
Commun.Fac.Sci.Univ.Ank.Ser. A2-A3
Volume 67, Number 1, Pages 27–42 (2025)
https://doi.org/10.33769/aupse.1498035
ISSN 1303–6009 E-ISSN 2618–6462

http://communications.science.ankara.edu.tr

Research Article; Received:June 08, 2024; Accepted: August 22, 2024

EFFECT OF DILATION RATE ON NESTED U-NET MODEL

PERFORMANCE IN REMOTE SENSING

Irem ULKU1

1Department of Computer Engineering, Ankara University, Ankara, TÜRKİYE

Abstract. High spatial resolution remote sensing images contain substantial

detailed multi-scale objects. Convolutional neural networks (CNNs) are not

efficient enough for detecting these objects of varying sizes. Among the mul-
titude of CNN approaches, the Nested U-Net (UNet++) model shows great

potential to capture more complex details by progressively enriching high-

resolution feature maps. However, there is more room for improving the Nested
U-Net architecture by increasing its ability to detect multi-scale objects. The

nested blocks used in this architecture rely on standard convolutional lay-

ers, which are of limited efficacy in capturing pixel information. Thus, larger
receptive fields are required to extract multi-scale feature information. Al-

though many approaches are available for increasing the receptive fields in the
Nested U-Net model, these methods usually make the computational efforts

very heavy. Therefore, this study uses dilated convolutions in the Nested U-

Net architecture to broaden the receptive field without augmenting computa-
tional demand. To this extent, the paper performs experiments with different

dilation rates in the convolution blocks to understand the benefits of employ-

ing dilated convolutions in Nested U-Net architecture. Experiments using two
remote sensing image sets show that the Nested U-Net model with dilated con-

volutions performs well for images containing both visible and multispectral

wavelengths. While being able to provide performance improvement, experi-
mental results also demonstrate that only the optimal dilation rate scheme in

the proposed approach is beneficial.

Keywords. Semantic segmentation, remote sensing, dilated convolution, mul-

tispectral images, Nested U-Net model.

1. Introduction

Compared with natural images obtained from the ground, high-resolution remote
sensing images have a more complex detailed background with multi-scale objects.
However, most of the CNNs only provide partial solutions that are insufficient for
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objects of varying sizes. Since CNN models downsample feature maps through a
series of pooling operations in each layer to acquire multi-scale contextual informa-
tion, it leads to a loss of low-level local details for small targets [1]. In literature,
many efforts are devoted to developing CNN-based models that can capture multi-
scale details within remote sensing imagery [2–5].

The Nested U-Net [6] architecture can capture more complex details by progres-
sively enriching high-resolution feature maps. The model is hypothesized based on
adding nested convolution blocks with intense skip connections to achieve an easier
optimization. Recent studies such as CSAN-UNet [7] and MSNUNet [8] focus on
enhancing the performance of the Nested U-net through various mechanisms for
multi-scale objects. There are also some studies in medical imaging, such as the
LiM-Net [9], which utilizes the Nested U-net model and aims to extract multiscale
fine-grained features. However, the Nested U-Net architecture demands further
refinement to capture different object shapes [10].

An architecture inspired by densely connected convolutional networks, the Nested
U-Net integrates U-Net models at various depths. Within each nested block, several
convolutional layers extract semantic information. However, these standard convo-
lutional layers can capture only a limited pixel information. Therefore, the network
can utilize larger receptive fields to improve its ability to capture multi-scale fea-
ture information [11]. Previous methods utilize scale parameters [12], attention
modules [13, 14], and transformer blocks [15] for increasing the receptive field of
CNN networks in remote sensing. Although these methods yield high accuracies
by increasing the receptive fields to capture different shapes and appearances, they
also suffer from a high computational burden.

Dilated convolution [16] expands the receptive field without increasing parame-
ters or computation, enhances the resolution of output feature maps, and effectively
acquires multi-scale features. There are already efforts to incorporate dilated con-
volutions to the Nested U-Net architecture to encompass objects at multiple scales.
In one study, dilated convolutions are utilized only for the top layer, enabling the
Nested U-Net model to capture more comprehensive feature information at full
resolution [17]. Another study [18] proposes a method for extracting more con-
textual information in the Nested U-Net model by relying on the pyramid dilation
technique. Influenced by the Nested U-Net, the ConDinet++ model [19] uses con-
ditional dilated convolutions to obtain more contextual semantic information in
cases of narrow and occluded roads in aerial images. A-DenseUNet [20] incorpo-
rates multiple dilated convolutions with various atrous rates in the Nested U-net
network to attain a larger field of view and prevent spatial feature information loss.
Another Nested U-Net-based model is the AEUNet++ with multi-task learning
and attention mechanisms, which automatically extracts small and large buildings
with precise boundaries from high spatial resolution imagery [21].

This study investigates the impact of replacing convolutional layers with dilated
convolutional layers within the convolution blocks of the Nested U-Net architecture,
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examining how the dilation factor influences the semantic segmentation model per-
formance. The organization of this article is outlined in the following way: Section
2 furnishes detailed information on the Nested U-Net architecture, dilated convolu-
tion, and their integration. Section 3 describes the remote sensing image sets used,
and Section 4 explains the experimental configuration and evaluation metrics. Sec-
tion 5 elaborates on the findings obtained from the experiments. Section 6 delivers
the study’s conclusion.

2. Methodology

This part explains the proposed Nested U-Net model design with dilated convolu-
tions. Section 2.1 explains the Nested U-Net architecture, while Section 2.2 dis-
cusses the dilated convolution operation.

2.1. Nested U-Net Model. The Nested U-Net topology, as shown in Figure 1,
is pyramid-shaped and comprises encoding and decoding parts linked by skip path-
ways. These dense skip connections enable the model to use the extracted contex-
tual information more efficiently and create a global context. The output feature
map of block l, denoted as xl,j , is represented by Equation 1. Here, l represents
the lth path in the horizontal direction, while j indicates the jth convolution block
in the vertical path:

xl,j =


H(xl−1,j), if j = 0

H([xl,k]
j−1
k=0, U(xl+1,j−1)), if j > 0

(1)

where, H (.) represents the operations in the convolution block, U (.) describes the
upsampling and [.] symbol refers to the concatenation operation.

As shown in Equation 1 and illustrated in Figure 1, the input of the convolution
block when j = 0 is defined as the feature map obtained from the l − 1th block.
If j > 0, the convolution block’s input comprises two distinct sections. One part
represents the combination of the feature maps of all previous blocks in the same

horizontal path, denoted as [xl,k]
j−1
k=0. The other part is the output of the j − 1th

horizontal path, expressed as xl+1,j−1.
Figure 2 illustrates the detailed operations of the first skip pathway at the top

horizontal level of the pyramid where l = 0. In this context, the connection between
x0,0 and x0,4 consists of three convolution blocks and dense skip connections. Each
x0,l convolution block operates a concatenation between the output maps from
preceding blocks at the matching horizontal level with the output feature map of
the associated block from the lower horizontal level after upsampling. For instance,
the feature maps x0,0, x0,1, x0,2, and U(x1,2) are combined for x0,3. The Nested
U-Net design underlies a hypothesis of achieving semantically similar feature maps
passed from the feature extractor to the relevant decoder.
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Figure 1. The overall framework for Nested U-Net architecture.

2.2. Dilated Convolution. As shown in Figure 3, the 2D dilated convolution op-
eration within the jth convolution block in any lth horizontal path extracts features
at intervals specified by the dilation rate d for each spatial location (h,w) and is
defined as follows:

y(h,w) =

H∑
i=1

W∑
k=1

x(h+d×i,w+d×k)ω (i, k) , (2)

where y(h,w) and x(h,w) represent the output and input of the dilated convolution
operation at position (h,w), respectively. ω (i, k) denotes the convolutional filter
with indices i and j. If d = 1, the dilated convolution becomes a standard con-
volution. For a k × k convolution kernel, the effective kernel size of the dilated
convolution operation becomes kd× kd, where kd is defined as follows:
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Figure 2. The first skip pathway of Nested U-Net architecture.

kd = k + (k − 1) . (d− 1) . (3)

Here, there are still only k×k kernel parameters, which allows changing the receptive
field by selecting different dilation rates with the same number of parameters. This
approach preserves the spatial resolution. As shown in Figure 3, when a 3 × 3
convolutional kernel is used with d = 2, the feature maps are sampled as if using a
5×5 standard convolutional kernel, and when d = 3, the feature maps are sampled
as if using a 7× 7 standard convolutional kernel.

Figure 4 shows the structure of convolution blocks used in the Nested U-Net
architecture. When the input tensor of the convolution block is xl,j , then the
output yl,j is obtained by passing the input through a standard 3× 3 convolution
followed by the feature-wise normalization (abbraviated as BN) and the rectified
linear unit (abbraviated as ReLU) activation layers twice, as follows:

yl,j = conv3×3(conv3×3(x
l,j)), (4)

where conv3×3 represents the standard 3× 3 convolution (with BN and ReLU).
This study proposes to apply a 3 × 3 dilated convolution to secure a larger

receptive field than the standard 3× 3 convolution (Figure 4B). The output of the
jth convolution block at the lth horizontal level, zl,j , is calculated as follows:

zl,j = convd
1

3×3(conv
d2

3×3(x
l,j)), (5)

where convd
1

3×3 and convd
2

3×3 stand for 3× 3 dilated convolutions with dilation rates
d1 and d2, respectively (with BN and ReLU). The experiments employ dilated
convolutions with different rates. The flowchart of the entire process is shown in
Figure 5.
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(a) (b)

(c)

Figure 3. Schematics of dilated convolution. (A) Standard convolution. (B) Dilated
convolution (d = 2). (C) Dilated convolution (d = 3).

3. Image Sets

In the experiments, multispectral images are in the form of Normalized Difference
Vegetation Index (NDVI) to reflect green vegetation accurately, with the formula
depending on the relation between the red (abbraviated as R) and the near-infrared
(abbraviated as NIR) spectral bands as delineated:

NDV I =
NIR−R

NIR+R
. (6)

The following sections describe the image sets used in the experiments, with
more detailed information available in the reference study [22].
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Figure 4. (A) The details of the convolution block in Nested U-net architecture. (B)
The details of the proposed convolution block incorporating dilated convolutions in Nested
U-net architecture.

Figure 5. The flowchart of the entire process.

3.1. DSTL Satellite Image Set. The DSTL (Defense Science and Technology
Laboratory) provides this image set for the Kaggle competition, which includes 25
satellite images with 1 km Ö 1 km size. Experiments perform binary semantic
segmentation of crops in this image set. Figure 6 shows a sample image with its
ground truth mask by representing crop pixels in light green. DSTL contains RGB
imagery with a resolution of 3348 Ö 3392 pixels and a spatial precision of 0.31 m.
Multispectral images in DSTL cover the wavelength range of 400–1040 nm, with
837 Ö 848 pixels and 1.24 m spatial resolution. It contains 5985 patches of 224 Ö
224 pixels, where Figure 7 depicts some examples of RGB and NDVI image patches
together with the ground truth masks. These masks include pixels of wheat, potato,
and turnip crops, all appearing in yellow.

3.2. RIT-18 Aerial Image Set. The image obtained with an octocopter equipped
with a Tetracam MicroMCA6 multispectral sensor, with dimensions of 9393 Ö 5642
pixels, is depicted in Figure 8. Experiments conduct only the semantic segmentation
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(a) (b)

Figure 6. DSTL satellite set images (A) An example image is given. (B) A ground
truth is given by highlighting the pixels of the class crop with light green.

(a) (b) (c)

Figure 7. Illustrations of example image patches (DSTL) (A) False-color RGB image
patches (B) False-color NDVI image patches (C) Crop class ground truth masks.

of the tree class from this image set, where the blue color identifies the image pixels
belonging to this class in Figure 9. This set has a spatial image resolution of 0.047
m with RGB, 715–725 nm, 795–805 nm, and 890–910 nm wavelength ranges. The
total sample size is 1778, with each patch having the same 224 Ö 224-pixel size.

4. Experimental Setup

All the experiments are conducted with PyTorch using an NVIDIA Quadro RTX
5000 GPU. The hardware used is a server with CPU Intel(R) Xeon(R) Gold 6240R
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(a) (b)

Figure 8. RIT-18 aerial set images (A) An example image is given. (B) A ground
truth is given by highlighting the pixels of the class tree with blue.

(a) (b) (c)

Figure 9. Illustrations of example image patches (RIT-18) (A) False-color RGB image
patches (B) False-color NDVI image patches (C) Tree class ground truth masks.

@2.40GHz and the size of RAM is 128 GB. The optimization algorithm chosen is
Adam with corresponding batch size of 8. The learning coefficient value of 10−4 is
reduced by 9% after every five epochs until the 70th epoch. This study uses a cross-
validation approach applied to all experiments. The image patches are divided to
train, test, and validate the models as 72%, 20%, and 8%, respectively.
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4.1. Evaluation Metrics. Performance evaluation relies on IoU (intersection over
union) and F1 score metrics. IoU is formulated as:

IoU =
TP

TP + FP + FN
, (7)

where TP refers to correctly identified pixels, FP represents the incorrectly iden-
tified predictions, and FN corresponds to false negatives. F1 score is computed
as:

F1 =
2× precision× recall

precision+ recall
, (8)

where precision = TP
TP+FP and recall = TP

TP+FN .

5. Results

For comparison purposes, the experiments include several other U-Net architec-
tures, including U-Net, Nested U-Net, AttU-Net, R2AttU-Net, InceptionU-Net,
and scAGAttU-Net [23–27]. Table 1 presents the crop semantic segmentation test
results on the DSTL image set using the IoU and F1 score for RGB and NDVI im-
ages. Additionally, the quantity of floating-point operations performed per second
expressed in billions (GFLOPs) metric helps infer the execution time based on the
computational complexity of the model.

This satellite image set contains multispectral images with lower spatial resolu-
tions than the RGB counterparts, leading to some performance loss. When used
with the dilation rates as d1 = 2, d2 = 2, the proposed Nested U-Net model out-
performs all other architectures on the DSTL image set and demonstrates stable
performance under different spectral schemes. With these rates, there is an im-
provement of about 0.6% in the IoU metric for RGB images and 1.1% for NDVI
images compared to the traditional Nested U-Net design. The efficacy of the pro-
posed model with the dilation rates of d1 = 1, d2 = 2 is almost equal to that of
the original Nested U-net. The dilated Nested U-Net with rates of d1 = 1, d2 = 3
shows an IoU performance improvement of about 0.4% for RGB images compared
to the conventional Nested U-Net model. On the other hand, relatively large di-
lation rates of d1 = 3, d2 = 3 result in IoU performance losses for both RGB and
NDVI images. Similarly, the model performance degrades further with increasing
the dilation rates to d1 = 3, d2 = 4 and d1 = 4, d2 = 4.

Experimental results show that the obtained optimal dilation rate scheme of
d1 = 2, d2 = 2 outperforms others that employ smaller or larger dilation rates.
Small dilation rates only capture the local features, which impacts the effectiveness
of semantic segmentation in the original Nested U-Net model. Nevertheless, larger
receptive fields with dilation rates as d1 = 3, d2 = 3, d1 = 3, d2 = 4 and d1 = 4, d2 =
4 also decrease the semantic segmentation performance since they capture too much
irrelevant information. Examining the GFLOPs values concerning computational
complexity reveals that varying dilation rates do not indirectly impact the model’s
execution time.
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Table 1. Test results with DSTL set.

2*Architectures GFLOPS RGB Images NDVI Images
IoU F1 IoU F1

U-Net 190.07 0.894 ± 0.237 0.904 ± 0.240 0.857 ± 0.285 0.883 ± 0.263
AttU-Net 408.12 0.893 ± 0.243 0.902 ± 0.220 0.879 ± 0.275 0.898 ± 0.260
R2AttU-Net 943.42 0.857 ± 0.306 0.874 ± 0.296 0.804 ± 0.337 0.836 ± 0.314
InceptionU-Net 482.26 0.897 ± 0.236 0.919 ± 0.213 0.886 ± 0.252 0.913 ± 0.225
scAGAttU-Net 101.03 0.895 ± 0.262 0.910 ± 0.248 0.884 ± 0.279 0.906 ± 0.267
UNetFormer 17.95 0.880 ± 0.283 0.896 ± 0.268 0.865 ± 0.307 0.879 ± 0.297
Nested U-Net 849.3 0.897 ± 0.234 0.919 ± 0.209 0.880 ± 0.268 0.900 ± 0.251
Nested U-Net (d1 = 1, d2 = 2 ) 849.3 0.897 ± 0.253 0.914 ± 0.236 0.880 ± 0.263 0.902 ± 0.245
Nested U-Net (d1 = 2, d2 = 2 ) 849.3 0.903 ± 0.237 0.922 ± 0.216 0.891 ± 0.262 0.908 ± 0.240
Nested U-Net (d1 = 1, d2 = 3 ) 849.3 0.901 ± 0.246 0.918 ± 0.227 0.873 ± 0.290 0.889 ± 0.279
Nested U-Net (d1 = 3, d2 = 3 ) 849.3 0.892 ± 0.262 0.909 ± 0.245 0.861 ± 0.292 0.882 ± 0.276
Nested U-Net (d1 = 3, d2 = 4 ) 849.3 0.886 ± 0.260 0.901 ± 0.266 0.869 ± 0.299 0.884 ± 0.288
Nested U-Net (d1 = 4, d2 = 4 ) 849.3 0.889 ± 0.276 0.903 ± 0.264 0.867 ± 0.301 0.882 ± 0.291

Table 2. Test results with RIT-18 set.

2*Architectures GFLOPS RGB Images NDVI Images
IoU F1 IoU F1

U-Net 190.07 0.860 ± 0.285 0.887 ± 0.243 0.841 ± 0.306 0.878 ± 0.269
AttU-Net 408.12 0.881 ± 0.265 0.906 ± 0.243 0.883 ± 0.252 0.907 ± 0.227
R2AttU-Net 943.42 0.878 ± 0.243 0.904 ± 0.210 0.683 ± 0.464 0.710 ± 0.364
InceptionU-Net 482.26 0.864 ± 0.269 0.891 ± 0.239 0.873 ± 0.260 0.900 ± 0.236
scAGAttU-Net 101.03 0.873 ± 0.271 0.898 ± 0.251 0.860 ± 0.294 0.892 ± 0.262
UNetFormer 17.95 0.870 ± 0.260 0.899 ± 0.232 0.842 ± 0.296 0.871 ± 0.272
Nested U-Net 849.3 0.885 ± 0.254 0.910 ± 0.228 0.893 ± 0.242 0.918 ± 0.220
Nested U-Net (d1 = 1, d2 = 2 ) 849.3 0.885 ± 0.259 0.906 ± 0.243 0.889 ± 0.278 0.914 ± 0.260
Nested U-Net (d1 = 2, d2 = 2 ) 849.3 0.888 ± 0.256 0.908 ± 0.236 0.894 ± 0.264 0.918 ± 0.244
Nested U-Net (d1 = 1, d2 = 3 ) 849.3 0.884 ± 0.257 0.906 ± 0.236 0.886 ± 0.275 0.912 ± 0.254
Nested U-Net (d1 = 3, d2 = 3 ) 849.3 0.880 ± 0.261 0.903 ± 0.207 0.884 ± 0.253 0.907 ± 0.232
Nested U-Net (d1 = 3, d2 = 4 ) 849.3 0.879 ± 0.266 0.901 ± 0.247 0.825 ± 0.340 0.843 ± 0.329
Nested U-Net (d1 = 4, d2 = 4 ) 849.3 0.879 ± 0.261 0.902 ± 0.239 0.823 ± 0.332 0.845 ± 0.318

Table 2 shows the tree semantic segmentation test results for RGB and NDVI
images on the RIT-18 set using IoU and F1 score metrics. The Nested U-Net model
with dilation rates d1 = 2, d2 = 2 in this image set demonstrates a similar trend
as with the DSTL by outperforming all other models. The model with dilation
rates of d1 = 1, d2 = 2 achieves almost the same performance as the original Nested
U-Net for RGB images. However, the IoU performance of this case is about 0.889
for NDVI images, slightly lower than its original Nested U-Net counterpart. When
the dilation rates become large with d1 = 3, d2 = 3, the Nested U-Net suffers from a
performance degradation of about 0.9% for NDVI images compared to the original
model. With a similar trend, IoU values for RGB images at d1 = 3, d2 = 4 and
d1 = 4, d2 = 4 dilation rates decrease by approximately 0.9% compared to the one
at the optimal rate of d1 = 2, d2 = 2.

As the dilation rates continue to increase, the false alarms introduced by high-
lighting the irrelevant regions become a significant drawback [28–30]. Furthermore,
limiting feature extraction to the central image pixels with rates close to the feature
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 10. Semantic segmentation predictions. Light greens are hits, dark green are
misses, and reds are false alarms. First row illustrates tree class predictions (NDVI) and
second row shows crop class predictions (RGB). (A) Ground-truth mask. (B) Original
image. (C) U-Net. (D) AttU-Net. (E) R2AttU-Net. (F) InceptionU-Net. (G) scAGAttU-
Net. (H) UNetFormer.

(a) (b) (c) (d) (e) (f) (g)

Figure 11. Semantic segmentation predictions. Light greens are hits, dark green are
misses, and reds are false alarms. First row illustrates tree class predictions (NDVI) and
second row shows crop class predictions (RGB). (A) Ground-truth mask. (B) Original
image. (C) NestedU-Net. (D) NestedU-Net (d1 = 1, d2 = 2 ). (E) NestedU-Net (d1 =
2, d2 = 2 ). (F) NestedU-Net (d1 = 1, d2 = 3 ). (G) NestedU-Net (d1 = 3, d2 = 3 ).

map sizes reduces the valid convolution regions and can thus degrade the perfor-
mance. On the other hand, standard convolution (with a rate of 1) tends to focus
on local details, potentially neglecting global contextual information. Therefore,
choosing the dilation rates to attain a good trade-off between small and large val-
ues can elevate the accuracy of the original model.

Experiments demonstrate that the dilation rate scheme of d1 = 2, d2 = 2 im-
proves the performance when used with the Nested U-Net model. However, the
resolution of the feature map decreases with the d1 = 3, d2 = 3 scheme, which
makes it harder to capture details. Figures 10 and 11 show some example predic-
tions on the DSTL and RIT-18 image sets. The first column visualizes the results
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Figure 12. Box-plot comparison of IoU across different dilation rates in Nested U-Net
model using RGB images from the DSTL image set.

for the NDVI images of the tree class, and the second column presents the results
for the RGB images of the crop class. Figure 10 includes the predictions of U-Net
models used for comparison, while Figure 11 provides those of the Nested U-Net
model in different dilation rate schemes. Despite the promising experimental re-
sults, the best-performing Nested U-Net model with dilation rates d1 = 2, d2 = 2
still has limitations in avoiding false alarms, especially in complex detailed regions
(Figure 11). Therefore, future work will address this specific issue concerning false
alarms by incorporating some attention mechanisms. Additionally, the box-plot
statistical analysis is beneficial to visualize the distribution of IoU performances
with different dilation rates. Figure 12 presents the IoU values for different Nested
U-Net models, each configured with various dilation rates d1 and d2. These are
the DSTL image set RGB results obtained by applying 5-fold cross-validation for
each dilation rate scheme. The box plot analysis further confirms that the dilation
rate scheme of d1 = 2, d2 = 2 provides the best and most consistent Nested U-Net
performance.
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6. Conclusion

This study proposes an effective Nested U-Net architecture with dilated convolu-
tional layers to capture detailed multi-scale objects within remote sensing data.
Dilated convolution is a promising approach since it can enhance the resolution of
receptive fields without increasing computational load. By selecting various dila-
tion rates in convolution blocks, diverse dilation schemes can be generated, thereby
analyzing the potential benefits of using dilated convolutions in the Nested U-Net
model. According to the experimental results using two multispectral remote sens-
ing image sets, integrating the optimal dilation rate scheme of d1 = 2, d2 = 2 can
achieve higher semantic segmentation performance than the original Nested U-Net
model. Furthermore, smaller dilation rates tend to neglect the global feature in-
formation, while larger ones contribute to higher false alarm rates. These results
demonstrate that suitable dilation rates can enhance the effectiveness of the Nested
U-Net model, which is extremely useful for capturing multi-scale details in remote
sensing images.

Declaration of Competing Interests The author declares no known competing
interests.
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