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Abstract  Keywords 

In this study, the diagnostic potential of the acoustic signatures of Unmanned 
Aerial Vehicle (UAVs) propellers which is one of the critical components of 
these vehicles were examined under different damage conditions. For this 
purpose, a test bench was set up and acoustic data of five different damaged 
propellers and one undamaged propeller were collected. The methodology 
emphasized contains using an omnidirectional microphone to collect data 
under three different thrust levels which correspond to 25%, 50% and 75%. 
Propeller acoustics sound characteristics extracted using the Mel Frequency 
Cepstrum Coefficient (MFCC) technique that incorporates Fast Fourier 
Transform (FFT) in order to obtain feature extracted data, and the visual 
differences of sound patterns were discussed to underline its importance in 
terms of diagnostics. The results indicated that there is a potential for 
classifying slightly and symmetrically damaged and undamaged propellers 
successfully in an Artificial Intelligence-based diagnostic application using 
MFCC. This study aimed to demonstrate a way to effectively use MFCC 
detecting damaged and undamaged propellers through their sound profiles 
and highlighted its usage potential for future integration into Artificial 
Intelligence (AI) methods in terms of UAV diagnostics. The findings provided 
a foundation for creating an advanced diagnostic method for increasing UAV 
safety and operational efficiency. 
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1. Introduction 

UAVs generally acquire the power they need from 
batteries or fuel cells and are vehicles that can be 
remotely controlled by an operator or perform defined 
tasks using their autonomous capabilities, without the 
need for a human being inside. The use of UAVs has been 
increasing, especially in recent years, as they have 

become more affordable to society and the technological 
equipment used in them can better meet people's needs 
(Mohsan et. al., 2022; Adamo et. al., 2017). At the same 
time, due to its features, it can also be deployed in areas 
where it is risky for people to be present, such as disaster 
areas and are currently preferred in many sectors 
including search and rescue, agricultural spraying, forest 
fire fighting, delivery service, environmental monitoring, 
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advertising or film shooting (Lyu et. al., 2023; Fan et. al., 
2020; Adao et. al., 2017; Baiocchi et. al, 2013). These 
deployments also benefit from the use of AI technology 
in these days which is a rapidly developing field that 
affect general system performance and safety 
(Alharasees et., al. 2023). Given their increasingly varied 
usage across both urban and rural applications with 
using new techniques, providing a high level of safety 
and considering the reliability of its systems are vital. 
These safety considerations may be summarized as 
human factors, organizational factors and technical 
factors briefly in aviation (FAA, 2013).  

Human factors focus on the effects of psychological, 
physiological or environmental factors on human 
operators. This involves the investigation of issues such 
as decision-making (Alharasees et. al., 2022), human-
machine interface, and effects of cognitive load by using 
hearth rate measurements from the operators 
(Alharasees et. al., 2023). Organizational factors are 
situations that may have an effect on overall safety in 
terms of organizational budgets or maintenance issues. 
These issues contain the impact of warehouse 
improvements or investments (Gago et. al., 2021) and 
maintenance planning (Chen et. al., 2020) by taking into 
consideration of efficient management of spare parts 
(Tong et. al., 2022). On the other hand, technical factors 
involve consideration of safety improvements which can 
be related to predictive maintenance or real-time 
monitoring (Shen et. al., 2024, Kucukkor et. al., 2023), 
wearable systems (Wang et. al., 2021), flight control 
(Zhang et. al., 2020) or other features or systems that 
linked to UAVs. 

Although some features vary depending on under what 
circumstances they are used, UAV systems generally 
consist of avionics such as telemetry or sensors, power 
module, control surfaces, payload, an operator or 
ground station, and propulsion modules such as 
propellers and motors. The propellers among them play 
a crucial role because a malfunction in critical systems 
such as propulsion components directly affects flight 
stability and efficiency and may cause the UAV to fail to 
fulfill its operational duty, the flight may result in an 
accident, resulting in financial loss or injury to other 
people (Zhang et. al., 2022). 

In this respect, UAVs are evolving not only in terms of 
aerodynamics, materials or flight stabilization, but also 
in terms of Information Technologies (IT), AI, embedded 
software or cloud-based systems. Monitoring critical 
systems, especially with AI, and being able to identify 
signals of an error or fault with the aircraft can play an 
important role in preventing accidents or incidents 
related to UAVs (Pourpanah et. al, 2018). However, the 
development of the capabilities of sensors and the fact 
that AI models generally require excessive amounts of 
data may result in critical systems not being monitored 

properly or programs running on the UAV not working 
efficiently (Abdul and Al-Talabani, 2012). For this reason, 
as the system complexity increases, the issues of 
reducing the size of the data with dimensional reduction 
techniques, selecting and using the most useful parts 
from the data set have emerged which used feature 
extraction and feature selection techniques (Van Der 
Maaten et. al., 2009). The advantage of using feature 
extraction techniques is not only reducing the size of the 
data, but also enabling AI algorithms, which have become 
very popular today, to perform faster calculations. 
Therefore, nowadays, there are many feature extraction 
techniques used to extract the features of different types 
of data obtained in different application areas.  

In many studies, finding the time domain, harmonics or 
frequency domains of the data plays a critical role, 
especially in revealing the relationship between 
collected data. While Cepstrum-based solutions such as 
Gamma Tone Cepstrum Coefficient (GTCC) or MFCC can 
focus on the spectrum properties of the data, the 
correlation between the harmonics or power spectrum 
of the data can be determined by Fourier Transform 
based techniques such as FFT (Abdul and Al-Talabani, 
2012; Liang et. al., 2013). It is also seen in the literature 
section that feature extraction techniques, especially 
MFCC, are used in many acoustics studies either UAV-
related or non-UAV-related. 

This study emphasizes the importance of diagnosing 
UAV propeller damages by obtaining and feature-
extracting acoustic signatures which may offer an 
effective way on monitoring malfunctions on propellers 
especially with the assist of AI techniques.  In the study, 
feature extraction of acoustic data obtained from 
damaged and undamaged propellers using MFCC is 
explained. To achieve this goal, the necessary testbench 
was established to perform damage diagnosis from the 
propeller acoustic characteristics of a fixed-wing UAV. 
Afterward, acoustics data related to damaged and 
undamaged propellers were collected. Finally, feature 
extraction was performed on these data using the MFCC 
technique to obtain distinctive features for use in future 
studies and pave the way for using these MFCC data with 
AI to contribute the AI on UAV operations which is 
considered as a market opportunity in the literature 
(Ekici et. al., 2023).  

2. Literature Review 

Jiao et. al. (2023) combined MFCC and Short Term 
Fourier Transform (STFT) features of the acoustic 
signature of UAVs and used them for classification to 
analyze the flight attitude of the vehicle. In their model, 
they created a lightweight structure with separable 
residual connections. Thus, a reduction in parameters 
and an increase in network depth have been achieved. 
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Their method achieved a high accuracy of 98.81% in 
determining the flight attitude of the UAV, and a good 
efficiency rate compared to the VGG16 model.  

Frid et. al. (2024) proposed a study and tried to detect 
UAVs using Radio Frequency (RF), acoustic signatures 
and Deep Neural Networks (DNN). For the study, they 
obtained the UAV's acoustics characteristics as a first 
step. Afterward, time-frequency properties were 
extracted from these data using MFCC and GTCC. These 
features were classified using Recurrent Neural 
Networks (RNN) and Support Vector Machine (SVM). As 
a result of the study, it was stated that UAVs were 
detected at a higher rate compared to classical methods 
by using RF and acoustic data together, including low 
Signal-to-Noise Ratio (SNR) cases. 

Yaman et.al. (2022) developed a method based on SVM 
which is built for diagnosing UAV motor damage. In their 
method, in order to identify UAV propeller, bearing or 
balance faults, they used the MFCC technique to gather 
features from acoustic signals. Afterward, they classified 
these features using SVM.  They achieved an accuracy of 
100% for helicopters and duocopters, 99.06% for 
tricopters and 90.53% for quadcopters. In their study, it 
has been emphasized that the method can be used in 
real-time by implementing it in an embedded system.  

Berghout ve Benbouzid (2024) suggested an acoustics-
based method to detect UAV faults detection using 
Heterogeneous Multiverse Recurrent Expansion with 
Multiple Repeats (HMV-REMR). In the study, the features 
extracted from UAV acoustics using MFCC and used for 
classification. To achieve this, they used RNN variations 
such as Long Short-Term Memory (LSTM), Bidirectional 
Long Short-Term Memory (BiLSTM) and Gated 
Recurrent Unit (GRU). HMV-REMR algorithm has 
achieved a good performance in detecting UAV faults 
and provided a solid foundation for real-time fault 
detection studies.  

Kołodziejczak et. al. (2023) studied on UAV rotor’s 
acoustic data to detect faults by using MFCC and LSTM. 
To reduce the computational load of the model, a 
decision fusion strategy was applied by combining 
Principal Component Analysis (PCA) and weak classifiers. 
They conducted a research on real flight conditions and 
achieved more than a 33% reduction in processing time 
compared to regular methods. Their study stands out 
with its ability to perform fast and effective fault 
detection in processing units with limited computational 
power. 

Katta et. al. (2022) developed an audio dataset based on 
real-world data to detect propeller failures of UAVs 
which they used to develop various deep-learning 
models. In their study, they obtained a record of more 
than 5 hours in length using a microphone array that has 
been placed on a UAV. In the next step, they used MFCC 

for feature extraction and used these features to train 
DNN, Convolutional Neural Network (CNN), LSTM and 
Transformer Encoder (TrEnc) models. The highest 
performance was achieved by using the TrEnc model 
with 98.30% accuracy. The results of the study 
supported that propeller faults can be effectively 
detected using acoustic data.  

Dumitrescu et. al. (2020) developed a method for 
detecting UAVs using acoustic measurements and 
Concurrent Neural Networks (CoNN). To achieve this 
goal, they made use of acoustic measurements of UAVs, 
extracted the time-frequency features of the data using 
MFCC, and then trained the CoNN model using the 
extracted features. With the tests performed after the 
developed method, good results were obtained even in 
low SNR conditions. The relevant model provided an 
increase in detection performance. Additionally, it can 
be said that feature extraction techniques such as MFCC 
are effective in detecting UAVs through acoustics. 

Suman et. al. (2022) studied creating a method using the 
acoustic signal processing-based method to identify 
early mechanical faults. To achieve this, they pre-
processed the acoustic signals with KLT filtering and 
Hamming window. Afterward, features were extracted 
from acoustic signals by using MFCC and Kalman Filters. 
Their proposed model was able to detect mechanical 
faults by processing signals obtained from microphone 
and vibration sensors.  

Jiqing et al. (2021) proposed an acoustic detection 
method in UAVs using the Mel spectrum and CNN. In 
their study, Mel spectrum was used for feature 
extraction of UAV acoustics data and these acoustic data 
were converted into time-frequency domain. They used 
the features they obtained for training CNN. The sounds 
of different UAVs and other environmental sounds were 
also used to diversify the data set during training. They 
achieved an accuracy of over 99% in the tests performed 
after model training and demonstrated the success of 
feature extraction and deep learning in the field of 
acoustic research. 

Jamil et. al. (2020) proposed a method that used both 
acoustics features and image features in a hybrid way for 
detecting UAVs. They chose MFCC to perform feature 
extraction from the collected UAV acoustics. In order to 
filter the acoustics data, FFT and Mel-filter banks were 
used. Then, Discrete Cosine Transform (DCT) was 
applied to these data to obtain MFCCs. AlexNet deep 
neural network was used to extract meaningful features 
from the images of UAVs. Afterward, SVM was used to 
complete the hybrid model they proposed. As a result of 
the tests, it was seen that the relevant method reached 
an accuracy value of over 95% and the model 
performance was high even when the data set was 
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reduced. The study revealed that MFCC and deep 
learning methods were an effective way to detect UAVs. 

Utebayeva et. al. (2020) developed a classification 
method using Stacked BiLSTM to classify acoustic 
signatures emitted by UAVs. In this method, they 
performed feature extraction via using MFCC and filter 
bank. FT and DCT were used within MFCC during the 
feature extraction process, and LSTM hidden layers 
were used in the BiLSTM model. The approach they 
proposed had an accuracy rate of over 94%. The study is 
a good example of the widespread use and high success 
rate of MFCC in acoustic research. 

Salman et. al. (2021) developed a method for detecting 
UAVs using Machine Learning (ML) and feature 
extraction. In the proposed method, some feature 
extraction techniques such as MFCC, GTCC, Linear 
Prediction Coefficients (LPC), Spectral Roll-Off (SRO) 
and Zero-Crossing Rate (ZCR) were used to determine 
the distinctive features of the data. Afterward, different 
SVMs were trained using these features extracted data. 
According to the test results obtained after the 
development of the method, GTCC achieved the highest 
success, while MFCC and LPC also achieved high 
success. This research showed that MFCC and other 
feature extraction methods were important in achieving 
high accuracy for UAV acoustics-related detections. 

3. Method 

Feature extraction techniques, especially MFCC, are 
used quite frequently in acoustic measurements as 
stated in the literature review. In this perspective, MFCC 
is a useful technique when it comes to extracting the 
features of acoustic data and revealing the relationship 
between them.  

In the study, firstly, the testbench is established. For the 
testbench, a 1200 KV motor is used in a stationary 
position and six 13x6.5 propellers are preferred. 
Damages are slightly inflicted keeping symmetry in 
consideration particularly thus it is aimed that there 
would not be significant acoustic differences between 
the propeller’s fingerprints. All damaged propellers used 
in the study were damaged intentionally symmetrically 
and lightly and thus, it was aimed to be able to detect the 
damage of minor damaged propellers in a future 
diagnostic application after obtaining MFCC features. It 
can be seen that the propellers used in studies on 
damage detection in the literature are asymmetrical and 
heavily damaged. 

One of the propellers is cut 1 centimeter from both ends, 
named as "Damage-Type-1" (Fig. 1). 

Another propeller is cut off 2.5 centimeters from the 
ends, similar to the first propeller, named as "Damage-
Type-2" (Fig. 2). 

The next two propellers suffered notch damage. The 
notch on both propellers is on the leading edge of the 
propellers. One of the propellers is notched on each side, 
6 centimeters from its midpoint, named as "Damage-
Type-3" (Fig. 3). 

The other propeller with notch damage is notched on 
each side, 12 centimeters from its midpoint, named as 
"Damage Type-4" (Fig. 4). 

A 1 cm deep horizontal partial cut is made at both ends 
of the last propeller, named as “Damage Type-5” (Fig. 5). 

 

Fig. 1. Propeller Damage Type 1 

 

Fig. 2. Propeller Damage Type 2 

 

Fig. 3. Propeller Damage Type 3 

 

Fig. 4. Propeller Damage Type 4 

 

Fig. 5. Propeller Damage Type 5 
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Table 1. Duration of sound recordings for propellers 

Damage Type 
Record Duration (Sec) 
25% Thrust 50% Thrust 75% Thrust 

Type 1 200 200 200 
Type 2 200 200 200 
Type 3 200 200 200 
Type 4 200 200 200 
Type 5 200 200 200 
Undamaged 1000 1000 1000 

During the acoustics recording of damaged and 
undamaged propellers, an omnidirectional microphone 
is placed at the rear of the engine and approximately 15 
centimeters away from the propeller, so as not to be 
exposed to the airflow created by the propeller.  

While performing acoustic measurements with a 
microphone, one of the conditions that may affect the 
acoustic characteristics of damaged and undamaged 
propellers was ambient noise. The characteristics of the 
acoustic recording of propellers exposed to different 
sounds might be different. However, no special effort to 
prevent this disparity during the study is made. Ambient 
noise measurements are made in the workshop where 
the propellers were operated. Accordingly, it is 
determined that the average ambient noise was 
approximately 40 decibels and the maximum was around 
70 decibels. 

Another situation that would distort the characteristics 
of the recorded sounds was the thrust rate of the motor. 
During the study, three different thrust ratios at which 
the propellers would be operated were determined. 
These thrust ratios were 25%, 50% and 75% respectively. 
The reason why thrust ratios are chosen in this 
particular way is that the thrust ratio generally does not 
exceed 75% except for take-off and does not fall below 
25% during level flight. A thrust ratio of around 50% has 
been determined as the speed at which the aircraft can 
produce lift and perform the necessary maneuvers 
during level flight.  

In the next step, acoustic readings were recorded. For 
this purpose, a total of six propellers, five damaged and 
one undamaged, were operated with equal durations for 
each thrust amount. As a result of this operation, 6000 
seconds of sound recordings were obtained, each 
sample being 10 seconds long (Table 1.). As a result, 3000 
seconds of acoustic recordings of damaged propellers 
and 3000 seconds of undamaged propellers were 
obtained in Waveform Audio File Format (WAV). 

In the MFCC features extraction process of ten-second 
recordings obtained from damaged and undamaged 
propellers, firstly, signals are split into overlapping 
frames. This process was of critical importance in 
determining the time-dependent changes of the 

acoustic signal. Thus, small sections of the audio signal 
at a time could be examined. One of the important 
parameters when creating these frames was hop length 
that represents the distance between two adjacent 
signals. In the study, the number of overlapping frames 
was 2048 samples and the hop length was 512.  

Subsequently, a window function was needed to 
effectively apply FFT to the signal. For this Hann window, 
one of the most preferred window functions which helps 
to reduce spectral distortion was used (Eq 1).  

𝑤[𝑛] = 0.5(1 − cos(
2𝜋

𝑁−1
)) (1) 

In this equation, w[n] represents the value of the Hann 
window function for a specific index n. Here, the index 
value of n ranges from 0 to N-1, where N stands for the 
number of samples in a frame. By applying this formula, 
the Hann window minimized spectral leakage that 
caused by discontinuities when the acoustic signal is not 
periodic as desired. By applying this w[n] to the acoustic 
signal, a windowed frame was obtained (Eq 2). 

𝑦𝑤[𝑛] = 𝑦[𝑛] ∗ 𝑤[𝑛] (2) 

In the formula, 𝑦𝑤[𝑛]represented the windowed frame 
which is obtained by multiplying the original discrete-
time acoustic signal y[n] with the Hann window function 
w[n] that calculated at the previous step with respect to 
corresponding index n. It helped to reduce spectral 
leakage and minimize the sudden changes that cause the 
loss of high frequency components during FFT. After the 
windowed frame is obtained, each windowed frame must 
be converted from time-domain to frequency-domain. 
To achieve this, FFT, which is also frequently used in the 
literature, was used (Eq 3). 

𝑌[𝑖] = ∑ 𝑦𝑤[𝑛] ∗ 𝑒
−𝑗

2𝜋

𝑁
𝑖𝑛𝑁−1

𝑛=0  (3) 

This equation indicated that the FFT of the windowed 
frame 𝑌[𝑖]is determined which results in converting the 
acoustic signal from the time domain to the frequency 
domain. The variable N corresponded to number of 
frames. Index i used in the formula ranges from 0 to N-1 
and represents the frequency bin index. The expression 
of 𝑦𝑤[𝑛] on the other hand, corresponded to the 
windowed frame that formed after the Hann window 
function was applied to the acoustic signal. By applying 
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this equation, frequency components belonging to the 
acoustic signal have been computed and made it possible 
to analyze the spectreal content of the acoustic signal. 
Once FFT was calculated, the resulted frequency 
spectrum needed to be mapped to Mel scale. The Mel 
scale is a nonlinear scale that matches the actual 
frequency (Hertz) to a sensed pitch (Mels) (Eq 4). By 
doing this, the center frequencies of a triangular filter on 
a Mel scale can be determined.  

𝑚 = 2595 ∗ 𝑙𝑜𝑔10(1 +
𝑓

700
) (4) 

In this equation, m represents the Mel scale value of the 
signal which stand for the interpreted pitch. The variable 
corresponded to the frequency that was measured in 
Hertz. The Mel scale is designed to reflect the sensitivity 
to various frequencies similar to the human ear. This 
helped to analyze the linear frequency better and by 
using this conversion features of the acoustic data can 
be revealed for further feature extraction processes like 
MFCC that captures sound characteristics. As soon as 
the Mel scale was obtained, these frequencies were set 
back to linear frequency to apply filters later by using an 
inverse formula (Eq 5). 

𝑓 = 700 ∗ (10
𝑚

𝑛 − 1) (5) 

According to this equation, f represents the frequency 
measured in Hertz, m stands for the value on the Mel 
scale. This inverse formula converts Mel values back to 
their corresponding linear frequencies. This step was 
important for a successful application of filters in Mel 
filter bank precisely. In this way, it was ensured that the 
subsequent processing matched the actual frequency 
components of the signal. Next, filters were applied to 
the FFT output of each frame and a Mel Filter bank was 
obtained (Eq 6) 

𝑀[𝑗] = ∑ |𝑌[𝑖]|2 ∗ 𝐻𝑗(𝑖)
𝑁−1
𝑘=0  (6) 

From the equation above, M[j] represents the output of 
the Mel filter bank for the j-th filter. The variable Y[i] 
corresponded to the FFT output for each frame and 
provided the frequency values of the windowed frame. 
𝐻𝑗[𝑖] is the triangular filterthat applied at index of j, and 
N is the number of FFT points. The energy in each Mel 
scaled filter bank has been calculated by multiplying the 
squared magnitude of the FFT output |𝑌[𝑖]|2with the 
𝐻𝑗[𝑖]. The resulted Mel filter bank played a vital role in 
transforming acoustic signal into a form which could be 
used for further processes for analysis. In the next step, 
the logarithm of the Mel scaled power spectrum was 
calculated (Eq 7).  

𝑙𝑜𝑔𝑀[𝑗] = (𝑙𝑜𝑔𝑀[𝑗]) (7) 

In this equation, 𝑙𝑜𝑔𝑀[𝑗] represents the logarithm of the 
Mel filtered energy for the given index of j. The variable 
M[j] denoted the energy in the j-th Mel filter that 
obtained before. Taking the logarithm of the Mel filtered 

energy used for compressing the dynamic range of 
values. This step was crucial for normalization of the 
energy levels and used them for further DCT application 
in the MFCC calculation. These processes were done to 
obtain a spectrum representation and by applying 
logarithm to compress dynamic range it was converged 
to an appropriate noise. 

Finally, DCT was applied to the logarithm of the Mel-
scaled spectrum which was crucial for emphasizing the 
most significant coefficients (Eq 8). This meant that the 
first few MFCCs were a representation of the most 
significant features of the propeller acoustics signal. For 
the i-th MFCC coefficient was computed as: 

𝑐𝑖 = ∑ log𝑀[𝑗] ∗ cos(
𝜋𝑖(2𝑗+1)

2𝐽
)𝐽−1

𝑗=0  (8) 

According to this equation, 𝑐𝑖 represents the i-th 
coefficient of the MFCC that captured the most 
significant features of the acoustic signal. The variable j 
stand for the number of Mel filters used. The expression 
log𝑀[𝑗] corresponed to the logarithm of the Mel filtered 
energy for the j-th index. When the DCT application to 
logarithm of the Mel-scaled spectrum was also finished, 
all the Mel spectrums were converted to a set of 
coefficients, which is best known with its abbreviation: 
MFCC. MFCC results obtained from the acoustics signals 
of damaged and undamaged propellers were saved in a 
Comma-Separated Value (CSV) file to be used in 
advance. 

4. Results 

As a result of the study, MFCC values were successfully 
obtained. These MFCC values can be used to create a 
setup in order to diagnose damaged and undamaged 
propellers using ML algorithms. With the MFCC values 
obtained, a heatmap was created for propellers of 
different damage types and for the undamaged propeller 
operated at 75% thrust ratio. The aim of this heatmap 
was to visualize the differences in the data obtained (Fig. 
6-11). 

Each heatmap created consists of 2 axes and different 
color combinations. Among these axes, the x axis shows 
how many seconds the relevant acoustic sample lasted. 
The Y axis represents the MFCC coefficients. Each 
coefficient (or row) shows different characteristics of 
the acoustic signal. While lower coefficients (those 
closer to the bottom) express values in a wider range, 
higher coefficients express values in a narrower range in 
terms of spectral shape or envelope. It can be seen that 
the coefficients at the top generally showed less 
intensity and therefore their colors were paler. In terms 
of color, it represents the intensity of MFCC values and 
varies between -150 and +100 dB which shows how much 
or little energy was in the frequency bands. 
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Fig. 6. Heatmap for Damaged Propeller Type-1 at 75% 
thrust ratio 

 

Fig. 7. Heatmap for Damaged Propeller Type-2 at 75% 
thrust ratio 

 

Fig. 8. Heatmap for Damaged Propeller Type-3 at 75% 
thrust ratio 

 

Fig. 9. Heatmap for Damaged Propeller Type-4 at 75% 
thrust ratio 

 

Fig. 10. Heatmap for Damaged Propeller Type-5 at 75% 
thrust ratio 

 

Fig. 11. Heatmap for Undamaged Propeller at 75% 
thrust ratio  

5. Discussion 

Considering the lower coefficients from the results, it 
was seen that the colors formed were generally slightly 
more intense than the higher coefficients. This meant 
that energy densities were more variable in parts with 
low coefficients. The coefficients showed in the figures 
were vital for recognizing differences in acoustic 
characteristics. Each coefficient represented a different 
aspect of the spectral envelope of the audio signal. The 
lower coefficients captured the broad spectral shape, 
while the higher coefficients captured finer details.  

Although the coefficients in this part showed that the 
energy densities were lower, the coefficients in the 
upper part provided distinctive information in terms of 
the timbre and texture properties of the acoustic 
signature. When the acoustic properties of damaged and 
undamaged propellers on the Y axis were compared, it 
was seen that the damaged propellers had more dense 
colors than the undamaged propeller, even at high levels, 
and therefore it indicated that these parts contained 
higher energy for undamaged propellers which was a 
distinguishing feature. 

On the other hand, the changes in colors on the x-axis 
showed how the spectral character of the acoustic data 
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changed over a period of ten seconds. Especially 
patterns that did not change much over time and whose 
colors were close to each other revealed a consistent 
propeller acoustic profile. When damaged and 
undamaged propellers were compared over time (along 
the y-axis), it was seen that the acoustic data 
characteristics of undamaged propellers mostly 
remained constant, therefore the sound profile was 
consistent. In the case of damaged propellers, the 
acoustic signal characteristics varied more than the 
undamaged propeller. This meant that the sound 
characteristics of damaged propellers differed 
significantly even within a period of ten seconds. 

The use of MFCC has a widespread use in feature 
extraction of acoustic signals. While some researches 
focused on fault detection of UAV components, others 
were focused on the identification of UAVs. Suman et. al. 
(2022) studied early detection of mechanical faults using 
acoustics with MFCC and used a pre-processed database 
for signals. They used a signal enhancement filter before 
applying MFCC method which is not involved in this 
study for the ultimate purpose of making it as light as 
possible with the use of AI technologies. Similarly, 
Yaman et. al. (2022) has focused on developing a fault 
detection method and used MFCC extracted features on 
SVM classifier for UAV motors. They used a microphone 
that is connected to a mobile phone which might had an 
effect on overall weight. Also, the propeller in their study 
was asymmetrically and heavily damaged which 
simplified the classification on SVM and achieved an 
accuracy over 99%. On the other hand, Katta et. al. 
(2024) conducted a research to detect and identify UAVs 
presence using acoustics and deep learning. Their study 
also involved using an audio filtering technique besides 
MFCC. With feature extraction technique they were able 
to achieved accuracies over the 98% for different AI 
algorithms including DNN, CNN, LSTM and TrEnc. 

6. Conclusions 

This study demonstrated applying feature extraction 
successfully to the acoustic signatures of differently and 
slightly damaged and undamaged propellers using the 
MFCC technique, which is one of the feature extraction 
methods and is highly preferred in studies in the 
literature. The results indicated important differences in 
the acoustics characteristics of the propellers that were 
visualized using heatmaps. By addressing the differences 
between different thrust ratios and damage types, this 
study provides a solid background for the further 
development of diagnostic applications that use ML 
algorithms with a potential of high accuracy rates.  

The findings of this study have importance in the context 
of suggesting that even slightly and symmetrically 
damaged propellers can be classified using MFCC and AI. 

Thus, increased safety and reliability in UAV operations 
can be achieved across many operational fields from 
agricultural monitoring to search and rescue missions. 
The ability to detect propeller damage early also 
contributes to preventing propulsion-based failures and 
accidents with an increase of the overall performance. 

Possible applications of this study include the 
integration of AI based diagnostic systems into UAVs for 
real time monitoring and fault detection. This way, 
potential issues can be addressed and early precautions 
can be taken for both maintenance and repair tasks. 
Additionally, the approach could be used for other 
components of the UAVs such as sensors or motors. 

In future studies, the success of the model can be 
evaluated by using the data obtained with the MFCC 
feature extraction technique in various ML algorithms 
such as SVM, Random Forest, and LSTM. Differences 
that can be seen even visually in MFCC heatmaps can be 
associated much more easily by an ML algorithm, and 
damaged and undamaged propellers can be diagnosed 
using the classification method. In addition, a high-
accuracy diagnostic application for UAV propellers can 
be made by using a feature extraction technique with 
measurements other than acoustics or using various 
parts of the UAV and combining them with the results in 
this study. Based on this result, it can be concluded that 
the study is a potential solution for diagnostics in UAVs 
and can be tested with ML algorithms in future studies. 

7. Limitations 

Even though this study emphasizes the efficacy of using 
the MFCC extraction technique in diagnosing UAV 
propeller damages, some limitations need to be taken 
into account. First, the process of data collection was 
done under conditions of a stationary test bench and in 
which only a few types of damages were made to the 
propellers. Real-world factors like variations in airflow 
that affect microphone response as well as having 
diverse kinds of propellers may compromise the 
accuracy and reliability. 

Another limitation can be expressed as focusing on only 
slightly and symmetrically damaged propellers. While 
this study aimed to detect damages under these 
conditions, more severe or asymmetrical damages were 
not taken into account in the study. Future studies may 
include these adverse conditions and the comparison of 
MFCC performance with different damages. 
Additionally, exploring other techniques for future 
extraction can provide aspects for determining the best 
solution for diagnosis problems. Also, the study relied on 
only the use of acoustic signatures of the propellers. This 
can be combined with other sensor data such as 
vibration or thermal measurements in order to improve 
the method's reliability and diagnostic accuracy. 
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Nomenclature 

UAV : Unmanned Aerial Vehicle 

IT : Information Technologies 

AI : Artificial Intelligence 

GTCC : Gamma Tone Cepstrum Coefficient 

MFCC : Mel Frequency Cepstrum Coefficient 

FT : Fourier Transform 

FFT : Fast Fourier Transform 

TVAR : Time-Varying Autoregressive 

SCD : Singular Value Decomposition 

RBF : Radial Basis Function 

ANN : Artificial Neural Network 

DTW : Dynamic Time Warping 

LFT : Logarithmic Fourier Transformation 

PCA : Principal Component Analysis 

MLC : Maximum Likelihood Classification 

SVM : Support Vector Machines 

RF : Radio Frequency 

RNN : Recurrent Neural Networks 

SNR : Signal-to-Noise Ratio 

CoNN : Concurrent Neural Networks 

STFT : Short Term Fourier Transform 

CNN : Convolutional Neural Network 

DCT : Discrete Cosine Transform 

BiLSTM : Bidirectional Long Short-Term Memory 

WAV : Waveform Audio File Format 

Sec : Seconds  

CSV : Comma-Separated Value 

dB : Decibel 

LSTM : Long Short-Term Memory 

GRU : Gated Recurrent Unit 

HMV- : Multiverse Recurrent Expansion with 
REMR  Multiple Repeats 

DNN : Deep Neural Network 

TrEnc : Transformer Encoder 

ML : Machine Learning 
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