with

identity in [24,25]. As such, it is useful to see a comparison between the zero-

divisor graphs of finite commutative rings with identity and finite commutative

rings without identity. We look at this comparison in Tables 7 through 20.

Table 7. Realizable zero-divisor graphs on 1 vertex

With

Identity
a

Without

Identity
1

Table 8. Realizable zero-divisor graphs on 2 vertices

With

Identity
ba

Without

Identity
21

Table 9. Realizable zero-divisor graphs on 3 vertices

With

Identity

ba c

c

ab

Without

Identity

ba c

c

ab
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Table 10. Realizable zero-divisor graphs on 4 vertices

With

Identity

{1, 0}

{0, a}

{0, 1}

{0, a + 1}

{0, 1} {1, 0}

{2, 0} {0, 2}

dc

ab

Without

Identity
43

12

Table 11. Realizable zero-divisor graphs on 5 vertices

With

Identity
b

c d e

a

{0, 1}

{1, 0}

{0, 2} {0, 3}

{0, 4}

{1, 0}

{0, 1} {0, a} {0, a + 1}

{2, 0}

Without

Identity

{0, 1}

{1, 0}

{0, 2} {1, 1}

{1, 2}

{0, 1}

{0, 2}

{1, 0}

{1, 1}

{1, 2} 5

3

4

2

1

Table 12. Realizable zero-divisor graphs on 6 vertices

With

Identity

{0, 1}

{1, 0}

{2, 0}

{0, 2} {0, 3}

{0, 4}

{0, 1}{1, 0}

{a, 0}

{a + 1, 0}

{0, a}

{0, a + 1}

{0, 0, 1} {0, 1, 0}

{1, 0, 0}

{1, 1, 0} {1, 0, 1}

{0, 1, 1}

c

d

e

a

f

b

Without

Identity

3

4

5

1

6

2
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Table 13. Realizable zero-divisor graphs on 7 vertices

With

Identity

{0, 1}

{1, 0}{0, 2}

{0, 3} {0, 4}

{0, 5}

{0, 6}
{1, 0}

{0, 1} {0, 2} {0, 3} {0, 4}

{a, 0}{a + 1, 0}
b

a f

g

d

e

c

e

a

c

b

g

d

f

f

ca

b

e gd

f

a

g

d

e

b

c

e

a

d

g

c f

b

g

a

c

e

d

b

f

Without

Identity

e

g

a

d

f

b

c
f

ca

b

e gd

e

a

c

b

g

d

f

{0, a}

{1, 0}{0, a + 1}

{1, 1} {1, a}

{1, a + 1}

{0, 1}

e

a

d

g

c f

b

f

a

g

d

e

b

c

g

a

c

e

d

b

f

Table 14. Realizable zero-divisor graphs on 8 vertices

With

Identity

{0, b}

{1, 0}

{0, c}

{0, d}

{0, e}

{0, f}

{0, 1}

{0, a}

{0, 2}

{1, 0}

{2, 0}

{0, 1}
{0, 4}

{0, 5}

{0, 3}

{0, 6}

{0, 1}{1, 0}

{2, 0}

{3, 0}

{4, 0}

{0, 2}

{0, 3}

{0, 4}

e

a

b

g

c

h

f

d
d

he

b

a

g

c

f

Without

Identity

e

a

b

g

c

h

f

d
d

he

b

a

g

c

f

Table 15. Realizable zero-divisor graphs on 9 vertices

With

Identity

{0, b}

{1, 0}

{0, c}

{0, d}

{0, e} {0, f}

{0, g}

{0, 1}

{0, a}

{0, 1}

{1, 0}

{2, 0}

{0, a}

{0, b}

{0, c}

{0, d}

{0, e}

{0, f}

{0, 1}

{1, 0}

{2, 0}

{3, 0}

{4, 0}

{5, 0}

{6, 0}

{0, a}

{0, a + 1}

{0, 0, 1}

{0, 1, 0} {1, 0, 0}

{1, 1, 0}

{0, 0, 2}

{1, 0, 1}

{1, 0, 2} {0, 1, 1}

{0, 1, 2}

b

f

a

e

c

d

i

g

h

Without

Identity

{0, 1}

{1, 0}

{0, 2}

{0, 3}

{0, 4} {1, 1}

{1, 2}

{1, 3}

{1, 4}

{0, 1}

{0, 2} {0, 3}

{0, 4}

{1, 0} {1, 1} {1, 2} {1, 3} {1, 4}

8

6

1

5

4

9

3

2

7
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Table 16. Realizable zero-divisor graphs on 10 vertices

With

Identity
{0, e}

{1, 0}

{2, 0}

{0, b}

{0, c} {0, 1}

{0, g}

{0, a}

{0, d}

{0, f}

{0, 1}

{1, 0}

{a, 0}

{a + 1, 0}

{0, a}

{0, b}

{0, c}

{0, d}

{0, e}

{0, f}

{0, 1}
{1, 0}

{2, 0}

{3, 0}

{4, 0}

{0, 2}

{0, 3}

{0, 4}

{0, 5}

{0, 6}
i

jg

c

a

e

h

d

b

f

Without

Identity
9

107

3

1

5

8

4

2

6

Table 17. Realizable zero-divisor graphs on 11 vertices

With

Identity

{0, 1}

{1, 0}

{0, 2}

{0, 3}

{0, 4}

{0, 5} {0, 6}

{0, 7}

{0, 8}

{0, 9}

{0, 10}
{0, 1}

{1, 0}

{a, 0}

{a + 1, 0}

{0, a}

{0, b}

{0, c}

{0, d}

{0, e}

{0, f}

{0, g}

{0, 1}

{1, 0}

{2, 0}

{3, 0}

{4, 0}

{0, a}

{0, b}

{0, c}

{0, d}

{0, e}

{0, f}

f

a

g

b

c
k

j

e

i h

d

g

c

b

d

e

a

h

k

j

i

f

g

a

c

bd

f
e

j

k

i

h

c

j

b

k

a

i

d

h

e

g

f

g

e

b

d

a

j
c

k

f

h

i

Without

Identity

i

a

f

e

d

b
c

g

j

k

h

a

b

c

d

e

i kg jf h {2, 3}

{1, 0}

{2, 0}

{0, 2}

{1, 2}

{2, 2}

{1, 3}

{2, 1}

{1, 1}

{0, 3}

{0, 1}

a c

b

kd

f g i jhe

{0, 0, 1}

{0, 0, 2}

{0, 1, 0}

{0, 1, 1}

{0, 1, 2}

{1, 0, 0}

{1, 0, 1}

{1, 0, 2}

{1, 1, 0}

{1, 1, 1}

{1, 1, 2}

c

d

e

g
b a

i j

k

f

h

Table 18. Realizable zero-divisor graphs on 12 vertices

With

Identity

{0, 5}

{1, 0}

{2, 0}
{0, 1}

{0, 3}

{0, 9}

{0, 4}

{0, 8}

{0, 6}

{0, 7} {0, 10}

{0, 2}

{0, 1}

{1, 0}

{2, 0}

{3, 0}

{4, 0}

{0, a}

{0, b}

{0, c}

{0, d}

{0, e}

{0, f}

{0, g}

{0, 1}{1, 0}

{2, 0}

{3, 0}

{4, 0}

{5, 0}

{6, 0}

{0, 2}

{0, 3}

{0, 4}

{0, 5}

{0, 6}

{0, 0, 1}

{0, 1, 0} {1, 0, 0}

{1, 1, 0}

{0, 0, a}

{0, 0, a + 1}

{1, 0, 1}

{1, 0, a}

{1, 0, a + 1}

{0, 1, 1}

{0, 1, a + 1}

{0, 1, a}

c
da

lj
k

i

f

bh e

g

Without

Identity
3

41

1210
11

9

6

28 5

7
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Table 19. Realizable zero-divisor graphs on 13 vertices

With

Identity

{0, 1}

{1, 0}

{0, 2}

{0, 3}

{0, 4}

{0, 5}

{0, 6} {0, 7}

{0, 8}

{0, 9}

{0, 10}

{0, 11}

{0, 12} {0, 1}

{1, 0}

{a, 0}

{a + 1, 0}

{0, 2}

{0, 3}

{0, 4}

{0, 5}

{0, 6}

{0, 7}

{0, 8}

{0, 9}

{0, 10}

{0, 1}

{1, 0}

{2, 0}

{3, 0}

{4, 0}

{5, 0}

{6, 0}

{0, a}

{0, b}

{0, c}

{0, d}

{0, e}

{0, f}

{0, 0, 1}

{0, 1, 0}

{0, 2, 0}

{1, 0, 0}

{1, 1, 0}

{1, 2, 0}

{0, 0, 2}

{1, 0, 1}

{1, 0, 2}

{0, 1, 1}

{0, 1, 2}

{0, 2, 1}

{0, 2, 2}

d

c b

e

a

gh

m

f

j

i l

k

Without

Identity

{0, 1}

{1, 0}

{0, 2}

{0, 3}

{0, 4}

{0, 5}

{0, 6} {1, 1}

{1, 2}

{1, 3}

{1, 4}

{1, 5}

{1, 6}

{0, 1}

{0, 2}

{0, 3} {0, 4}

{0, 5}

{0, 6}

{1, 0}

{1, 1}

{1, 2} {1, 3} {1, 4}

{1, 5}

{1, 6}

7

13
3

10

12

9

8

1

4

2

5

11

6

Table 20. Realizable zero-divisor graphs on 14 vertices

With

Identity

{0, 12}

{1, 0} {2, 0}

{0, 4}

{0, 6}

{0, 7}

{0, 11}

{0, 9}

{0, 8}

{0, 10}

{0, 5} {0, 2}

{0, 1}

{0, 3} {0, 1}

{1, 0}

{2, 0}

{3, 0}

{4, 0}

{0, 2}

{0, 3}

{0, 4}

{0, 5}

{0, 6}

{0, 7}

{0, 8}

{0, 9}

{0, 10}

{0, 1}
{1, 0}

{2, 0}

{3, 0}

{4, 0}

{5, 0}

{6, 0}

{0, a}

{0, b}

{0, c}

{0, d}

{0, e}

{0, f}

{0, g}

{0, 1}{1, 0}

{a, 0}

{b, 0}

{c, 0}

{d, 0}

{e, 0}

{f, 0}

{0, a}

{0, b}

{0, c}

{0, d}

{0, e}

{0, f}

{0, 0, 0, 1} {0, 0, 1, 0}

{0, 1, 0, 0}

{0, 1, 1, 0}

{1, 0, 0, 0}

{1, 0, 1, 0}

{1, 1, 0, 0}
{1, 1, 1, 0}

{0, 1, 0, 1}

{1, 0, 0, 1}

{1, 1, 0, 1}

{0, 0, 1, 1}

{1, 0, 1, 1}{0, 1, 1, 1}

k

d

c

m

a

b

h

g

f

e
n

i

j

l

Without

Identity
{1, 4}

{1, 0}

{2, 0}

{0, 2}

{0, 3}

{0, 4}

{2, 3}

{1, 1}

{2, 2}

{1, 2}

{2, 4}

{1, 3}

{2, 1}

{0, 1}

{0, 1}

{0, 2} {0, 3}

{0, 4}

{1, 0}

{1, 1}

{1, 2}

{1, 3} {1, 4} {2, 0} {2, 1}

{2, 2}

{2, 3}

{2, 4}

9
1

11

8 6

5

2

13

7

3

4

12

10

14

6. Realizable diameters and girths of zero-divisor graphs

Let R be a commutative ring. Then diam(Γ(R)) ∈ {0, 1, 2, 3} and gr(Γ(R)) ∈
{3, 4,∞} by Theorem 2.2. In this section, we determine which combinations of

girth and diameter can be realized as a zero-divisor graph of some commutative

ring. We separate this problem into six different types of rings: finite and infinite

rings with identity, where every element is either a zero-divisor or a unit; rings with

identity with a non-unit regular element; finite and infinite rings without identity,

where every element is a zero-divisor; and rings without identity with a regular

element. The following tables give the results, as well as an example of a ring that

has the indicated properties.
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Table 21 gives the breakdown for finite commutative rings with identity (thus

every element is a zero-divisor or a unit). Clearly a zero-divisor graph with diameter

0 must have infinite girth and a zero-divisor graph with diameter 1 cannot have

girth 4.

Table 21. Finite rings with identity (thus R = Z(R) ∪ U(R))

HHH
HHHHdiam

girth
3 4 ∞

0 None None Z4

1 F4[x]/(x2) None Z2 × Z2

2 Z16 Z3 × Z3 Z6

3 Z2 × Z2 × Z2 Z12 Z2 × Z4

Table 22 lists the results for infinite rings R, where each element is either a

zero-divisor or a unit. Several cases need justification, see Theorem 2.4.

Table 22. Infinite rings with identity where R = Z(R) ∪ U(R)

HHH
HHHHdiam

girth
3 4 ∞

0 None None None

1 Q[x]/(x2) None None

2 Q[x]/(x3) Q×Q Z2 ×Q
3 Q×Q×Q Z4 ×Q None

Table 23 breaks down the case where R is a commutative ring with identity and

a non-unit regular element (so R must be infinite). Several cases must be justified

here as well and are covered by Theorem 2.4.

Table 23. Rings with identity where Z(R) ∪ U(R) ( R

HH
HHHHHdiam

girth
3 4 ∞

0 None None None

1 Z[x]/(x2) None None

2 Z[x]/(x3) Z× Z Z2 × Z
3 Z2 × Z2 × Z Z4 × Z None
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Next, we give the results for a commutative ring without identity where every el-

ement is a zero-divisor. Table 24 lists these results for finite rings. By Theorem 3.7,

diam(Γ(R)) ∈ {0, 1, 2} and gr(Γ(R)) ∈ {3,∞}.

Table 24. Finite rings without identity (thus R = Z(R))

HH
HHH

HHdiam

girth
3 4 ∞

0 None None Z0
2

1 Z0
4 None Z0

3

2 Z2 × Z0
3 None Z0

2 × Z2

3 None None None

Table 25 gives the results for infinite rings R with R = Z(R). By Theorem 3.1(2),

gr(Γ(R)) ∈ {3,∞}. Theorem 2.4 eliminates the infinite girth for graphs with

diameter 0 and 1. By Theorem 3.1(3), there is no such ring R = Z(R) with

diam(Γ(R)) = 3 and gr(Γ(R)) =∞. For the case where the diameter and girth are

both 3, we use a ring that was mentioned in [22, Example 5.1], but where the details

were covered in [4, Example 3.13]. As the ring is a bit complicated, we restate [4,

Example 3.13] in Example 6.1 to explain the ring (another example is given in [12,

Theorem 3.4]).

Table 25. Infinite rings without identity where R = Z(R)

HH
HHH

HHdiam

girth
3 4 ∞

0 None None None

1 Z0 None None

2 Z4 × Z0 None Z0
2 × Z

3 Example 6.1 None None

Example 6.1 ([4, Example 3.13]). Let D = Q[x, y](x,y), a two-dimensional local

UFD with maximal ideal Q = (x, y)(x,y). Let P be the set of height-one prime

ideals of D, and let I = P × N. For every i = (P, n) ∈ I, let Qi = Q/P .

Let A = D × (⊕i∈IQi) with coordinate-wise addition and multiplication defined

by (a, (ai))(b, (bi)) = (ab, (abi + bai + aibi)). Then A is a reduced commutative

ring with maximal ideal M = Q × (⊕i∈IQi) and Z(A) = M . Thus R = M is an
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infinite commutative ring with R = Z(R). Finally, as shown in [4, Example 3.13],

diam(Γ(R)) = 3, and by Theorem 3.1(3), gr(Γ(R)) = 3.

Lastly, we consider commutative rings without identity that have a regular ele-

ment, i.e., Z(R) ( R. Note that R must be infinite; so Theorem 2.4 applies. The

last case that needs justification, when the diameter is 3 and girth is infinite, is

given in Theorem 4.3. Table 26 lists the results.

Table 26. Rings without identity where Z(R) ( R

HH
HHH

HHdiam

girth
3 4 ∞

0 None None None

1 xZ4[x] None None

2 xZ8[x] Z× 2Z Z2 × 2Z
3 Z2 × Z2 × 2Z 2Z× Z4 None
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commtatif, Annales de la Société Scientific de Bruxelles, Série I, 61 (1947),

222-227.
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