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Abstract:  Cancer, is a leading cause of disease and death worldwide, affecting 

both advanced industrialized and developing nations. Breast cancer, specifically 

among women, is a highly prevalent and serious type of cancer, making it a focal 

point for extensive research in the field of medicine. In the diagnosis of breast 

cancer, histopathological images play a crucial role because of the abundance of 

valuable phenotypic information they contain. To enhance the accuracy and 

objectivity of breast histopathological image analysis (BHIA), classification, and 

detection tasks are performed on these images using deep learning architecture 

approaches. In a preliminary experiment conducted in this paper using the Breast 

Cancer Histopathological Database (BreakHis), four state-of-the-art and custom 

CNN architectures were proposed. The experimental results demonstrate the 

notable performance of the proposed custom model at 40x and 200x 

magnification factors, reaching accuracies of 97.49% and 97.77%, surpassing 

other models. The ResNet-50 model achieved higher accuracy at 100x and 400x 

magnifications, with accuracies of 98.56% and 96.43%, respectively. Compared 

to other state-of-the-art models, the proposed CNN model not only shows 

efficient training with a significantly shorter timeframe but also features a reduced 

number of layers, highlighting its superior computational efficiency. Although the 

parameter count is higher than that of one of the models, the model strikes a 

favorable balance between computational efficiency and model capacity. In light 

of the achieved outcomes and the existing literature, forthcoming studies 

endeavor can be pursued further to enhance the performance values in breast 

cancer classification. 
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Öz: Kanser, hem gelişmiş sanayileşmiş ülkeleri hem de gelişmekte olan ülkeleri 

etkileyen, dünya çapında hastalık ve ölümün önde gelen nedenlerinden biridir. 

Özellikle kadınlar arasında meme kanseri, oldukça yaygın ve ciddi bir kanser 

türüdür ve bu nedenle tıp alanında geniş çaplı araştırmaların odak noktası 

olmuştur. Meme kanseri teşhisinde histopatolojik görüntüler, içerdiği değerli 

fenotipik bilgiler nedeniyle kritik bir rol oynar. Meme histopatolojik görüntü 

analizinin (BHIA) doğruluğunu ve nesnelliğini artırmak amacıyla, bu görüntüler 

üzerinde sınıflandırma ve tespit görevleri derin öğrenme mimarisi yaklaşımları 

kullanılarak gerçekleştirilir. Bu makalede, Meme Kanseri Histopatolojik 

Veritabanı (BreakHis) kullanılarak yapılan ön deneyde, dört son teknoloji ve 

özel CNN mimarisi önerilmiştir. Deneysel sonuçlar, önerilen özel modelin 40x 

ve 200x büyütme faktörlerinde kayda değer bir performans sergilediğini ve 

sırasıyla %97.49 ve %97.77 doğruluklara ulaştığını, diğer modelleri geride 

bıraktığını göstermektedir. ResNet-50 modeli ise 100x ve 400x büyütme 

faktörlerinde daha yüksek doğruluk elde etmiş ve sırasıyla %98.56 ve %96.43 

doğruluk oranlarına ulaşmıştır. Diğer son teknoloji modellerle 
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1. Introduction  

 

Cancer manifests as an ailment characterized by uncontrolled cell proliferation due to the 

transformation of cells undergoing natural selection (Brown et al., 2023). Among various cancer types, 

breast cancer is particularly noteworthy, recognized as a prevalent and life-threatening condition 

affecting women. In 2022, there were 2.3 million reported cases of breast cancer in women, leading to 

670,000 deaths globally. In 2022, breast cancer was the most prevalent cancer among women in 157 

out of 185 countries. Breast cancer can affect women in any country post-puberty, with higher 

incidence rates in later stages of life. Men account for approximately 0.5–1% of breast cancer cases 

(Sadique et al., 2024; WHO, 2024). The geographic distribution of breast cancer occurrences varies 

greatly, with the majority of instances occurring in industrialized countries. However, transitioning 

nations experience a disproportionately high number of breast cancer-related deaths. According to 

predictions, if current trends continue, the worldwide incidence of breast cancer might exceed 3 

million new cases and result in 1 million deaths per year by 2040 (Arnold et al., 2022). Various 

diagnostic techniques are employed in the therapy of breast cancer, such as mammography, magnetic 

resonance imaging (MRI), and histological testing. Biopsy procedures have consistently been the 

predominant tool for accurately diagnosing breast cancer when other tests, such as mammography, 

have produced unclear findings. The inclusion of the biopsy procedure’s description, which 

encompasses the collection of tissue samples, placement onto small glass slides, and application of 

staining for enhanced visibility, provides more intricacy to the overall process. Pathologists analyze 

histopathological images to validate the diagnosis (Das et al., 2019; Zerouaoui et al., 2024). Scientists 

have employed several algorithms and analysis tools to examine breast cancer pictures from diverse 

perspectives, taking into account elements such as the stage of the disease, image quality, and specific 

criteria. In recent years, Convolutional Neural Networks (CNNs), a type of deep learning technology, 

have gained significant recognition as effective instruments in computer-assisted medical image 

interpretation (Inik et al., 2019). CNNs are deep learning models designed to mimic the organization 

of the cortical area. Their origins can be traced back to the study 1962 study conducted by Hubel and 

Wiesel, and they were subsequently enhanced by Fukushima’s Neocognitron in 1980. LeCun’s 

introduction of LeNet-5 in 1998 marked a significant advancement in this concept. The CNN 

architecture comprises convolutional, pooling, and fully connected layers, as described by (Sakib et 

al., 2019; Suzuki, 2017). 

Recently, the utilization of deep learning methods in the processing of medical images has 

demonstrated considerable potential in enhancing diagnostic precision multiple studies have shown 

that Convolutional Neural Networks (CNNs) are effective at categorizing histological images of breast 

cancer. Alom et al. (2019) created the Inception Recurrent Residual Convolutional Neural Network 

(IRRCNN) using the BreakHis and Breast Cancer Classification Challenge 2015 datasets. The model 

integrates features from the Inception Network, Residual Network, and Recurrent Convolutional 

Neural Network. Budak & Güzel (2020) introduced a novel approach for detecting breast cancer in 

histopathological images by integrating color and texture characteristics. The method combined 

Shearlet Transform (ST) for breaking down images and the Gray-Level Co-occurrence Matrix 

(GLCM) for extracting texture. Color features are obtained by extracting information from the red, 

green, and blue channels, which are then combined into histograms and concatenated to generate a 

feature vector. The vector, together with texture data, is inputted into a Support Vector 

Machine(SVM) for classification. The histological Convolutional Neural Network (HCNN) was 

proposed by Burçak et al. (2021) as a method for identifying breast cancer using histological pictures. 

The Model employed a Convolutional Neural Network (CNN) for extracting features and was trained 

karşılaştırıldığında, önerilen CNN modeli sadece çok daha kısa bir süre içinde 

verimli eğitim göstermekle kalmamış, aynı zamanda daha az katman sayısı ile 

üstün hesaplama verimliliğine sahip olduğunu göstermiştir. Parametre sayısı bir 

modelden daha yüksek olmasına rağmen, model hesaplama verimliliği ile model 

kapasitesi arasında olumlu bir denge kurmaktadır. Elde edilen sonuçlar ve 

mevcut literatür ışığında, gelecekteki çalışmalar, meme kanseri 

sınıflandırmasında performans değerlerini artırmak amacıyla daha da 

geliştirilebilir. 
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using six optimization techniques to improve learning efficiency. Boumaraf et al. (2021b) developed 

an automated breast cancer classification method for histopathological images, leveraging transfer 

learning with ResNet-18. They fine-tuned the model and employed global contrast normalization 

(GCN) and three-fold data augmentation. Another study conducted by Boumaraf, et al. (2021a) 

compared conventional machine learning (CML) with deep learning (DL) methods for breast cancer 

classification. CML involved extracting handcrafted features, while DL utilized transfer learning with 

VGG-19 architecture, fine-tuned on histopathological images. Evaluation of the BreakHis dataset and 

KIMIA Path960 validation set highlighted DL's superior performance. Wang et al. (2021) introduced a 

novel approach rooted in the integration of deep features and enhanced routing. The proposed method 

utilized dual channels to extract features from capsules and convolutions simultaneously. Then, these 

features are fused, and a routing module and the FE-BkCapsNet classifier are incorporated. Gupta et 

al. (2021) developed modified residual neural networks, specifically modified Resnet-50 and ResNet-

34 architectures for histopathological breast cancer image classification. Notably, the proposed 

approach results were achieved with ResNet-50. Kallipolitis et al. (2021) proposed a deep learning-

based ensemble modeling approach for histopathology image classification, using EfficientNets as the 

primary components. The study also explored using InceptionNet, ExceptionNet, and ResNet to 

identify images and produced explainable results with the Grad-CAM technique. Joseph et al. (2022) 

developed handcrafted feature extraction techniques and Deep Neural Network (DNN) are used on 

histopathological images from the BreakHis dataset. The characteristics retrieved by handcrafted 

techniques are then used to train DNN classifiers, which have four dense layers with softmax 

activation. In the realm of feature extraction using deep learning and classification with machine 

learning algorithms, Sharma & Kumar (2022) presented a binary classification approach based on 

magnification that is specific to breast cancer histopathology images. The strategy entailed evaluating 

five well-known classical machine learning algorithms using handcrafted features with a pre-trained 

Xception model. The most effective classifier combination was obtained by Xception+SVM R,5. 

Zerouaoui & Idri (2022) presented and evaluated findings from an empirical comparative study of 28 

hybrid architectures for breast cancer (BC) imaging classification. Four classifiers (MLP, SVM, DT, 

and KNN) and seven deep learning techniques (DenseNet 201, MobileNet V2, ResNet 50, Inception 

V3, Inception ResNet V2, VGG16, and VGG19) were used. These architectures were evaluated and 

ranked across two datasets using the SK statistical test and the Borda Count. Chattopadhyay et al. 

(2022b) developed DRDA-Net, a deep-learning model tailored for histopathology images. DRDA-Net 

integrates Dense Residual Dual-Shuffle Attention Network architecture, featuring improvements like 

residual skip connections and multi-scale feature learning. Its key element, the Dual-Shuffle Residual 

Block (DRB), incorporates ShuffleNet-inspired features, enhancing feature map quality and data flow 

through Channel Attention (CA) modules and residual skip connections.  Krishna et al. (2023) created 

a decision-support model that effectively classifies breast cancer in histopathological images. They 

incorporated a trainable attention mechanism into a CNN. This attention branch called the Attention 

Branch Network (ABN), is connected to the DarkNet19 network. A DarkNet-19 convolutional layer 

and Global Average Pooling (GAP) contextualize visual properties in the attention branch. By creating 

a Headmap, it can identify and emphasize photo highlights. The multi-scale and dual-adaptive 

attention (MDAA) was introduced to recognize histopathological images (Li et al., 2024). This model 

uses DenseNet and a module for multiscale feature extraction. A dual-adaptive attention block and 

adaptive balance loss function are included. The network’s tiny and intricate blocks enable feature 

reuse and improve complex concept communication. The Dual-adaptive attention block improves 

feature representation by combining channel and spatial adaptive attention to overcome single-

attention mechanism limits. Lastly, an adaptive balancing loss is employed to tackle the issue of class 

imbalance. Chattopadhyay et al. (2022a) developed the MTRRE-Net model, which was specifically 

designed for breast cancer classification. The model combines dual residual blocks and a recurrent 

connection, utilizing two-fold residual learning. The method involves extracting features from various 

network depths with different scales and filter sizes to capture important information from input 

images while maintaining a balance between depth and learning complexity. Zhou et al. (2022) 

proposed ADSVM, which combines Anomaly Detection with SVM and Resolution Adaptive Network 

(RANet), for breast cancer classification. ADSVM detects mislabeled patches in malignant images, 

which improves classification precision. RANet dynamically selects subnetworks based on image 

complexity. Kashyap (2022) developed a Stochastic Dilated  Residual Ghost (SDRG) model, merging 
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the  Multiscale Stochastic Dilated Convolution (MSDC) with a ghost unit, stochastic upsampling, and 

downsampling units, for accurate breast cancer classification. The MSDC model captures detailed 

features, whereas the ghost unit reduces redundancy and expands the receptive field of dilated 

convolution while preserving image information. When combined with stochastic groupings in 

upsampling, the ghost unit improves model performance. In our study, (Nadr & İnik, 2023) a custom 

CNN architecture was proposed using only a 100x magnification factor of the BreakHis dataset’s 

histopathological images to classify BC classification. This approach resulted in an accuracy of 92.70. 

Addo et al. (2024) proposed a lightweight CNN model named "BCHI-CovNet" specifically designed 

to classify breast cancer using histopathological images. The model employed a novel approach that 

includes a convolutional operation that is both multiscale and depth-wise separable. In addition, the 

model includes a second-order pooling module and a multi-head self-attention mechanism. 

Despite advancements in deep learning techniques, the necessity persists for models that not 

only ensure high accuracy but also uphold computational efficiency. This study aims to address this 

gap by presenting a new CNN model designed exclusively for the binary classification of breast cancer 

in histopathology images. The primary objective is to design a CNN architecture that is very efficient 

in terms of both diagnostic accuracy and processing resources. This architecture will be thoroughly 

evaluated against well-known state-of-the-art architectures such as SqueezeNet, GoogleNet, ResNet-

50, and DarkNet-19.  

The objective of this study is to investigate the employing of Convolutional Neural Networks 

(CNNs), a type of deep learning technique, in the classification of breast histopathology images to 

identify breast cancer. The goal is to utilize the capabilities of deep learning techniques to improve the 

performance of Breast Histopathological Image Analysis (BHIA). The study seeks to enhance the 

accuracy of breast cancer diagnosis by enhancing precision and objectivity in the analysis. 

 

2. Material and Methods 

 

This section thoroughly explored the essential elements necessary for creating a proficient 

deep learning model for the classification of breast cancer in histopathologic images. The exploration 

commences by introducing the dataset. This section presents the cutting-edge deep learning models 

that have been proposed in this study. Subsequently, the provided CNN method, specifically tailored 

for breast cancer categorization, is outlined. Finally, the performance metrics are presented. 

 

2.1. Dataset Description  

 

This study employed the BreakHis dataset, a publically available compilation of 

histopathological images specifically designed for the examination of breast cancer. The dataset, 

referred to as the Breast Cancer Histopathological Images dataset, comprises microscopic biopsy 

images of both benign and malignant breast tumors (Spanhol et al., 2015). The images were acquired 

as part of a clinical study conducted from January to December 2014 at the P&D Lab in Brazil. The 

study involved individuals with clinical indications of breast cancer. Institutional review board 

approval was secured, and all participants provided written informed consent, ensuring their personal 

information was anonymized to protect privacy. The dataset consists of 9709 pictures gathered by 

pathologists through surgical (open) biopsy and labeled for histological analysis and is categorized 

into two classes: benign and malignant, with 2,480 benign samples and 5,429 malignant samples. This 

classification aids in detailed analysis and model training. Table 1 provides detailed information about 

the dataset distribution, offering insights into the number of samples in each category. Additionally, 

Figure 1 showcases representative examples of the histopathological images, illustrating the variety 

and complexity of the images used in the study.  
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2.1.1. Data preprocessing  

 

During the preprocessing step, the original 700x460 images were resized to meet the input 

requirements of various pre-trained deep neural networks used in this study. The images were resized 

to 224x224x3 for ResNet-50 and GoogleNet, 227x227x3 for SqueezeNet, and 256x256x3 for 

DarkNet-19. For the proposed method, the images were resized to 64x64x3. This resizing ensured 

compatibility with the input size constraints of each network, enabling efficient processing while 

preserving essential diagnostic features. Adjusting the image sizes was crucial for maintaining the 

performance and applicability of each neural network model. 

 

Table 1. Dataset Distribution by magnification factors and  classes 

Magnification factor Benign Malignant Total 

40 X 625 1370 1995 

100 X 644 1437 2081 

200 X 623 1390 2013 

400 X 588 1232 1820 

Total 2480 5429 7909 

Pateints 24 58 82 
 

Figure 1. Histopathological image samples of BreakHis dataset. 

 

2.2. State-of-the-art models 
 

Four renowned CNN models were utilized in this study. The selection of these models was 

based on their extensive usage and exceptional precision in various image classification tasks. The aim 

is to achieve a harmonious equilibrium between minimizing the number of parameters and acceptable 

accuracy. The main objective was to attain a high level of accuracy while maintaining a compact 

model size for the categorization of histopathologic images. To obtain comprehensive information 

regarding the image input size, model layers, and parameter counts for each model, please refer to 

Table 2. By elucidating the attributes and details of these models, it gets more straightforward to 

appreciate them and evaluate their appropriateness for a certain categorization task. 

In 2016, Iandola et al. (2016) developed SqueezeNet, an 18-depth deep learning network. 

Model architecture maximizes efficiency while minimizing parameters and model size. The model 

starts with a single convolution layer, conv1, and goes through eight fire modules, fire 2-9. Every fire 

module has a squeeze convolution layer with 1x1 filters and an expanded layer with 1x1 and 3x3 

filters. As filters grow, the network’s feature extractions improve. To keep a broad activation map and 

ensure high accuracy, max-pooling with a stride of 2 is used after conv1, fire4, fire8, and conv10. 

 

Benign 

Malignant 

           40x                              100x                                  200x                          400x 
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GoogLeNet, introduced by Szegedy et al. (2015), is a deep learning model with 22 depths (or 

27 depths with pooling). This architecture, which appeared in the ILSVRC 2014 competition, is a 

customized version of the Inception framework. Despite attempts to expand the Inception network, 

only minor advances were seen, prompting a concentration on the basic design. The network is made 

up of around 100 distinct construction components, which vary depending on the layer enumeration 

inside the machine learning architecture. The figure shows GoogLeNet's layered structure and 

architecture. 

ResNet-50 (Hong et al., 2019) is a 50-layer deep learning model that has been extensively 

trained on ImageNet. Its main feature, residual learning, tackles degradation difficulties in deep 

networks. The architecture uses convolutional blocks with a "bottleneck" design for computational 

efficiency and skip connections to improve information flow. ResNet-50 processes RGB images of 

size 224x224, gradually reducing spatial dimensions through different layers to a 1x1 output before 

finishing with a softmax layer for classification. 

Darknet-19 (Sankari et al., 2023) is a robust pre-trained network based on the YOLOv2 model 

that has 19 convolutional layers and five max pooling layers. It predominantly employs 3x3 filters, 

which double the number of channels following each max pooling layer. The architecture generates 

8x8 features, which are then processed by a GAP layer for prediction and feature compression. 

Darknet-19 implements batch normalization for faster convergence and model regularization, as well 

as a classification layer with two neurons in place of the softmax layer. 
 

Table 2. An overview of pre-trained models and their parameters 

    Model Input size Layers (depth) Parameters 

SqueezNet 227x227 64(18) 1.24 M 

GoogleNet 224x224 144(22) 7 M 

ResNet-50 224x224 177(50) 25.6 M 

DarkNet-19 256x256 64(19) 20.8 M 
 

2.3. Proposed method  
 

In the proposed method section, four well-known state-of-the-art models are utilized alongside 

the proposed CNN model for binary classification from histopathological images. Figure 2 shows the 

diagram of these models. The flowchart starts by providing the BreakHis dataset, followed by image 

preprocessing where the image is resized to the appropriate dimensions for each model. The 

preprocessed images extracted features are then inputted into the feature layers of their respective 

models. The feature outputs are passed through the softmax layer for classification, ultimately 

identifying images as either benign or malignant. 

Figure 2. Proposed method diagram. 
 

2.3.1. Proposed CNN model 
 

The provided (CNN) architecture is designed for image classification tasks, specifically to 

distinguish between benign and malignant images in the BreakHis dataset. The proposed CNN has 23 
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layers, which include input, convolutional, ReLU, batch normalization, pooling, fully connected, 

dropout, and softmax layers. Images are resized to 64x64 and sent through various convolutional 

layers that include batch normalization, ReLU activation, and pooling. The architecture features 198 

filters (3x3) in the first convolutional layer with max-pooling (6x6, stride 2), 209 filters (3x3) in the 

second convolutional layer with max-pooling (6x6, stride 2), 244 filters (3x3) in the third 

convolutional layer with average pooling (3x3, stride 2), and 256 filters (3x3) in the fourth 

convolutional layer with max-pooling (6x6, stride 2). The final layers consist of a fully connected (FC) 

layer with 512 units and ReLU activation, followed by a dropout layer with a rate of 0.2. The purpose 

of the dropout layer is to prevent overfitting by randomly deactivating neurons during training, as 

explained (Wu & Gu, 2015). After the dropout layer, there is another fully connected (FC) layer with 2 

units, and finally, a softmax layer with 2 neurons for classification, as illustrated in Figure 3. The 

proposed CNN method involves approximately 1.5 million parameters in total. For a detailed 

breakdown of these parameters, please refer to Table 3. 

 

Figure 3. Proposed CNN model. 
 

Table 3. Parameter values of each layer in the proposed model 

Layer No. Layer name Output 
Filter 

No. 
Filter size Stride No. 

Learnable 

properties 

No. of 

Parameters 
1 Input layer 64x64x3 - - - - 0 

2 Conv2D-1 64x64x198 198 3x3 1x1 3x3x3x198 5 544 

3 Batchnorm-1 64x64x198 - - - 1x1x198 396 

4 Relu-1 64x64x198 - - - - 0 

5 Maxpool-1 30x30x198 - 6x6 2x2 - 0 

6 Conv2D-2 30x30x209 209 3x3 1x1 3x3x198x209 372 647 

7 Batchnorm-2 30x30x209 - - - 1x1x209 418 

8 Relu-2 30x30x209 - - - - 0 

9 Maxpool-2 13x13x209 - 6x6 2x2 - 0 

10 Conv2D-3 13x13x244 244 3x3 1x1 3x3x209x244 459 208 

11 Batchnorm-3 13x13x244 - - - 1x1x244 488 

12 Relu-3 13x13x244 - - - - 0 

13 Avgpool2D 6x6x244 - 3x3 2x2 - 0 

14 Conv2D-4 6x6x256 256 3x3 1x1 3x3x244x256 562 432 

15 Batchnorm-4 6x6x256    1x1x256 512 

16 Relu-4 6x6x256      

17 Maxpool-3 1x1x256  6x6 2x2 - 0 

18 FC-1 1x1x512 - - - 512x256 131 584 

19 Relu-5 1x1x512 - - - - 0 

20 Dropout (0.2) 1x1xx512 - - - - 0 

21 FC-2 1x1x2 - - - 2x512 1 026 

22 Softmax 1x1x2 - - - - 0 

23 Classoutput 1x1x2 - - - - 0 

       Total 1.5M 

 

2.4. Performance criteria 
 

Different measurements are utilized to assess the performance of deep learning models. 

Various learning tasks may necessitate distinctive execution measurements to be emphasized. The 

classification performance of a model was evaluated using a confusion matrix too in this study. This 
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tool, often referred to as an error matrix, is a table representation that provides a concise summary of 

the effectiveness of a classification or prediction model (Deng et al., 2016). 

Accuracy is a commonly used evaluation metric that is often used alongside the confusion 

matrix. It measures the proportion of properly identified images out of the total number of evaluated 

images. Equation 1 represents the classification of this metric in binary classification, taking into 

account the number of true positives (TP) and true negatives (TN) (Gupta & Chawla, 2020). 
 

                                                          Acurracy =
(TP+TN)

(TP+TN+FP+FN)
 X 100                                                     (1) 

 

To obtain a more comprehensive evaluation of the model’s performance, we employed other 

assessment measures such as precision, recall, and F1-score (Ali et al., 2021). 

Precision: is a measure that calculates the proportion of accurately predicted positive 

outcomes compared to the total number of predicted positive outcomes made by the classifier. 

Equation 2 represents this metric (Ali et al., 2021). 
 

                                                                Precision =
TP

TP+FP
 X 100                                                                        (2) 

 

Recall: this metric as defined in Equation 3, quantifies the accuracy of properly identifying 

true positive findings out of all the actual positive samples (Ali et al., 2021). 
 

                                                               𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

FN+TP
 X 100                                                                               (3) 

 

F1-Score:  F1-score: Also referred to as the harmonic mean, balances precision and recall. It 

accounts for both false positives and false negatives in its calculation, making it especially useful for 

evaluating performance on imbalanced datasets. Equation (4) represented the f1-score metric. 
 

                                                         𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙 

Precision+Recall
 X 100                                                                     (4) 

 

3. Results and Discussion 
 

This section presents the proposed CNN model, the results of state-of-the-art models, a 

comparison of competitors, the computational complexity of models, and previous studies. The 

experiment was carried out on a Windows 11 Pro 64-bit OS (version 23H2) using MATLAB R2023a. 

The system consisted of an Intel Core i7-8850H CPU @ 2.60 GHz (12 CPUs), 16GB DDR4 RAM, 

and a 500GB SSD. Deep learning computations were enhanced by an NVIDIA GeForce RTX 1050 

GPU with 4GB of dedicated RAM.  
 

3.1 Results of the proposed CNN model  
 

The training parameters utilized by the proposed CNN model are as follows: Adam is the 

optimizer algorithm used, and training is performed on a GPU. The mini-batch size is set to 64, and 

the initial learning rate is 0.001. The learning rate schedule is piecewise, with a drop factor of 0.1 per 

ten epochs. The total number of epochs is 40. Shuffling occurs every epoch, and the validation 

frequency is set to 50. Furthermore, L2 regularization with a value of 0.001. Furthermore, in this 

study, the dataset was divided into two parts for experimentation. The division of the dataset was not 

based on random selection. Specifically, 80% of the data was allocated for training and 20% for 

testing. Figure 4 presents the results obtained by the proposed CNN model in terms of accuracy, recall, 

precision, and F1-score across all magnification factors. From the figure, we can see that the proposed 

CNN achieved accuracies of 97.49%, 97.60%, 97.77%, and 94.78 for magnification factors 40x, 100x, 

200x, and 400x, respectively.  

 

3.2. Results of state-of-the-art models  
 

In this section, the results obtained from four deep-learning CNN-based models are presented. 

Figure 5 displays the achieved results of four deep learning models, including SqueezeNet, 
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GoogleNet, ResNet-50, and DarkNet-19, evaluated in terms of accuracy, recall, precision, and F1-

score. The figure illustrates a comprehensive performance comparison across different magnification 

factors. From the analysis presented in Figure 5, it is observed that ResNet-50 outperforms all other 

models in terms of accuracy across all magnification factors. Specifically, ResNet-50 achieves an 

accuracy rate of 96.99%, 98.56%, 96.53%, and 96.43% at magnifications of 40x, 100x, 200x, and 

400x, respectively. These results underscore ResNet-50's superior capability in accurately classifying 

histopathologic images of breast cancer. 

 

Figure 4. Performance metrics of the proposed CNN model across different magnifications. 
 

Figure 5. State-of-the-art performance metrics across different magnifications. 
 

3.3. Comparison of competitors 
 

The results obtained from the application of renowned deep learning models, including Sequezenet, 

GoogleNet, ResNet-50, DarkNet-19, and the proposed CNN model, are presented. Each model’s performance is 

assessed based on accuracy metrics and confusion matrices. A comparison was conducted to demonstrate the 

performance of the proposed CNN model against established models such as Sequezenet, GoogleNet, ResNet-

50, and DarkNet-19. This comparison included various evaluation metrics: accuracy, precision, recall, and F1-

score. The objective is to evaluate the strengths and weaknesses of each approach in breast cancer classification 

by analyzing their respective outcomes. Figure 6 displays the confusion matrices for all the models. Table 4 

provides a summary of the results obtained by the different models on the BreakHis dataset, considering four 

magnification factors, in terms of accuracy, precision, recall, and F1-score.  
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Summarizing the results of the proposed models, the proposed CNN model demonstrated superior 

accuracy rates across magnification factors 40x and 200x, achieving accuracies of 97.49% and 97.77%. 

Additionally, ResNet-50 exhibited a notable accuracy of 98.56% and 96.43% at a magnification factor 

of 100x and 400x. Turning to recall, precision, and F1-score, DarkNet-19 obtained the highest recall 

of 97.41% at a magnification factor of 40x, while ResNet-50 yielded the highest recall of 96.94% and 

92.68% at a magnification factor of 100x and 400x. The proposed CNN model outperformed other 

models in the recall at magnification factors of 200x achieving 96.80%. Furthermore, RestNet-50 

demonstrated the highest precision rates at magnification factors of 40x, 100x, and 400x  with rates of 

97.60%, 98.45%, and 96.61% respectively, while the proposed CNN model exhibited precision rates 

of 96% at magnification factors of 200x. In terms of the F1-score, the proposed CNN model achieved 

the highest rates at magnification factors 40x and 200x, with scores of 96% and 96.40%, whereas 

ResNet-50 attained a score of 97.69% and 94.61% at a magnification factor of 100x and 400x. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Confusion matrices for models. 
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Table 4. Models comparison at various magnifications   

 

3.4. Computational complexity comparison of the proposed models  

 

This study examined the computational complexity of different deep learning methods. Table 

5 displays a comprehensive study of several elements, including training and testing time, the overall 

number of parameters, and the number of layers. The proposed method showed superior efficiency 

compared to all other models when comparing the periods of training and testing, resulting in a shorter 

overall workflow duration.  

The proposed CNN method scored second regarding parameter count, with around 1.5 million 

parameters. Significantly, out of all the models, SqueezeNet had a lower number of parameters, which 

makes the suggested CNN approach a noteworthy choice in terms of computational robustness. 

Nevertheless, despite its commendable parameter efficiency, SqueezeNet’s performance was shown to 

be subpar in comparison to other models.  This suggests that SquuezeNet may have difficulties in 

effectively understanding and categorizing input, highlighting the importance of finding a balance 

between parameter economy and predictive accuracy. 

Furthermore, the simplified architecture of the CNN model, which consists of a reduced 

number of layers, is particularly notable. This architectural modification improves both computing 

efficiency and accelerates the training process. The decreased number of layers enables the model to 

extract significant features from the dataset with greater efficiency, resulting in accelerated training 

durations and enhanced overall performance. Hence, the CNN model provided successful capability, 

rendering it a resilient and effective tool for analyzing histopathological images of breast cancer. The 

equilibrium is essential for constructing models that are simultaneously precise and viable for 

implementation on computers with restricted hardware capacities.  

 

 

 

Magnification factor SqueezeNet GoogleNet ResNet-50 DarkNet-19 Proposed CNN 

A
cc

u
ra

cy
 

40x 95.24% 96.24% 96.99% 96.24% 97.49% 

100x 96.39% 95.19% 98.56% 97.36% 97.60% 

200x 95.78% 95.29% 96.53% 95.29% 97.77% 

400x 92.58% 95.88% 96.43% 93.41% 94.78% 

R
ec

a
ll

 

40x 90.80% 92.30% 93.13% 97.41% 96.00% 

100x 96.00% 91.00% 96.94% 95.39% 96.90% 

200x 93.50% 92.70% 95.87% 92.06% 96.80% 

400x 88.20% 92.60% 92.68% 91.23% 91.60% 

P
r
ec

is
io

n
  

40x 94.40% 96.00% 97.60% 90.40% 96.00% 

100x 92.20% 93.80% 98.45% 96.12% 95.30% 

200x 92.80% 92.00% 92.80% 92.80% 96.00% 

400x 89.00% 94.90% 96.61% 88.14% 92.40% 

F
1
-s

co
re

 

40x 92.55% 94.12% 95.31% 93.77% 96.00% 

100x 94.07% 92.37% 97.69% 95.75% 96.09% 

200x 93.17% 92.37% 94.31% 92.43% 96.40% 

400x 88.61% 93.74% 94.61% 89.66% 92.00% 
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Table 5. Computational complexity comparison of the proposed models 

Models Training time / Second Testing time (image/second) 

Total 

number of 

parameters 

Layer 

numbers 

(depth) 
Magnification 

factors 
40x 100x 200x 400x 40x 100x 200x 400x   

SqueezeNet 964 1035 1015 875 0.00203 0.00303 0.00251 0.00201 723K 68(18) 

GoogleNet 2333 2429 2304 2067 0.00531 0.00578 0,00528 0.00526 5.9M 144(22) 

ResNet-50 10126 10892 10559 9268 0.01182 0.01302 0.01191 0.01192 23.5M 177(50) 
MobileNet-

V2 
7179 7731 7456 6574 0.00964 0.01001 0.00918 0.00945 2.2M 154(53) 

DarkNet-19 8649 9498 9139 7837 0.01262 0.01229 0.012121 0.12074 19.8M 64(19) 
Proposed 

CNN 
684 780 710 631 0.00123 0.00121 0.00118 0.00138 1.5M 23(11) 

 

3.5. Comparative analysis with prior research  

 

The proposed study conducted a comparative analysis of its results to previous research, 

focusing on accuracy metrics. This study utilized the BreakHis dataset and binary classification. 

Furthermore, take into account that the comparison was done at the image level, not the patient level, 

using the binary classification method. Table 6 compares the CNN architecture proposed in this work 

to other CNN-based methods used in previous studies. 

 

Table 6. Comparative analysis of the proposed methodology to prior research 

References Method Data Augmentation 40x 100x 200x 400x 

(Alom et al., 2019) IRRCNN Yes 97.95% 97.57% 97.32% 97.36% 

(Budak & Güzel, 2020) 
Texture and Color 

fusion+SVM 
No 98.20% 97.20% 97.80% 97.30% 

(Burçak et al., 2021) HCNN No 96% 99% 97% 96% 

(Boumaraf et al., 

2021b) 

Fine-tuned ResNet-18 

with GCN 
Yes 99.25% 99.04% 99% 98.08% 

(Boumaraf et al., 

2021a) 

Block-wise fine-tuned 

VGG 
Yes 98.13% 97.39% 96.63% 94.05% 

(Wang et al., 2021) 

Deep feature 

integration+ enhanced 

routing 

No 92.71% 94.52% 94.03% 93.54% 

(Gupta et al., 2021) Modified ResNet Yes 99.11% 99.52% 98.74  

(Kallipolitis et al., 

2021) 

Ensemble deep 

learning with 

EfficientNets 

Yes 98.66% 98.24% 98.59% 96.97% 

(Sharma & Kumar, 

2022) 
Xception+SVM R,5 No 96.25% 96.25% 95.74% 94.11% 

(Joseph et al., 2022) 
Hybrid feature 

extraction with DNN 
Yes 97.89% 97.60% 96.10% 96.84% 

(Chattopadhyay et al., 

2022b) 
DRDA-Net No 95.72% 94.41% 97.43% 96.84% 

(Krishna et al., 2023) 
Interpretable 

CNN+ABN 
Yes 98.40% 98.60% 98.70% 97.80% 

(Zerouaoui & Idri, 

2022) 

28 hybrid 

architecture+ 4 

classifier 

Yes 92.61% 92% 93.93% 91.73% 

(Chattopadhyay et al., 

2022a) 
MTTRE-Net Yes 97.12% 95.22% 96.85% 97.81% 

(Zhou et al., 2022) ADSVM+RANet Yes 94.43% 98.31% 99.14% 93.35% 

(Kashyap, 2022) SDRG Yes 98.41% 98.37% 96.26% 97.38% 

(Nadr & İnik, 2023) CNN architecture  No - 92.70% - - 

(Addo et al., 2024) BCHI-CovNet Yes 99.15% 99.08% 99.22% 98.87% 

(Li et al., 2024) MDAA Yes 95.42% 93.79% 94.87% 97.08% 

Proposed Method CNN No 97.49% 97.60% 97.77% 94.78% 
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This analysis examines patterns, appraises progress, and analyzes the efficacy of our model 

within the wider framework of breast cancer classification approaches. The examination and 

comparison specifically utilized prior work that employed the BreakHis dataset for binary 

classification. This decision maintained uniformity and impartiality, enabling a precise evaluation of 

the performance of the suggested approach in comparison to other models under identical dataset 

settings. The comparison aims to provide a meaningful evaluation of the model’s efficacy in 

diagnosing breast cancer by just focusing on the BreakHis dataset.  

After conducting a comprehensive analysis, it was discovered that the proposed CNN model 

exhibited different accuracy rates in comparison to other approaches, showcasing a competitive 

performance even in the absence of data augmentation strategies. Data augmentation is an essential 

process in deep learning that involves intentionally expanding the quantity and diversity of the training 

dataset to improve the performance of deep neural networks (Motlagh et al., 2018). This is especially 

significant in medical imaging, as the quantity of accessible images may be restricted, and fluctuations 

in the dataset are vital for training resilient models. Data augmentation plays a crucial role in training 

the CNN model efficiently, primarily because of the disparities in the quantity of images across 

various subtypes of breast cancer. It enhances the model’s ability to apply its learned knowledge to 

new, unfamiliar data and prevents it from becoming too specialized to the training data. While several 

techniques in the table were enhanced by data augmentation, which can greatly enhance the 

performance of the model, the CNN model obtained impressive accuracy rates even without utilizing 

it. This emphasizes the model’s effective exploitation of available data to uphold competitive levels of 

accuracy. 

Therefore, the fact that the CNN model can achieve good performance with data augmentation 

highlights its resilience and the effectiveness of its architecture and training procedure. In comparison 

to experiments that did not utilize data augmentation, the CNN model earned the third-highest 

accuracy rate. Thus, the suggested CNN model demonstrated its practical applicability in breast cancer 

diagnosis, even without the use of data augmentation, which may not always be possible.  

 

4. Discussion  

 

Classifying and categorizing breast cancer is a challenging and time-consuming procedure. 

When it comes to detecting breast cancer, radiologists commonly rely on mammography pictures to 

identify malignant tumors. Nevertheless, there is an inherent possibility of human mistakes. To tackle 

this problem, deep learning (DL) and machine learning (ML) algorithms have been employed to 

precisely categorize breast cancer and other internal irregularities. Both machine learning techniques 

and deep learning models are frequently used in this domain. Deep learning models were employed in 

this methodology. Subsequently, the suggested model underwent evaluation comparison with four 

cutting-edge models regarding performance metrics and computational complexity. In addition, the 

new approach was compared to other existing studies. 

Upon analyzing the data shown in Table 4 and Table 5, some significant insights can be made 

when comparing the proposed method CNN model with established deep learning architectures. The 

CNN model exhibits both exceptional performance and extraordinary adaptability across different 

magnification factors. This is corroborated by its strong accuracy measures, such as elevated precision, 

recall, and F1-score values, which demonstrate its dependability and efficacy in breast cancer 

classification tasks. Although it stood at the second number of parameters and only higher than the 

SqueezeNet model, the model’s simplified structure highlights its computing efficiency. This 

efficiency is especially beneficial as it results in considerably quicker training and testing durations in 

comparison to other intricate models. This element is vital in actual applications where computational 

resources and temporal constraints are frequently encountered. Furthermore, the CNN model being 

offered is notable for its simplicity, since it possesses an approach that not only enhances its 

computational speed but also indicates a possible decreased risk of overfitting due to the reduced 

complexity. The proposed CNN model demonstrates its strengths in competitive performance, 

versatility across magnifications, robust accuracy metrics, computational efficiency, and a streamlined 

architecture. These factors highlight its potential for practical implementation in the field of 

histopathological image analysis for breast cancer classification.  



YYU JINAS 29(3): 896-912 

Jaf and İnık / Development of a Cost-Effective Novel CNN Model for Breast Cancer Classification in Histopathological Images 

909 

 

Additionally, after carefully analyzing the previous studies listed in Table 6, we observed that 

Addo et al. (2024) achieved the highest level of accuracy when using magnification factors of 200x 

and 400x. On the other hand, Boumaraf et al. (2021b) and Gupta et al. (2021) attained the highest 

accuracy at magnification factors of 40x and 100x, respectively. Although the proposed method's 

accuracy results are close to those of the previous research, it is noteworthy that the CNN model has 

substantially fewer parameters. This feature not only enables our model to generate impressive 

outcomes without requiring a large number of hardware resources but also highlights its computational 

efficiency, making it a viable choice for real-world applications. Furthermore, the model’s ability to 

withstand and recover from challenges is demonstrated when compared to previous research, since it 

continually achieved competitive levels of accuracy even without the implementation of data 

augmentation approaches. The resilience demonstrated by our model indicates that it possesses 

intrinsic robustness and adaptability to various datasets, hence minimizing the need for pre-processing 

processes that may be necessary for other models. Therefore, the adaptability and effectiveness of this 

model suggest that it has the potential to be easily incorporated into clinical processes, which often 

involve heterogeneous data and limited computational resources. Our CNN model’s capacity to 

consistently and effectively perform well across different levels of magnification and datasets 

establishes it as a valuable tool for analyzing histopathologic images in the classification of breast 

cancer. 

 

4.1. Conclusion  

 

This study aimed to improve breast cancer classification using deep learning techniques. 

Various neural network architectures, including SqueezeNet, GoogleNet, ResNet-50, DarkNet-19, 

MobileNet-V2, and a custom CNN model designed for binary classification of breast cancer, were 

used to address the need for better diagnostic tools in breast cancer pathology. Promising results were 

obtained from experiments conducted on the Breast Cancer Histopathological database (BreakHis), 

with the custom CNN model performing exceptionally well, achieving accuracies of 97.49% and 

97.77% at magnifications of 40x and 200x, respectively. The custom CNN model also showed the 

highest recall at a magnification factor of 200x. It is worth noting that the proposed method achieved a 

high precision rate at a magnification factor of 200x and the highest F1-score at 40x and 200x 

magnification. Furthermore, the proposed CNN model demonstrated efficient training and 

computational capabilities, with fewer layers compared to other models. Although SqueezeNet, 

GoogleNet, ResNet-50, and DarkNet-19 were evaluated in this study, the primary focus was on 

showcasing the performance of the custom CNN model. 

One limitation observed in this study is the relatively small size of the dataset, which consisted 

of 7,909 images. While it provided valuable insights into breast cancer classification, the limited size 

of the dataset may hinder the generalizability of the findings to larger populations. The limited sample 

size may hinder the model’s capacity to accurately represent the complete spectrum of 

histopathological variations and tumor features observed in real-world clinical settings. The lack of 

data augmentation tools increased this challenge by limiting the variety and inclusiveness of the 

training data. To overcome this constraint and improve the reliability and applicability of breast cancer 

classification models future research takes into account the utilization of larger and more varied 

datasets, in addition to implementing data augmentation techniques. Additional suggestions involve 

investigating innovative architectures and enhancing training techniques. Through persistent 

innovation in this field, we can boost the precision of diagnoses and ultimately improve the results for 

people suffering from breast cancer. 
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