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A B S T R A C T  
 

In the nonlinear systems, the pre-knowledge about the exact functional structure between 

inputs and outputs is mostly either unavailable or insufficient. In this case, the artificial 

neural networks (ANNs) are useful tools to estimate this functional structure. However, the 

traditional ANNs with the sum squared error suffer from the approximation and estimation 

errors in the high dimensional and excessive nonlinear cases. In this context, Bayesian 

neural networks (BNNs) provide a natural way to alleviate these issues by means of 

penalizing the excessive complex models. Thus, this approach allows estimating more 

reliable and robust models in the regression analysis, time series, pattern recognition 

problems etc. This paper presents a Bayesian learning approach based on Gaussian 

approximation which estimates the parameters and hyperparameters in the BNNs 

efficiently. In the application part, the proposed approach is compared with the traditional 

ANNs in terms of their estimation and prediction performances over an artificial dataset. 

© 2017 Forecast Research Laboratory. All rights reserved. 
 

 

 

1. Introduction 

The Bayesian Neural Networks (BNNs) provide a flexible way to model the non-linear problems due to their 

capabilities to cope with the model complexity. Besides, they ensure a natural interpretation to the estimations and 

the predictions performed over the estimated models. For this reason, BNNs are very useful in the regression, time 

series, classification, density estimation problems, etc. In the context of Artificial Neural Networks (ANNs), Bayesian 

treatments of the learning are typically based on Gaussian approximation, ensemble learning and Markov Chain 

Monte Carlo (MCMC) simulations known as the full Bayesian approach. For ANNs, Gaussian approximation known 

as Laplace's method was introduced by Buntine and Weigend [1] and MacKay [2]. This approach is to model the 

posterior distribution by a Gaussian distribution, centered locally at a mode of posterior distribution of parameters 

[2]. The ensemble learning was introduced by Hinton and van Camp [3] in which the approximating distribution is 

fitted globally by minimizing a Kullback - Leibler divergence rather than locally. Within the context of Full Bayes, 

Neal [4] introduced advanced Bayesian simulation methods in which MCMC simulations are used to generate 

samples from the posterior distribution. However, MCMC techniques can be computationally expensive, and also 

suffer from assessing the convergence. For this reason, Neal [4] integrated Bayesian learning with Hybrid Monte 

Carlo (HMC) method introduced by Duane et al. [5] to overcome the mentioned shortcomings. Afterwards, Bayesian 

applications to ANNs was reviewed in [6, 7, 8] in detail.  

In the literature, there are the remarkable studies in which are focused the specific problems related to ANNs from 

Bayesian perspective. For instance; Insua and Müller [9], Marrs [10], Holmes and Mallick [11] worked on the issue 

of selecting the number of hidden neurons with the growing and the pruning algorithms for the dimensionality 

problem in the ANNs. In these studies, they applied the reversible jump MCMC algorithm introduced by Green [12], 
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Richardson and Green [13]. Freitas [14] incorporated the particle filters and the sequential Monte Carlo (MC) 

methods in the BNNs. Liang and Wong [15] proposed to the evolutionary MC algorithm which samples the 

parameters in the ANNs from the Boltzmann distribution using the mutation, the crossover and the exchange 

operations defined in the Genetic Algorithms (GAs). Chua and Goh [16] proposed a hybrid Bayesian back-

propagation approach to the multivariate modeling in the ANNs. They used the stochastic gradient descent algorithm 

integrated with the evolutionary operators to produce the parameters in the ANNs. Liang [17] and Lord et al. [18] 

used the truncated Poison priors to determine the neuron numbers in the hidden layers, and estimated the parameters 

in the ANNs via the evolutionary MC algorithms proposed by Liang and Wong [15]. Lampinen and Vehtari [19], 

Vanhatalo and Vehtari [20] improved a hybrid and reversible MCMC algorithm that are based on Neal [4]. Marwala 

[21] adapted to mutation and crossover operators defined in GAs into Bayesian learning and estimated the parameters 

using Genetic MC algorithm. Mirikitani [22] proposed a probabilistic approach to recursive the second-order training 

of recurrent neural networks for improved time-series modelling in which the regularization hyperparameters leads 

to better generalization and stable numerical performance. Goodrich [23] developed a powerful methodology for 

estimating the full residual uncertainty in the network weights and making predictions by using a modified Jeffery's 

prior combined with a Metropolis MCMC method. Martens and Sutskever [24] resolved the long-outstanding 

problem of how to effectively train recurrent neural networks on complex and difficult sequence modelling problems 

which may contain long-term data dependencies. Niu et al. [25] adapted Hybrid MC, proposed by Neal [4] and Duane 

et al. [5]. Beam et al. [26] examined Hybrid Monte Carlo proposed by Neal [4] in the context of full Bayesian 

approach, and then they compared this procedure with the existing methods using artificial and real datasets. 

Kocadagli [27, 28, 29] integrated the hierarchical Bayesian learning with GAs and the fuzzy numbers to estimate the 

parameters in the ANNs. 

In order to measure the model complexity and to estimate the parameters in the BNNs, the hybrid methods are 

frequently preferred against the non-linear problems having high dimensional parameter spaces due to their superior 

performance. In these approaches, the parameters in the BNNs are estimated by MCMC techniques integrated with 

the gradient optimization algorithms, the simulated annealing method or the evolutionary algorithms. HMC 

approaches with the gradient search algorithms provide desired performance against the mentioned problems because 

they cope with random-walk behaviour encountered in the MCMC treatments, and reduces the training time. There 

are the efficient optimization algorithms such as gradient descent with momentum, conjugate gradients, BFGS and 

Levenberg – Marquardt which are integrated with MCMC techniques. However, the gradient algorithms might not 

able to explore all space freely in the high dimensional parameter cases including many local optima, and it doesn’t 

work without the derivative information. In terms of ANN applications, some shortcomings of these algorithms are 

discussed in [7]. In order to handle the non-linear functions without derivative information and reduce training time 

expended for the parameter estimation in the ANNs, recently the evolutionary algorithms are preferred as GAs, 

Particle Swarm Optimization, Ant and Bee Colony Algorithms, etc.   

The aim of this study is to present a Bayesian learning based on Gaussian approximation with fixed 

hyperparameters which estimates the parameters in BNNs accurately, and overcome some shortcomings like 

over/lover fitting, variance/bias tradeoff. This article is organized as following. The second section includes the basic 

definitions of ANNs as well as the error functions and model complexity. The third section introduces Bayesian 

learning and Gaussian approximation. The last part is left to the applications in which Bayesian learning approach is 

compared with traditional ANNs in terms of their estimation and prediction performances over an artificial dataset. 

 

2. Framework of Neural Networks  

A simple ANN is composed of simple inter-connected nodes or neurons, and there are usually three or four layers 

in its structure. The intermediate layers are called hidden layers. In Fig. 1, the simple NN with three layers is 

demonstrated in which the hidden layer includes p neurons. The neurons are arranged in the layers and are connected 

so that the neurons in the hidden layer receive inputs from the preceding layer and sends out outputs to the following 

layer. The external inputs exist at the first layer and system outputs come out from the last layer. Each hidden and 

output unit processes its inputs by multiplying each input by its weight, summing the product with adding bias and 

then processing the sum using a non-linear transfer function or called as an activation function, to produce a result. 

The neuron connections have weights that are adapted to improve its overall performance. In here, biases are 

intuitively used as a threshold value, and control the inputs of activation function and outputs.  

According to network structure in Fig.1, the mathematical relation between inputs, neurons of hidden layer and t-

th output for i-th observation can be formulated as follow: 
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Figure 0. The simple NN structure with one hidden layer 

Here, the activation function 
I

k k i k
A ( w x b ) provides nonlinearity to the NN structure and scales its received inputs 

to its output range. In ANNs, the activation functions with different shape and structure are used according to data 

and model type. In this paper, as an activation function in the hidden layer, the hyperbolic tangent is preferred because 

it has the properties of differentiation and quick computability. 

The functional structure in Eq. (1) can be estimated by modifying the connection weights to reduce the errors 

between the actual output and the target output values at a certain satisfactory level. To estimate an estimator of the 

regression function by training ANNs, one of the most popular approaches is minimizing the following mean square 

empirical risk: 

N
2

e ti t i

i 1

1ˆ ˆˆ ˆR [ f ( x, )] ( y f ( x , ))
N

 


                             (2) 

Using this empirical risk brings about two types of error, namely the approximation and estimation errors. The 

approximation error arises because the exact nonlinear behaviour of the regression function is rarely known in the 

real-life problems. For this reason, ( )f x  has to be approximated by a combination of the parameterized basis 

functions f̂ ( x, ) . If the model structure has enough capacity to approximate the regression function, the 

approximation error will tend to zero as the number of parameters increases. The estimation error can be interpreted 

as the lack of knowledge about the conditional distribution ( , )p y x  . In likelihood methods, the empirical risk in Eq. 

(2) is minimized instead of estimating this distribution. One of the heuristic reasons for doing this is that the regression 

function minimizes the expected risk or 
2L  norm as follow [14]: 
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where h( )  denotes possible hypothesis and T represents the target space where the regression function lies. The 

estimator ˆ ˆ( , )f x   lies on hypothesis space , and  R h( )  corresponds to the mean square expected risk, given by 

  2

2 2

L ( p )

2

R h( ) y h( x, ) ( y h( x, ))

( y h( x, )) p( y, x )dyd

  

  

      

 
                                                                (4) 

From a statistical point of view, the predictor ˆ ˆ( , )f x   obtained by empirical error minimization will approximate 

ˆ ( , )f x   as the number of data increases without bound. As the number of parameters increases, the expression for 

the empirical risk becomes more complex; hence, the estimation error can increase [30]. From here, it can be 

concluded that the approximation error is inversely related to the number of model parameters, while the estimation 

error is directly related to the number of parameters. This is well known as the bias/variance tradeoff [31]. 

For an acceptable generalization performance, the bias and variance terms have to be balanced. Therefore, the 

only ways to reduce the bias and variance error terms simultaneously are to either increase the number of data or to 

model the noise characteristics and incorporate a priori knowledge about the form of the estimator [14]. Bayesian 

learning ensures this approach inherently, since it provides probabilistic knowledge about related data.  

Imposing the smoothness constraints on the model, known as regularization, is another approach. By means of 

regularization, the infinite number of possible solutions of the learning problem can be reduced to one by balancing 

the bias and variance error terms simultaneously. To estimate a function that is simultaneously close to the data and 

smooth, the following extension form instead of the empirical modelling error is used: 

N
2

r ti t i

i 1

1ˆ ˆˆ ˆR [ f ( x, )] ( y f ( x , ))
N

  


                                                                    (5) 

where   is a positive parameter that balances the tradeoff between smoothness and data approximation. Here, it can 

be interpreted that the larger values of  have more impact on the smoothness of the model, while smaller ones have 

more impact on fitting the data. The function   penalizes the excessive model complexity. Weight decay and 

Laplace function approaches are well-known for function  . The most popular one of those is weight decay whose 

functional type is given by: 

2

i

i

                                           (6) 

where i is an index of total parameter number Mackay [2]. Other common approaches to controlling the complexity 

of the estimates include early stopping, training with noise, mixtures of networks and growing and pruning 

techniques. However, these approaches have substantial shortcomings discussed in the literature of ANNs [27, 28, 

29, 32, 33, 34, 35, 36]. 

 

3. Bayesian Learning 

The result of Bayesian learning is a probability distribution over model parameters that express our beliefs 

regarding how likely the different parameters values are. To start the process of learning, a prior distribution, p( ) , 

must be defined for the parameters, that expresses our initial beliefs about their values, before any data has arrived. 

When data  1:N 1:N
D x ,y is observed, this prior distribution updated to posterior one, using Bayes’ rule: 

( | ) ( ) ( | ) ( )
( | )

( ) ( | ) ( )

p D p p D p
p D

p D p D p d

   


  
 


                                       (7) 

When the statistical information about the parameters is given, all features of interest by standard probability 

marginalization and transformation techniques can be obtained theoretically. By means of posterior distribution, the 

predictive density can be estimated as follow [27]: 
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1: 1 1: 1 1: 1: 1 1: 1 1: 1:( | , ) ( | , ) ( | , )N N N N N N Np y x y p y x p x y d                                           (8) 

Thus, the forecast of interest can be evaluated as: 

1: 1 1: 1 1: 1: 1 1: 1:
ˆ( | , ) ( , ) ( | , )N N N N N Ny x y f x p x y d                                                   (9) 

Here, the prediction must be based on all possible values of the network parameters weighted by their probability 

in view of the training data. 

 

3.1 Gaussian approximation for Bayesian learning 

Gaussian approximation to ANNs is first proposed by MacKay [2]. According to this approximation, the 

uncertainty in the parameter space is assigned to a probability distribution representing the degree of belief in the 

different values of the parameter vector. By maximizing the posterior distribution over the parameters; the most 

probable parameters values can be determined. MacKay [2] show that maximizing the posterior distribution 

corresponds to minimizing the regularized error function that is very similar to the expression in Eq. (5). The posterior 

distribution is then used to evaluate the predictions of the trained network for new values of the input variables as 

well. 

In Gaussian approximation, the data set is modelled from mapping in Eq. (1) under some additive noise process ε 
[7, 27,28,29,38]: 

( , )
ti t i

y f x                                                                                                     (10) 

If ε is modelled as zero-mean Gaussian noise with standard deviation 
noise

 , then the probability of a data value 

given the parameter vector   is: 

 / /

ˆ( , , ) exp ( , )
( ) 

 
   

 

2

i i ti t i1 2 1 2

1
p y x y f x

2 2


  

 
                                           (11) 

where 
2

noise
1 /   is called precision, and controls noise of variance. Here it is assumed that data points are drawn 

independently from this distribution, so the likelihood can be constituted for N observations as follow: 

N

i i

i 1

p( D , ) p( y ,x )  


  
N 2

ti t iN / 2 N / 2

i 1

1 ˆexp y f ( x , )
( 2 ) 2



 
   

 





 
                 (12) 

More generally, the likelihood function can be written as 

D

D

1
p( D , ) exp( E )

Z ( )
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
                          (13) 

where  
2

1

1

2

N

D ti t i

i

ˆE y f ( x , )


  , 
D D

Z ( ) exp( E )dD    and 
1 2

  N
dD dy dy ....dy . Here, the function 

D
Z ( )  

is called a normalization constant, and it can be evaluated as [2]. 

D D
Z ( ) exp( E )dD   = 

2 22 N / N /( )  
                      (14) 

In the Bayesian framework, probability distribution defined over parameter values reflects any the prior knowledge 

about network mapping that is expected to estimate. Generally, distribution of parameters is assumed as an 

exponential form: 

1
p( ) exp( E )

Z ( )




 


                                   (15)  

where Z ( )

  is a normalization factor given by Z ( ) exp( E )d      which ensures that p( )d 1   .  

As mentioned above, the tradeoff between variance and bias indicates that a smooth network function typically 

has better generalization than one which is over-fitted to training data. This is one of the motivations for regularization 
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techniques designed to encourage smooth network mappings. Such mappings can be expressed the following simple 

form for E
[7, 16, 27, 28,29]. 

W
2 2

w

w 1

1 1
E

2 2
  



                                   (16) 

where W is the total number of weights and biases in the network. This corresponds to the use of a simple weight-

decay regularizer. Thus, a prior distribution of parameters is given by 

21
p( ) exp( )

Z ( ) 2
 




 


                                        (17) 

where the normalization coefficient Z ( )   is integrated as follow: 

Z ( ) exp( E )d      = 
W / 2( 2 / )                                    (18) 

where W is total parameter number. If   is large, E
 would large as well, and p( )  would small. Since the 

parameter   itself controls the distribution of other parameters, it is called a hyperparameter. An advantage of using 

Gaussian distribution is the evaluation of normalization coefficients Z ( )   and 
D

Z ( )  analytically. There are many 

alternatives for the priors. For instance, Laplacian priors were used by Williams [37]; the entropy based priors by 

Buntine and Weigend [1]; the appropriate selection of priors of very large networks by Neal [8], and the inverse 

gamma priors for a hierarchal structure by Lampinen and Vehtari [19].    

Once a prior distribution and an expression for the likelihood are set, the posterior distribution can be constructed 

by using Bayes` theorem in Eq. (7) as follow [7, 16, 27, 28, 29]: 

D

S S

1 1
p( | D ) exp( E E ) exp( S )

Z ( , ) Z ( , )
   

   
                          (19)  

where   

( ) DS E E                             (20) 

and   

( , ) exp( )S DZ E E d                               (21) 

Here, the main problem is to find the parameter vector 
MP  corresponding to the maximum of the posterior 

distribution. This can be achieved by minimizing the negative logarithm of Eq. (19). Since normalizing factor in Eq. 

(19) is independent of parameters, the exploring the maximum of the posterior distribution is equivalent to 

minimizing ( )S   given by Eq. (20). Thus, ( )S   can be written as follow: 

N
22

t ,i t i

i 1

ˆS( ) ( y f ( x , ))
2 2

 
  



                            (22) 

The most probable value of parameter vector, denoted by 
MP , can be found by the minimizing of the right-hand 

side in Eq. (22). From Eq. (22), some consistence conclusions can be inferred. For instance, the first term in Eq. (22) 

grows with N while the second term does not. If    and   are fixed, then N increases, the first term becomes more 

and more dominant, until eventually the second term becomes insignificant. From here, it can be concluded that the 

maximum likelihood solution is then a very good approximation to the most probable solution 
MP  for large N. 

Conversely, for small data sets the prior term plays an important role in determining the location of the most probable 

solution [7, 16, 27, 28, 29, 38].  

 

4. Applications 

In order to compare the performance of BNNs with that of traditional ANNs, an artificial data set with two inputs 

and one target that was considered in [19]. The motivation behind choosing this data set is to examine the capability 

of ANNs and BNNs against the data having the non-linear and complex structure. In the analysis, dataset was divided 
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into two parts as training and test with 200 and 25 observations as demonstrated in Fig. 2 and Fig. 3 respectively. As 

the activation function in the hidden layer of ANNs, the tangent hyperbolic function given in Fig. 4 was used. To 

train the traditional ANNs, the gradient descent as known also the steepest descent and the gradient descent with 

momentum methods were handled. For Gaussian approximation with fixed hyperparameters of BNNs, BFGS 

algorithm was preferred due to its advantage in the evaluation of Hessian matrix. The performances of ANNs with 

different high dimensional parameter spaces were examined by using the different numbers of neurons in the hidden 

layers. In the analysis, the computer having the processor with Intel(R) Core(TM) i3 CPU 2.13GHz, 4GB RAM and 

“64 bit” operating system was used. The software of the proposed approaches was written in MATLAB 7.12 package 

program. The training results of the proposed and traditional ANNs are given in details below. 

        

          Figure 2. Training data               Figure 3. Test data           Figure 4. Tangent Hyperbolic 

4.1. The steepest descent with sum squared error 

To examine the performance of traditional approaches with the sum squared error, the parameters in the ANNs 

was estimated by the steepest descent optimization algorithm. The performance of the steepest descent was observed 

for different learning rate, neurons and iterations. According to training results in Table 1, the steepest descent 

algorithm achieves the best fit using 25 neurons and 0.005 learning rate for 1000 iterations. From Table 1, it can be 

concluded that if the neuron number is increased, then the algorithm requires more iterations for a good-fit, and both 

the mean squared errors (MSE) of training and test data substantially increase as well. For instance, the learning rate 

is fixed, and then the neuron number is taken as 100, the performance of proposed algorithm is not sufficient for a 

good fit, even the iteration number is increased to 2000 according to the results given in Table 1 and between Figures 

5 - 8. At the same number of neurons, if the algorithm runs until 5000 iterations, both MSE of training and test data 

substantially decreases. If the iteration number is taken as 10000, then MSE of training data decreases, but MSE of 

test data substantially increases because of over-fitting. In such cases, the algorithm should be stopped at any iteration 

where MSEs of validation or test data begins to grow. However, it is known well that the early stopping approach 

might causes to the serious estimation errors when ANNs are trained by dataset with excessive noise and the high 

dimensional parameter spaces. 

    

  Figure 5. Correlation between targets and outputs                        Figure 6. The performance of the Steepest Descent 
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       Figure 7. The performance for training data                                      Figure 8. The performance for test data 

Table 1. The performance of the steepest descent with MSE 

Iteration 

number 

Neuron 

number 

Learning 

rate 

Training 

MSE 

Test 

MSE 

Training 

correlation 

Test 

correlation 

Training 

(Seconds) 

500 

25 0.001 0.871 0.723 0.622 0.759 5 

25 0.005 0.248 0.259 0.878 0.916 5 

25 0.01 0.188 0.237 0.904 0.923 5 

1000 

25 0.001 0.466 0.652 0.814 0.777 10 

25 0.005 0.159 0.145 0.920 0.948 10 

25 0.01 0.114 0.215 0.943 0.921 10 

1000 50 0.001 0.836 1.447 0.696 0.628 11 

1000 50 0.005 0.205 0.292 0.898 0.892 11 

2000 100 0.001 0.621 1.288 0.772 0.640 25 

5000 100 0.001 0.252 0.485 0.885 0.851 64 

10000 100 0.001 0.097 0.527 0.953 0.868 125 

 

4.2. The steepest descent with momentum 

In the second implementation; ANNs were trained by the steepest descent with momentum. The estimation results 

of ANNs are given in Table 2. According to Table 2, this algorithm achieved the best fit using 0.005 learning rate 

and 0.5 momentum constant. While the number of neurons was fixed as 50, the best fit was obtained at the end of 

the 5000 iterations. By using the same number of neurons, the algorithm produced the following results given 

between Figures 9 – 11 at the end of the 10000 iterations. From Table and Figures, it can be seen that while the MSE 

of training data substantially decreases, MSE of the test data slightly increases inversely. Besides, the algorithm 

caused the overfitting to both training and test data as seen in Figures 9 and 10. According to Figure 11, the algorithm 

should be run until 9000-th iteration; otherwise, the overfitting problem becomes inevitable. Besides, if the neuron 

number is fixed as 100, the effectiveness of algorithm disappears, and MSEs of training and test data arise even the 

iteration number is increased. 

Table 2. The performance of the steepest descent with momentum 

Iteration 

number 

Neuron 

number 

Learning 

rate 

Momentum 

constant 

Training 

MSE 

Test 

MSE 

Training 

correlation 

Test 

correlation 

Training 

(Seconds) 

1000 
25 0.001 0.1 0.606 1.048 0.700 0.582 11 

25 0.001 0.5 0.835 1.061 0.572 0.594 11 

1000 
25 0.005 0.1 0.249 0.364 0.872 0.871 11 

25 0.005 0.5 0.324 0.334 0.830 0.874 11 

1000 
25 0.01 0.5 0.204 0.242 0.896 0.920 11 

25 0.01 0.1 0.168 0.179 0.915 0.937 11 

1000 50 0.001 0.1 1.390 3.327 0.611 0.442 12 

5000 50 0.001 0.1 0.230 0.275 0.889 0.909 59 

5000 50 0.005 0.5 0.107 0.104 0.950 0.965 65 

10000 50 0.005 0.5 0.076 0.109 0.965 0.961 111 

10000 100 0.005 0.5 0.144 0.270 0.933 0.926 126 
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Figure 9. The performance for training data       Figure 10. The performance for test data         Figure 11. The performance for iterations 

4.3. Gaussian approach with fixed hyperparameters 

In this implementation, for Bayesian learning implementation to ANNs, Gaussian approach with fixed 

hyperparameter is used. To do this, Quasi-Newton known as Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 

optimization algorithm is preferred. The advantage of this algorithm is that the approximations of Hessian matrix can 

be evaluated using the first derivatives without the second derivatives. In the first implementation, it was supposed 

that both Alpha and Beta hyperparameters are of equal importance, therefore, both hyperparameters were taken as 

0.5. Besides, the number of neurons in the hidden layer was determined as 25, and then the algorithm run until 1000 

iterations. In the second implementation, it was supposed that the noise amount included in data set is more important, 

so the hyperparameters Alpha and Beta were taken as 0.1 and 0.9, respectively. At the end of training processes in 

which the number of iteration was fixed as 1000, the statistical indicators were found as Table 3 and between Figures 

12 - 18 below. 

Table 3. The performance of the fixed hyperparameter approach 

Hyperparameters 
Neuron 

number 

Training 

MSE 

Test 

MSE 

Training 

correlation 

Test 

correlation 

Training  

(Seconds) 

Alpha= 0.5,   Beta=0.5 25 0.191 0.254 0.907 0.924 29 

Alpha= 0.3,   Beta=0.7 25 0.079 0.114 0.962 0.971 29  

Alpha= 0.1,   Beta=0.9 25 0.052 0.063 0.974 0.982 27 

Alpha= 0.01, Beta=0.99 25 0.035 0.043 0.982 0.986 27 

Alpha= 0.01, Beta=0.99 50 0.031 0.050 0.984 0.982 41 

Alpha= 0.01, Beta=0.99 100 0.026 0.053 0.986 0.983 103 

                 

Figure 12. Alpha=0.5, Beta=0.5      Figure 13. Alpha=0.1, Beta=0.9   Figure 14. Alpha=0.5, Beta=0.5   Figure 15. Alpha=0.1, Beta=0.9 
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Figure 16. Test output for Alpha=0.5, Beta=0.5  Figure 17. Test output for Alpha=0.1, Beta=0.9  Figure 18. Performance for 1000 iterations 

From Table 3 and Figures 12 – 18, it can be seen that the algorithm performs a better performance when Beta is 

taken as 0.9 instead of 0.5 because search method will be more sensitive to the training data for greater Beta values. 

As seen in Fig. 18, at the end of 1000 iterations, the total error in Eq. (22) and MSE are 0.10275 and 0.0525, 

respectively. From Fig. 18, it can be seen that the algorithm reaches the best solution at the end of 300 iterations. 

However, in order to monitor the performance of algorithms for different hyperparameters and neuron numbers, the 

iteration number is fixed as 1000.  From Table 3, it can be seen that the correlation coefficients have got the larger 

values as Beta is increased; however MSE decreases inversely. If Alpha and Beta are fixed as 0.01 and 0.99 

respectively, and the neurons numbers are increased, then MSE of the training data decreases because of over-fitting 

to data, but MSE of test data and training time increase inversely. Where Beta is greater than Alpha, SSE term in Eq. 

(22) becomes more dominant than the second term. From here, it can be concluded that the hyperparameter Alpha 

plays an important role to decrease over-fitting to training data.  

 

5. Results and Discussion 

According to the analysis results, the steepest descent algorithm with sum squared error requires some criteria 

such as early stopping and determining a suitable learning rate and controlling over/lower-fitting depending on the 

number of parameters. When the algorithm runs for a long time, the over-fitting problem appears. In this case, despite 

MSE of training data decreases, MSE of test data increases inversely. If the training process is stopped too early, then 

lower-fitting is inevitable. Besides, increasing iteration number together with the neuron number cannot decrease 

MSEs of training and test data. In addition, the dimension of the solution spaces becomes more complex when the 

number of neurons is increased. Hence, the risk of stuck in the local optima increases as well. In order to escape from 

the local optima, the steepest descent with the momentum can be preferred. 

In the second implementation, the steepest descent algorithm with momentum reduces to training time and might 

overcome to the problem of stuck in the local optima by using the effective combinations of learning rate and 

momentum. However, training ANNs with this algorithm requires the early stopping approach to decrease overfitting 

caused by using MSE. In addition, determining the best combination of learning rate and momentum constant requires 

additional trials as well. 

In the conventional usage of Gaussian approach with the fixed hyperparameters, the algorithm performs good-fit 

to both training and test data where Beta is greater than Alpha. In addition, the algorithm with larger Beta values is 

enforced to overfitting to training data. However, overfitting to training data might reduce fitting to the test data. 

Therefore, determining the efficient Alpha and Beta combinations plays important roles to handle above mentioned 

problems and achieve to estimate more robust models. For this reason, to figure out the efficient combinations of 

hyperparameters, the algorithm should be run different combinations of these hyperparameters by the trial and error. 

 

6. Conclusions 

According to the analysis results performed over an artificial data set, there are significant advantages of BNNs 

based Gaussian approach with the fixed hyperparameters against the traditional ANNs in terms of balancing the 

model complexity, the learning ability and the estimating more robust models. However, determination of the 

efficient hyperparameters would cause time consumption for some excessive nonlinear and high dimensional cases. 

In such cases, Gaussaian approximation with the recursive hyperparameter or full Bayesian approach provides an 

alternative way to handle related problems accurately. In the future direction, to overcome the above mentioned 

problems we are planning to improve more robust Bayesian learning approaches and measure their performances 
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over more complicated artificial and real datasets. In addition, developed approaches will be compared the other 

artificial intelligent techniques in terms of reliability and efficiency. 
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